## Measures of Hexanomials S(a,b,e)

Measures of polynomials of the form

Sa,b,e(x,y) = 1 + (xa+e)(xb+e)y + xa+by2
with 0 < a < b <= 15, e = +-1, and gcd(a,b) = 1. Also, for e=-1 ensure a and b have opposite parity to avoid duplications. Indicated below by S(a,b,e).

```S(1,2,+)    1.374445989479644925561222496

S(1,3,+)    1.332396129458715412109801886
S(2,3,+)    1.391864350682103737111828444

S(1,4,+)    1.411321462213438165000943124
S(3,4,+)    1.383956104257062054091033442

S(1,5,+)    1.387076447526545474559797490
S(2,5,+)    1.372726590562344802701229505
S(3,5,+)    1.363651498186499217695424240
S(4,5,+)    1.384097193438733293217793363

S(1,6,+)    1.359815898987749294987436551
S(5,6,+)    1.382584545310793877377527108

S(1,7,+)    1.391611927937874212068893097
S(2,7,+)    1.390883067692816499729818995
S(3,7,+)    1.387283529278117306301268100
S(4,7,+)    1.380086278014596066361673799
S(5,7,+)    1.372802665574109826612053245
S(6,7,+)    1.382589552110474029926572689

S(1,8,+)    1.384955943909102270269070347
S(3,8,+)    1.373372699130006127340138680
S(5,8,+)    1.383757379468528772922691017
S(7,8,+)    1.382056592751606084542832070

S(1,9,+)    1.369782319988012279110613131
S(2,9,+)    1.376859373452490164964541699
S(4,9,+)    1.385366129156645469185466075
S(5,9,+)    1.384744601349779642200170785
S(7,9,+)    1.376345456565680889950739723
S(8,9,+)    1.382054099490550076134282358

S(1,10,+)   1.386336569986646381652170166
S(3,10,+)   1.385641652865212420038584037
S(7,10,+)   1.382581873610973012963218564
S(9,10,+)   1.381806701621019594799070629

S(1,11,+)   1.383660130705388517986685893
S(2,11,+)   1.381790020274891566436501940
S(3,11,+)   1.378609234373049631516317896
S(4,11,+)   1.375239415548499246578868149
S(5,11,+)   1.380752858730670178688821754
S(6,11,+)   1.383396339552574838033485159
S(7,11,+)   1.383483503803074992184174217
S(8,11,+)   1.381363878822915135100591647
S(9,11,+)   1.378070907151340994885714746
S(10,11,+)  1.381804388668808331953065385

S(1,12,+)   1.374245979446514858949030739
S(5,12,+)   1.383954114755726938841211450
S(7,12,+)   1.380293718844228935427613491
S(11,12,+)  1.381669797435694041033678534

S(1,13,+)   1.384252423929823497077026886
S(2,13,+)   1.384480666975244706579134615
S(3,13,+)   1.384311456271715069145687025
S(4,13,+)   1.383335740431286569320688403
S(5,13,+)   1.381329544237728486047141406
S(6,13,+)   1.378226170388057744173988807
S(7,13,+)   1.380409362878432002760767193
S(8,13,+)   1.382548708236110558061033865
S(9,13,+)   1.382804788091766788653934935
S(10,13,+)  1.381424865291101146550813101
S(11,13,+)  1.379037868610315365196525025
S(12,13,+)  1.381668141147247462696247883

S(1,14,+)   1.382930087830557444220035147
S(3,14,+)   1.380350829271354065346133825
S(5,14,+)   1.379368213445630727405176822
S(9,14,+)   1.380850996422383112988772490
S(11,14,+)  1.381836667303940840115734215
S(13,14,+)  1.381586915638606407609291306

S(1,15,+)   1.376576692006057731919328982
S(2,15,+)   1.378407906066196508777274268
S(4,15,+)   1.382188895668629924033062561
S(7,15,+)   1.381869544901489172787407744
S(8,15,+)   1.379777896895145348151356685
S(11,15,+)  1.382403115995649482101019201
S(13,15,+)  1.379633379041023273485768718
S(14,15,+)  1.381585753634545001716270726

S(1,2,-)    1.429922813336840048150874189

S(2,3,-)    1.385461864248118476268188278

S(1,4,-)    1.350316979059869095008168282
S(3,4,-)    1.386176210672066242327073965

S(2,5,-)    1.393614304495189947398428641
S(4,5,-)    1.383094739083665135890261402

S(1,6,-)    1.395662832958230832287041202
S(5,6,-)    1.383123551402180226000922486

S(2,7,-)    1.365062315717441717949455465
S(4,7,-)    1.385040874589467861577142514
S(6,7,-)    1.382266526938141562986714424

S(1,8,-)    1.381889499582196347457338350
S(3,8,-)    1.387392519568582810475051583
S(5,8,-)    1.380805179512375984557859413
S(7,8,-)    1.382265451962140117934005417

S(2,9,-)    1.386374991082618551893753701
S(4,9,-)    1.377003328618339095964003196
S(8,9,-)    1.381911270141091382253729918

S(1,10,-)   1.377459693405029069824525978
S(3,10,-)   1.375345654399179640234108814
S(7,10,-)   1.381284670983871377330595204
S(9,10,-)   1.381908684642632934625473758

S(2,11,-)   1.383118936555387419282438502
S(4,11,-)   1.384710240101125167185662255
S(6,11,-)   1.379739508403941359394915682
S(8,11,-)   1.382288451582254691071763138
S(10,11,-)  1.381729030610844640339513425

S(1,12,-)   1.385439565928074156354311727
S(5,12,-)   1.376699835768691552793276077
S(7,12,-)   1.382894160098871075101350478
S(11,12,-)  1.381727057637822924463601090

S(2,13,-)   1.377665176562088010158072364
S(4,13,-)   1.379910434949267322362552822
S(6,13,-)   1.383387529997095451592620647
S(8,13,-)   1.380633300952494608906618464
S(10,13,-)  1.381942791244222488040040535
S(12,13,-)  1.381623612623280647421041158

S(1,14,-)   1.381076248429329006037667175
S(3,14,-)   1.383207942144322288284773454
S(5,14,-)   1.383201912740651760456549294
S(9,14,-)   1.382302740705116938439047066
S(11,14,-)  1.381434208214447228252787141
S(13,14,-)  1.381622226857876838135976028

S(2,15,-)   1.383679806447003172759461707
S(4,15,-)   1.381551854106189713753362473
S(8,15,-)   1.382654531219015131429689460
S(14,15,-)  1.381557279765993062873812891
```