MATH 895 Assignment 1, Fall 2021

Instructor: Michael Monagan

Please hand in the assignment by 11 pm Wednesday September 20th.
Late Penalty -20% off for up to 36 hours late. Zero after that.
For Maple problems, please submit a printout of a Maple worksheet containing Maple code and the execution of examples.
References: Sections 4.5-4.9 of Geddes, Czapor and Labahn and sections 8.2,8.3,9.1 of von zur Gathen and Gerhard.

Question 1 : In-place FFT algorithms (15 marks).

Implement $\operatorname{FFT}(n, A, \omega, p, k)$ and $\operatorname{FFT} 2(n, A, \omega, p, k)$, the two FFT algorithms in Maple. Here A an Array of size n, ω has order n, p is a prime and k is an index k into A where you are working, i.e., if my C code accesses A[i] your Maple code will access A [k+i]. The first time you call FFT1 you will use $k=0$. FFT1 and FFT2 should run "in-place", that is, the input polynomial is stored in the array A of size n and the output is in A and no temporary array is allocated.

Use FFT1 and FFT2 to compute $c(x)=a(x) b(x)$ modulo $p=97$ where

$$
a(x)=1+39 x+57 x^{3}+11 x^{4}+19 x^{6}+x^{8} \text { and } b(x)=7+22 x^{3}+44 x^{4}+17 x^{6}+9 x^{7} .
$$

Use ω of order $n=16$. Now use FFT1 and FFT2 to multiply $a(x)$ and $b(x)+x^{8}$ using three FFTs using ω of order $n=16$ not $n=32$. You will need to do some additional operations to recover the product.

Question 2 : Analysis of the FFT (5 marks).

Let K be a field and ω be a primitive 4'th root of unity in K. Let $a=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ and $A=\left[a_{0}, a_{1}, a_{2}, a_{3}\right] \in K^{4}$. The FFT computes $F=\left[a(1), a(\omega), a\left(\omega^{2}\right), a\left(\omega^{3}\right)\right]^{T}$. This polynomial evaluation can be expressed as an affine transformation. Let V_{4} be the 4×4 Vandermonde matrix

$$
V=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \omega & \omega^{2} & \omega^{3} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} \\
1 & \omega^{3} & \omega^{6} & \omega^{9}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]
$$

Then the FFT computes $V_{4} A^{T}$, that is, $F=V_{4} A^{T}$. For both FFT algorithms (FFT1 and FFT2) factor the matrix V_{4} into a product of three matrices so that $V_{4}=U V W$ where one of the matrices will be a permutation matrix. The two factorizations explain how the two algorithms both compute $V_{4} A=F$. Check that the two permutation matrices are inverses of each other.

Question 3 : Fast Division (15 marks)

Consider computing the quotient of $a \div b$ in $F[x]$. To use the fast method we need to compute f^{-1} to $O\left(x^{n}\right)$ where $n=\operatorname{deg} a-\operatorname{deg} b+1$ and $f=b^{r}$. Write a Maple procedure FastNewton ($\mathrm{f}, \mathrm{x}, \mathrm{n}, \mathrm{p}$) that computes f^{-1} to $O\left(x^{n}\right)$ for $F=\mathbb{Z}_{p}$ using a Newton iteration. Use Expand (...) mod p; for the polynomial multiplications so you get Maple's fast multiplication. To make the Newton iteration efficient when n is not a power of 2, compute $y=f^{-1}$ recursively to order $O\left(x^{\lceil n / 2\rceil}\right)$. To truncate a polynomial b modulo x^{n} you could use $\operatorname{rem}\left(\mathrm{b}, \mathrm{x}^{\wedge} \mathrm{n}, \mathrm{x}\right)$. Use convert (taylor ($\mathrm{b}, \mathrm{x}, \mathrm{n}$), polynom) instead which is more efficient.
Test your algorithm on the following problem in $\mathbb{Z}_{p}[x]$.

```
> p := 11;
> f := 3+x+4*x^3+x^5;
> FastNewton(f,x,6,p);
```

$$
10 x^{5}+7 x^{4}+10 x^{3}+9 x^{2}+6 x+4
$$

Now write a Maple procedure FastQuo ($\mathrm{a}, \mathrm{b}, \mathrm{x}, \mathrm{p}$) to compute the quotient of $a \div b$ in $\mathbb{Z}_{p}[x]$ fast. Test your procedure on the following inputs

```
> p := 9973; d := 1000;
> while d < 10^5 do
> a := Randpoly(degree=2*d-1,x) mod p;
> b := Randpoly(degree=d,x) mod p;
> q := CodeTools[Usage]( FastQuo(a,b,x,p) );
> if q <> Quo(a,b,x) mod p then print(BUG); fi;
> d := 2*d;
> od:
```

You will need to compute reciprocal polynomials efficiently. Let n be the degree of the f. To compute the f^{r} efficiently use $\mathrm{fr}:=\operatorname{expand}\left(\mathrm{x}^{\wedge} \mathrm{n} * \operatorname{subs}(\mathrm{x}=1 / \mathrm{x}, \mathrm{f})\right.$);

Question 4: Complexity of Fast Division (5 marks)

Let $f \in F[x]$ and let $D(n)$ be the number of multiplications in F for computing a power series of f^{-1} to order $O\left(x^{n}\right)$ using the Newton iteration. Let $M(n)$ be the number of multiplications
in F that your favorite multiplication algorithm takes to multiply two polynomials of degree $n-1$ in $F[x]$. For $n=2^{k}$ explain why

$$
D(n)=D(n / 2)+M(n)+M(n / 2)+c n
$$

for some constant $c>0$. Now, using $D(1)=d$ for some constants $d>0$, solve this recurrence relation, show that

$$
D(n)<3 M(n)+2 c n+d
$$

Assume that $2 M(n / 2)<M(n)$, that is, multiplication is super linear.
Conclude that the cost of the Newton iteration is equivalent to approx. 3 multiplications.

