
Advances in Mathematics of Communications doi:10.3934/amc.2016.10.195
Volume 10, No. 1, 2016, 195–207

ALGORITHMS FOR THE MINIMUM WEIGHT

OF LINEAR CODES
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Abstract. We outline the algorithm for computing the minimum weight of a

linear code over a finite field that was invented by A. Brouwer and later ex-

tended by K.-H. Zimmermann. We show that matroid partitioning algorithms
can be used to efficiently find a favourable (and sometimes best possible) se-

quence of information sets on which the Brouwer-Zimmermann algorithm op-

erates. We present a new algorithm for computing the minimum weight of a
linear code. We use a large set of codes to compare our new algorithm with the

Brouwer-Zimmermann algorithm. We find that for about one third of codes in

this sample set, our algorithm requires to generate fewer codewords than the
Brouwer-Zimmermann algorithm.

1. Introduction

For a prime power q let Fq denote the field with q elements. We assume that q is
small, hence all arithmetic operations in Fq are performed at unit cost. For x ∈ Fn

q

let wt(x) denote the Hamming weight of x. By an [n, k]q linear code we mean a k-
dimensional subspace of Fn

q . By an [n, k, d]q linear code C we mean an [n, k]q linear
code C such that the minimum Hamming distance of distinct codewords in C is d.
Then d is also the minimum Hamming weight of non-zero codewords in C, denoted
wt(C). Under the standard definitions of coding theory [1, 10] the code C can detect
up to d− 1 errors and it can correct up to b(d− 1)/2c errors. Thus determining the
value of d is critical for understanding of the error detection/correction capability
of C.

Vardy [12] showed that for general binary linear codes, computing the minimum
weight is an NP-hard problem, and the corresponding decision problem is NP-
complete. Hence any general algorithm for computing the minimum weight will run
in superpolynomial time, unless P=NP.

The first part of this paper is concerned with the algorithm for computing the
minimum weight of a linear code that was invented by A. Brouwer and later ex-
tended by K.-H. Zimmermann. This algorithm is outlined in Section 3. Before
that, in Section 2 we review background from matroid theory. In Section 4 we
propose an extension to the Brouwer-Zimmermann algorithm which consists in an
efficient construction of a good (sometimes best possible) sequence of information
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sets for the given code. We compare our approach to the previous literature on the
Brouwer-Zimmermann algorithm. Throughout the paper we also make references
to the implementation of the Brouwer-Zimmermann algorithm that is available in
Magma [3].

In the second part of the paper (Section 5) we propose a new algorithm for
computing the minimum weight of a linear code. We use a large set of codes to
compare our new algorithm with the Brouwer-Zimmermann algorithm. We find that
for about one third of codes in this sample set, our algorithm requires to generate
fewer codewords than the Brouwer-Zimmermann algorithm.

2. Matroid partitioning

A matroid is a pair M = (E, I) where E is the set of elements of M and I is a
collection of subsets of E, called the independent sets, that satisfies certain axioms.
Matroids are an axiomatic abstraction of the theory of linear dependence in vector
spaces. We recommend [11] for a current and comprehensive survey of matroid
theory.

A matroid partitioning algorithm takes as input matroids Mi = (E, Ii) where
1 ≤ i ≤ r. Note that all Mi have the same ground set E but in general their sets of
independent sets may be different. The algorithm decides whether there exist sets
S1, . . . , Sr such that Si ∈ Ii for 1 ≤ i ≤ r (that is, Si is an independent set with
respect to the i-th matroid) and

⋃r
i=1 Si = E and Si ∩ Sj = ∅ whenever i 6= j. If

such a partition does exist, then the algorithm finds one such partition.
The first matroid partitioning algorithm was invented by Edmonds in 1965. A

description of Edmonds’ algorithm can be found for example in Section 8.7 of [9].
Our implementation of Edmonds’ algorithm is based on consulting the references
[6] and [9]; many other references exist as well. Assuming that matroid partition(s)
do exist, the version of Edmonds’ algorithm given in [9] finds a partition S1, . . . , Sr

such that the sequence (|S1|, |S2|, . . . , |Sr|) is lexicographically maximal among all
sequences (|U1|, |U2|, . . . , |Ur|) where U1, . . . , Ur is a matroid partition. Throughout
the paper |X| denotes the cardinality of set X.

The complexity analysis of Edmonds’ algorithm in [9] shows that the algorithm
runs in time O(m3t) where m = |E| and t is the maximum time required for testing
whether F ∈ Ii, where F is some subset of E and i is some number between 1 and
r.

For the type of matroids that we use in this paper, specialized matroid partition-
ing algorithms exist, see [5] and later references, and their time complexity is lower.
However we choose to not go into more detail here, as all matroid partitioning algo-
rithms run in polynomial time whereas the algorithms for computing the minimum
weight of a linear code run overall in superpolynomial time (unless P=NP).

3. Brouwer-Zimmermann minimum weight algorithm

An algorithm for computing the minimum weight of a linear code over a finite
field was designed by A. Brouwer and subsequently extended by K.-H. Zimmermann.
Henceforth we will refer to it as Brouwer-Zimmermann algorithm, abbreviated BZ
algorithm. Descriptions of the BZ algorithm can be found in [1, Section 1.8], [2,
Section 1.3] and [7]. A thorough implementation of the algorithm is available in
Magma [3], and a description of the Magma implementation is given in [7]. In [8] the
algorithm was adapted to finding minimum weight of Z4-linear quadratic residue
codes.
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Minimum weight of linear codes 197

Let C be a linear code whose minimum weight d we wish to determine. Let
C∗ be the set of non-zero codewords of C. Upon completion of each step, the BZ
algorithm considers C∗ as a disjoint union

C∗ = C ′ t C ′′.

At this point, all elements of C ′ have been listed explicitly (but none of them needs
to be stored permanently), thus yielding an upper bound d ≤ d where d is the
minimum weight of elements of C ′. At the same time, the algorithm establishes a
lower bound wt(c) ≥ d, where c denotes an arbitrary element of C ′′, without listing
any elements of C ′′ explicitly. If d ≥ d, then the algorithm terminates with the
message that the minimum weight of C equals d. Otherwise, in the next step the
algorithm augments the set C ′ so that it remains easy to lower bound the weights
of elements of the new set C ′′, and the same process is repeated. It is desired that
upon termination the set C ′ is as small as possible, since almost all effort of the
algorithm is spent on listing the elements of C ′.

Example 3.1. Consider the following two matrices G1 and G2 over F2:

G1 =


1 0 0 0 0 0 1 1 1 0
0 1 0 0 0 0 1 1 0 1
0 0 1 0 0 1 1 0 0 1
0 0 0 1 0 1 0 1 0 1
0 0 0 0 1 1 1 1 0 0

 G2 =


0 0 1 1 1 1 0 0 0 0
0 1 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 0 0
1 0 1 1 0 0 0 0 1 0
0 1 1 1 0 0 0 0 0 1


These are two generator matrices for the same [10, 5]2 linear code C, and again let
d denote the minimum weight of C. Consider C∗ = C ′ t C ′′ where C ′ consists of
rows of G1 and rows of G2. By examining elements of C ′ one-by-one, we obtain
d ≤ 4. Now let c ∈ C ′′ and write c = (c1|c2) where c1, c2 ∈ F5

2. Since c 6∈ C ′, it
follows that c is a linear combination of at least two rows of G1, hence wt(c1) ≥ 2.
Similarly, c is a linear combination of at least two rows of G2, hence wt(c2) ≥ 2 and
wt(c) = wt(c1) + wt(c2) ≥ 4. The algorithm terminates with the output “d = 4.”

Let G be a generator matrix for an [n, k]q code C. A subset T ⊆ {1, 2, ..., n} of
size |T | = k is called an information set for C if the corresponding columns in G
are linearly independent. Then there also exists a generator matrix GT for C such
that the columns of GT specified by T form an identity matrix. Each codeword of
C is of the form uGT for some u ∈ Fk

q . We have

(1) wt(uGT ) ≥ wt(u) for all u ∈ Fk
q .

3.1. Outline of the BZ algorithm. Let C be an [n, k]q linear code given by a
generator matrix G. The BZ algorithm will determine the minimum weight of C as
follows.

The algorithm will find subsets T1, . . . , T` of {1, 2, . . . , n} such that each Ti is

an information set for C and
⋃`

i=1 Ti = {1, 2, . . . , n}. After finding set Ti, Gauss-
Jordan elimination is applied to construct matrix Gi which is a generator matrix
for C and it has the identity matrix in the columns specified by Ti.

The sequence of non-negative integers r1, . . . , r` is determined by

(2) ri :=

∣∣∣∣∣∣Ti \
i−1⋃
j=1

Tj

∣∣∣∣∣∣ for 1 ≤ i ≤ `.
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The integers ri are called relative ranks in [7], and we will follow this terminology.
For two reasons it is customary to write the sequence of relative ranks in the non-
increasing order, that is,

(3) r1 ≥ r2 ≥ ... ≥ r`.

Firstly, the methods used in [1, 2, 7] for constructing sets Ti and matrices Gi produce
them in such a way that the sequence of relative ranks is non-increasing. Secondly,
it is more beneficial for the BZ algorithm to operate on matrices with larger relative
ranks prior to operating on matrices with smaller relative ranks. We will assume
that (3) always holds.

While the algorithm is operating, it may decide to discard some matrices Gi

because their relative ranks are so small that they will not get an opportunity to
contribute to the lower bound on weights of codewords in C ′′ before the termination
of the algorithm. Such decisions may be made on the fly, whenever the upper bound
d decreases as a consequence of discovering a codeword of weight less than the
previous value of d. A numerical example of this phenomenon is given in [7]. From
the complexity analysis point of view, predicting when such events will occur is not
possible, yet the impact of these events on the running time of the algorithm is
significant. In our analysis, we will assume that the algorithm operates throughout
the entire computation on the sequence of matrices G1, . . . , GD where D is some
integer such that 1 ≤ D ≤ `. (The only exception may be the last iteration of
the computation when the algorithm operates on G1, . . . , Gz for some 1 ≤ z ≤ D.)
We say that the algorithm operates up to depth D. We will show below that
this assumption is consistent with one of the modes in which the BZ algorithm is
used in practice. The value of D is determined once the sets T1, . . . , T` have been
constructed. In the descriptions of the algorithm given in [1] and [2] the parameter
D is not discussed; thus D = ` is implicitly used in these descriptions. In [7]
the choices for D are discussed: In the mode where the algorithm computes the
minimum weight, the value of D is adjusted dynamically according to the changes
of the value of d. In the mode where the algorithm verifies a lower bound on the
minimum weight, the optimal value of D can be determined in advance and it stays
constant throughout the execution of the algorithm.

Each step of the algorithm is characterized by a pair of integers (w, j) where 1 ≤
w ≤ k and 1 ≤ j ≤ D. The initial values of the main variables are (w, j) := (1, 1)
and d := n− k + 1 (Singleton bound).

In step (w, j) the algorithm enumerates all codewords uGj such that wt(u) = w.

During this process, whenever a codeword x is generated such that wt(x) < d, then
we set d := wt(x). In other words, the algorithm updates d according to

(4) d := min
(
d , min{wt(uGj) : u ∈ Fk

q , wt(u) = w}
)

without storing the set of codewords in memory. The new value of d is determined
as

(5) d :=

j∑
i=1

max(0, w + 1− k + ri) +

D∑
i=j+1

max(0, w − k + ri).

Using (1) it is easy to see [7] that any codeword x ∈ C∗ that has not been generated
by the algorithm up to this point satisfies wt(x) ≥ d. The algorithm now tests
whether d ≥ d. If this is the case, then the algorithm terminates with the message
that the minimum weight of C equals d. Otherwise, if j < D, then the algorithm
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proceeds to step (w, j + 1), otherwise it proceeds to step (w + 1, 1). Should the
algorithm ever reach the step (k, 1), then it will terminate after completing this
step, since all codewords have been enumerated.

It is noted in [7] that the overall work of the algorithm can be reduced by the
factor of q − 1 by using only left-normalized vectors u in (4), since codewords that
are non-zero scalar multiples of each other have the same Hamming weight. The
overall running time of the BZ algorithm is essentially determined by the total
number of codewords of C that the algorithm generates during its execution. This
value is called the work factor in [7], and we will use this term in our paper too.
Assuming that the algorithm terminates upon completing step (w, j), the number
of codewords that have been generated is

(6) W (D,w, j) = j

w∑
z=1

(
k

z

)
(q − 1)z−1 + (D − j)

w−1∑
z=1

(
k

z

)
(q − 1)z−1.

3.2. Proving a lower bound on the minimum weight. The BZ algorithm can
operate in different modes, and this is reflected for example by the fact that the
Magma implementation of it [7] offers several different commands through which the
algorithm can be invoked. The version of the algorithm that we outlined in Section
3.1 computes the minimum weight of C. It is also possible to use the algorithm to
solve the following decision problem:

Given a linear code C and a positive integer L, is it true that the minimum
weight of C is greater than or equal to L?

In order to solve this problem, the only modification required to the algorithm
outlined in Section 3.1 is that the algorithm will terminate with output “yes” as
soon as the inequalities d ≥ L and d ≥ L are both satisfied. If the algorithm
ever comes across a codeword of weight less than L, then it will terminate with
output “no.” This mode of operation of BZ algorithm is available in Magma via
the command VerifyMinimumDistanceLowerBound.

If the algorithm outputs “no,” then it is in general impossible to predict the time
at which the algorithm comes across a codeword of weight less than L. We will
analyze the work factor in the case when the algorithm outputs “yes.” Hence we
are analyzing the complexity of using the BZ algorithm to prove a lower bound on
the minimum weight of a linear code. In this case, the inequality d ≥ L holds true
throughout the execution of the algorithm. Hence we only need to analyze the work
needed to obtain the inequality d ≥ L.

Given C and L as above, the algorithm starts by determining the information
sets T1, . . . , T` and the corresponding relative ranks r1, . . . , r`. Afterwards, the
algorithm will consider in turn all possible values D = 1, 2, . . . , `. For each such D
the algorithm will determine the earliest (in the order of execution) pair (w, j) such
that the right-hand side of (5) is greater than or equal to L, and it will compute the
corresponding work factor W (D,w, j) using (6). The value D = D0 that minimizes
the work factor required will be found, and the BZ algorithm will be invoked at
this optimal depth D0 to deliver the proof that L is a lower bound on the minimum
weight of C.

4. Construction of information sets for the BZ algorithm

The issue of finding information sets T1, . . . , T` that yield a favourable sequence
of relative ranks r1, . . . , r` is a problem of its own. We address it in this section. It
is intuitively clear from (5) that larger values of ri should make the lower bound d
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grow faster, which means a faster completion of the algorithm. (Note that ri ≤ k
for all i.) This motivates the following definition.

Definition 4.1. An α-partition of an [n, k]q linear code C is a partition of its set of
coordinates into bn/kc linearly independent sets of size k and, in case that k does
not divide n, one linearly independent set of size n mod k.

Note that C has an α-partition if and only if there exists a sequence of information
sets for C such that the corresponding sequence of relative ranks is

(7) (k, . . . , k, n mod k)

where the last term is omitted if k divides n. It is easy to convert one object into
the other one.

Proposition 1. Let C be an [n, k]q linear code. There exists an algorithm with
time complexity O(n3k3) that decides whether C has an α-partition, and it outputs
an α-partition of C if it exists.

Proof. Let G be a generator matrix for C. Let E = {1, . . . , n} and let r := dn/ke.
For 1 ≤ i ≤ r consider matroids Mi = (E, Ii) defined as follows. Each set Ii
consists of precisely those subsets F ⊆ E such that the columns of G indexed by
F are a linearly independent set in Fk

q . Apply Edmonds’ algorithm (Section 2) to
M1, . . . ,Mr. The existence of an α-partition of C is equivalent to the existence of
a matroid partition S1, . . . , Sr such that (|S1|, . . . , |Sr|) = (k, . . . , k) if k divides n,
or (|S1|, . . . , |Sr|) = (k, . . . , k, n mod k) if k does not divide n. In either case this is
the lexicographically maximal matroid partition possible, thus it will be found by
Edmonds’ algorithm in case that it exists.

For the conclusion about the running time, recall from Section 2 that Edmonds’
algorithm runs in time O(m3t) where m = |E| and t is the maximum time required
for testing whether F ∈ Ii, where F is some subset of E and i is some number
between 1 and r. In our case m = |E| = n. Let Z be an arbitrary subset of
E = {1, . . . , n} and suppose that we want to test whether Z ∈ Ii. (Recall that all
sets Ii are equal, hence the value of i is of no consequence.) If |Z| > k, then Z 6∈ Ii.
If |Z| ≤ k, then let Q denote the submatrix of G consisting of those columns of
G indexed by Z. Then Z ∈ Ii if and only if rank(Q) = |Z|. This can be decided
by Gauss-Jordan elimination in time O(k3). Overall testing whether Z ∈ Ii can be
done in time O(k3). Hence Edmonds’ algorithm will run in time O(n3k3).

In [1, Section 1.8] it is noted that the BZ algorithm works efficiently if the code
under consideration has many information sets which are pairwise disjoint. We now
show that this objective can be achieved deterministically in polynomial time.

Proposition 2. Let C be an [n, k]q linear code. There exists an algorithm with time
complexity O(n3k3) that determines N , the maximum number of pairwise disjoint
information sets for C, and it finds a set of N pairwise disjoint information sets
for C.

Proof. As in the proof of Proposition 1 we form the matroids Mi from the code
C, except that we now take r = n, and we apply Edmonds’ algorithm to them.
Since Edmonds’ algorithm delivers a matroid partition S1, . . . , Sr such that the
sequence (|S1|, . . . , |Sr|) is lexicographically maximal among all matroid partitions,
in particular the sequence S1, . . . , Sr will contain the maximum possible number of
pairwise disjoint information sets for C. These will be the sets S1, . . . , SN where N
is the largest number i such that |Si| = k.
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We next show that if an α-partition of C exists, then it is the optimal choice for
the mode of the BZ algorithm that we study.

Proposition 3. If R is a sequence of relative ranks corresponding to an
α-partition of C, then the work factor of the BZ algorithm for proving a lower
bound on the minimum weight of C using R is less than or equal to the work factor
when using any other sequence of relative ranks for C.

Proof. Let L be a positive integer and suppose that the BZ algorithm is proving
that the minimum weight of C is at least L. Recall that, once the sequence of
relative ranks has been fixed, the algorithm will choose the best value of the depth

parameter before it starts executing. If C is an [n, k]q code, then
∑`

i=1 ri = n for
each sequence of relative ranks (ri).

Let r = (r1, . . . , r`) be an arbitrary sequence of relative ranks for C, and recall
that r is written in non-increasing order. As in the statement of the proposition,
let R be the sequence of relative ranks (7). Let D be the optimal depth for running
the BZ algorithm using the sequence r. Consider an execution of the BZ algorithm
using the sequence R with the same depth D. (If the length of R is less than
D, insert “empty” steps where no work is performed.) Let lb(w, j) be the value
(5) computed by the algorithm that uses the sequence r after completing the step
(w, j), and similarly let lb′(w, j) be the value (5) computed by the algorithm that
uses the sequence R after completing the step (w, j). We have lb′(w, j) ≥ lb(w, j)
for all (w, j). Recall that the termination conditions for the two algorithms are
lb(w, j) ≥ L and lb′(w, j) ≥ L respectively. Thus the optimal work factor for the
instance of the algorithm that uses R is less than or equal to the optimal work
factor for the instance of the algorithm that uses r.

4.1. Implementation. We implemented Edmonds’ algorithm in Magma [3]. For
a sample set of codes, in Table 1 we give the running time of our algorithm in the
second column, as well as the (exact or predicted) running time of the BZ algorithm
offered by Magma in the third column. Our implementation is very crude and it
only serves as a proof of concept; it is very likely that the timings in the second
column of Table 1 can be reduced significantly. Our timings were obtained using
Magma 2.19-6 running on Intel Core i7 CPU at 3.2 GHz. All timings are given in
seconds. Random matrices were used as generator matrices for the linear codes listed
in the table. In general we observed that for many codes the overhead for finding
a lexicographically maximal partition is smaller by many orders of magnitude than
the running time of the BZ algorithm, hence it becomes negligible.

parameters of code lex.max. partition (sec) BZ algorithm (sec)

[100, 40]2 0.1 0.5
[150, 40]2 0.3 50
[200, 100]2 1.7 ∼ 107

[210, 120]2 2.2 ∼ 1015

[140, 20]3 0.2 0.9
[140, 30]3 0.3 4526
[160, 110]3 1.8 ∼ 1014

Table 1. CPU time for finding a lexicographically maximal par-
tition for a linear code and running time of BZ algorithm.
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Example 4.2. Consider the binary linear code C of length 1344 and dimension 128
which Canteaut, Lallemand and Naya-Plasencia recently used in their attack on the
block cipher PICARO. The code C is defined in Section 4.1 of [4]; we obtained a
generator matrix G for C from the authors. The attack requires to find codewords
of C of the minimum weight. In [4] theoretical arguments are used to prove that
the minimum weight of C is 18 and to construct codewords of weight 18. When we
attempted to compute the minimum weight of C with the built-in MinimumWeight

function in Magma, after one day of running the system estimated that the time
required for completing the task will be about 106 years. We then applied our
matroid partitioning algorithm to G and in 91 seconds we found an α-partition for
C, that is, a partition of G into b1344/128c = 10 square invertible matrices (say
M1, . . . ,M10) plus a linearly independent set of 64 columns. Then it was sufficient
to perform Gauss-Jordan elimination on G to obtain generator matrices G1, . . . , G10

that have the identity matrix in the columns specified by M1, . . . ,M10 respectively.
Any non-zero codeword of C of weight less than 20 occurs as a row of at least one
of the matrices G1, . . . , G10 since any other non-zero codeword has weight at least
10 · 2 = 20. Thus, in mere 94 seconds we determined that the minimum weight of
C is 18 and we found the eight codewords of weight 18 listed in [4].

4.2. Comparison with previous versions of the BZ algorithm. The BZ
algorithm starts its execution by finding information sets T1, . . . , T` that yield the
sequence of relative ranks r1, . . . , r`. It is clear from (5) that the sequence (ri) has
impact on the operation of the algorithm, hence spending some effort on making a
choice among available sequences (ri) appears to be well justified.

In [1] and [2] the issue of choosing among different sequences (ri) is not con-
sidered. The information sets are produced by one sweep of the generator matrix
from left to right, by a sequence of Gaussian eliminations performed on rectangular
matrices of decreasing size. This method guarantees r1 = k but not much can be
inferred about the sequence (ri) as a whole.

In [7] the choice among different sequences (ri) is considered. The generator
matrix is swept from left to right as in [2] and [1]. If the first pass fails to produce
the sequence of relative ranks (7), then a random permutation is applied to the
columns of the generator matrix, and the process is repeated over and over. The
Magma implementation of the BZ algorithm uses this heuristic [7, p. 293].

In this paper we present a deterministic algorithm running in time polynomial in
n and k that finds information sets yielding the relative rank sequence (7), which has
been deemed to be the most favourable situation for the BZ algorithm [7, p. 293],
or it proves that this relative rank sequence can not be achieved for the code under
investigation. We make some assumptions about the mode of operation of the
BZ algorithm that allow us to formally prove that the sequence (7) is optimal in
cases when it is achievable. We note that the same algorithm also always finds the
maximum number of pairwise disjoint information sets for the given code, which is
another objective that can be pursued [1].

5. A new algorithm for computing minimum weight

In the BZ algorithm, each coordinate of C contributes to the lower bound d,
given in equation (5), via at most one information set. It can happen that many
coordinates do not contribute to d at all, as can be seen for example in Proposition
4 below. After stating this proposition, in Section 5.1 we propose a new algorithm
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in which a coordinate of C can contribute to d via more than one information set.
Then in Section 5.2 we perform a comparison of our algorithm and BZ algorithm
using a large set of linear codes.

Proposition 4. Let C be an [n, k]q code such that n ≤ 3
2k and let L ≤ n−k+1. In

order to prove that the minimum weight of C is at least L, the number of codewords
generated by the Brouwer-Zimmermann algorithm is

(8)

L−1∑
z=1

(
k

z

)
(q − 1)z−1.

Proof. It follows from the Singleton bound that the assumption L ≤ n − k + 1 is
not restrictive, as it only excludes the cases where the answer is trivial. We have
L ≤ n− k + 1 ≤ k

2 + 1. For the relative ranks as defined in (2) we have r1 = k and

ri ≤ k
2 for i ≥ 2. Considering the terms corresponding to i ≥ 2 and w ≤ L − 2 in

(5) we get

w + 1− k + ri ≤ L− 1− k +
k

2
≤ 0,

hence the terms corresponding to i ≥ 2 and w ≤ L − 2 will never make a positive
contribution to d in (5). It follows that, for proving that the minimum distance of
C is at least L, the Brouwer-Zimmermann algorithm will operate to depth D = 1
only and according to (6) the work factor for this will be

W (1, L− 1, 1) =

L−1∑
z=1

(
k

z

)
(q − 1)z−1.

Looking at the proof of Proposition 4 we see that up to one third of the co-
ordinates of C are useless in the computation of the minimum weight of C, since
their contributions to codeword weights are disregarded by the BZ algorithm. We
will now describe our new algorithm which allows more flexibility for the manner
in which each coordinate of the code may contribute towards a faster completion of
the algorithm.

5.1. The new algorithm. Our algorithm is supported by the following proposi-
tion.

Proposition 5. Let C be an [n, k]q code. Suppose that a, b are positive integers
and that there exist sets T1, . . . , Ta such that Tj ⊂ {1, . . . , n} for j = 1, . . . , a and
each element of {1, . . . , n} belongs to at most b sets Tj. Assume that c ∈ C is a
codeword and r is an integer such that the weight of c restricted to Tj is at least
r + 1, for all j = 1, . . . , a. Then the weight of c is at least a

b (r + 1).

Proof. Let 1 ≤ i ≤ n. Let wi = 0 if ci = 0 and wi = 1 if ci 6= 0. For 1 ≤ j ≤ a let
tij = 1 if the i-th coordinate of C belongs to Tj , and let tij = 0 otherwise. Then

a(r + 1) ≤
a∑

j=1

n∑
i=1

tijwi =

n∑
i=1

wi

a∑
j=1

tij ≤

(
n∑

i=1

wi

)
b = b · wt(c)

and the result follows.

Our new algorithm for proving a lower bound on the minimum weight of a linear
code is given in Table 2. In step 1, the information sets T1, . . . , Ta are found by
applying the matroid partitioning algorithm to the matroid M whose elements are
triples of the form (i, j, uj) where 1 ≤ i ≤ b, 1 ≤ j ≤ n and uj is the j-th column of
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Given: generator matrix G for an [n, k]q code C
positive integer L
positive integer b

Task: Determine whether the minimum weight of C is at least L.

1. Determine the largest integer a such that there exist information sets
T1, . . . , Ta for C, such that each coordinate of C belongs to at most b sets Tj .
Construct a sequence of information sets T1, . . . , Ta satisfying this condition.
2. Let r := d bLa − 1e. For each j = 1, . . . , a find all non-zero codewords c ∈ C
such that the weight of c restricted to Tj is at most r. If any of these
codewords has weight less than L, then return “false.”
3. Return “true.”

Table 2. Algorithm for proving a lower bound on the minimum
weight of a linear code.

G. So the number of elements of M is bn. We define that a set X of elements of M
is an independent set in M exactly when the multiset of the third components of
elements of X is an independent subset of Fk

q . The matroid partitioning algorithm
applied to M will return a sequence (I1, . . . , Is) which is a partition of the set of
all elements of M into independent sets Ii such that the sequence (|I1|, . . . , |Is|) is
lexicographically maximal among all such partitions. Then the value of a in step 1
is determined as the maximum value of t such that |It| = k. For 1 ≤ j ≤ a, the set
Tj is obtained in step 1 by setting Tj equal to the set of the second components of
all elements of Ij .

Step 2 is performed in the same manner as in the BZ algorithm. By applying
row operations to G, one finds generator matrices G1, . . . , Ga such that Gj has the
identity matrix in the columns specified by Tj , and then all linear combinations of
at most r rows of Gj are found for 1 ≤ j ≤ a. As was remarked earlier in this
paper, when forming these linear combinations, the first non-zero coefficient can be
normalized to 1 since codewords that are non-zero scalar multiples of each other
have the same Hamming weight.

The number of codewords that have to be generated by our algorithm is

(9)

d bLa −1e∑
z=1

a

(
k

z

)
(q − 1)z−1.

It is important to note that the value of b in our algorithm is a “free” parameter,
in the sense that the user is free to choose the value of b before running the algorithm.
Choosing b = 1 corresponds to our extension of the BZ algorithm as given earlier
in Section 4, in the sense that it constitutes the proof of Proposition 2. Choosing
value b > 1 may result in a smaller number of codewords generated in comparison
to using BZ algorithm. We performed computational experiments whose results we
report in Section 5.2.

As with the BZ algorithm, our algorithm can be also used in the mode where it
computes the minimum weight of C (instead of just proving a lower bound on the
minimum weight). To operate in this mode, in step 2 the value of L (and hence the
value of r) is adjusted dynamically whenever a codeword of weight less than L is
found.
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5.2. Computational results. By the considerations given earlier in this paper,
the complexity of step 1 of our algorithm (Table 2) is O(b3n3k3), since the number
of elements of the matroid is bn. To assess the applicability of our algorithm with
values b > 1 we performed the following experiment for a large set of linear codes C:

Given an [n, k, d]q code C, we computed the work factor (number of codewords
that have to be generated) required to prove wt(C) ≥ d by the BZ algorithm, as
well as by our algorithm (with b = 2, 3, 4). To determine the work factor for the BZ
algorithm we applied the matroid partitioning algorithm to find the lexicographi-
cally maximal sequence of relative ranks (ri) and then we applied formula (6) with
the optimal value of depth D (see the last paragraph of Section 3.2, and set L = d
there). To determine the work factor for our algorithm (with a fixed value of b), we
executed its step 1 (thereby obtaining the value of a) and then we applied formula
(9) with L = d. At this point, the user will choose to use the algorithm with the
smallest work factor required to prove that wt(C) ≥ d. We measured the time
that it took to perform step 1 of our algorithm. Our timings were obtained using
Magma 2.19-6 running on Intel Core i7 CPU at 3.2 GHz.

We performed this experiment on the set of best known [n, k]q linear codes stored
in the data base of Magma such that n ≤ 170, 1 < k < n and q ∈ {2, 3, 4}. We only
considered those codes that do not contain a coordinate equal to 0 in all codewords.
The sizes of these sets are as follows: 5965 codes for q = 2, 7072 codes for q = 3,
and 7239 codes for q = 4.

In Tables 3, 4 and 5, we report the results for binary, ternary and quaternary
codes, respectively. In each row of each table, the first entry indicates the values
of b for which the results are reported in the row. The second entry indicates
the percentage of codes for which our algorithm has a smaller work factor (for at
least one value of b under consideration) than the BZ algorithm. The third entry
indicates the total combined time (in seconds) spent in step 1 of our algorithm for
all values of b under consideration.

values of b improvement proportion maximum overhead time (sec)
2 17.4% 10
2, 3 26.7% 31
2, 3, 4 30.6% 70

Table 3. Results for linear codes with n ≤ 170 and q = 2.

values of b improvement proportion maximum overhead time (sec)
2 16.0% 11
2, 3 28.1% 37
2, 3, 4 33.1% 84

Table 4. Results for linear codes with n ≤ 170 and q = 3.

We emphasize that we used only a very crude implementation of the simplest
matroid partitioning algorithm, and very likely our timings in the third columns of
Tables 3, 4 and 5 can be decreased significantly. These timings only serve to prove
the fact that the overhead required by our algorithm will be quite acceptable in many
cases, since the BZ algorithm often requires much longer time to complete. (Indeed
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values of b improvement proportion maximum overhead time (sec)
2 13.8% 12
2, 3 26.7% 39
2, 3, 4 32.8% 90

Table 5. Results for linear codes with n ≤ 170 and q = 4.

computing the minimum weight of some binary linear codes of length n ≥ 108 takes
more than a day using Magma’s built-in function MinimumWeight, and computing
the minimum weight of some binary linear codes of length n ≥ 124 takes more than
a year using the same function.) Also for the sake of keeping the tables small we
reported only one timing in each row; this timing is typically achieved for n and k
both being close to 170. Then, for smaller values of n and k the expected time for
step 1 of our algorithm can be estimated from this data and from the knowledge
that the time complexity of step 1 is O(b3n3k3).

5.3. Conclusion. We conclude that the new algorithm presented in this section
provides a competitive alternative to the classical BZ algorithm. We expect that
our algorithm will be used in the following way: It will be supported by an efficient
implementation of a fast matroid partitioning algorithm. The time required to
execute step 1 of our algorithm will be determined empirically as a function of b, n
and k. In order to determine (or to lower bound) the minimum weight of any given
linear code C, the user will first invoke the BZ algorithm on C to the point when
a good estimate for the completion time is obtained. If the estimated completion
time of the BZ algorithm is much higher than the time required for step 1 of our
algorithm, then step 1 of our algorithm will be executed, and afterwards the best
performing algorithm will be chosen to complete the task.
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