September 15, 2021 9:42 PM

Let f_{ig} be non-zero polynomials in $R[x_{15}...x_{2n}]$. Let $f_{ig}=a_{1}.x_{1}+a_{2}.x_{2}+...+a_{4f}.x_{4f}$ and $g_{ig}=b_{1}.x_{1}+b_{2}.x_{2}+...+b_{4g}.x_{4g}$. When $a_{ig},b_{i}\in R[x_{0}]$ and x_{ig},y_{i} are monomials in $x_{1j}.x_{2j}...,x_{n}$. and $x_{ig}>x_{2}>...>x_{n}$ and $y_{ig}>y_{2}>...>y_{4g}$ in a monomial order. We'll also write $f_{ig}=f_{i}+f_{2}+...+f_{4g}$.

How can we compute $h=f\times g=C_1Z_1+C_2Z_2+\cdots+C_{\pm h}Z_{\pm h}$ with $C_1\in\mathbb{R}\setminus\{0\}$ and $Z_1>Z_2>\cdots>Z_{\pm h}$.

A classical algarithm does #f.#g coeff. mults and mon. mults.
and ??? monomial comparisons.

$$h = f_{xg} = (f_{ig} + f_{zg}) + f_{zg} + f_{zg} + f_{zg} + \dots$$

$$\Rightarrow add using merging \Rightarrow \#comps \in (\#g + \#g - 1) + \dots$$

#(omparisons = (M+M-1)+(M+1+M-1)+(2M+1+M-1)= M=1 $(M+i-1)+M-1 = \frac{5}{2}M^2 = \frac{3}{2}M+2 \in O(M^2)$.

comparisons = (e+e-z)+(2e+e-z)(3e+e-z)+...

comparisons =
$$(l+l-z)+(-2l+l-z)(3l+l-z)+\cdots$$

grex.

 $+f_{3}g_{-1}$
= $2(il+l-z) = l(\frac{1}{2}m^2+\frac{1}{2}m-1)-2(m-1)$.

 $EO(lm^2)=O(\sharp g,\sharp f^2)$

Cubic.

Note: if $\sharp f > \sharp g$ eq. $\sharp g=z$ we should interchang f g g .

Instead of $h=f_{1}g+f_{2}g+\cdots+f_{3}g$ we do

 $h=g_{1}f+g_{2}f$ with one mage.

How do we fix \times ? We obvide and conquer.

Let $l=lm_{2}$ when $l=lm_{2}$ is $l=lm_{2}$ in $l=$

Adding $C(m) \leq (ml-1) + (ml-2) + \dots + (ml-\frac{m}{2})$ $= log_2 m ml + m-1. \in O(ml log_2 m)$ Note we can $f \in g$. Therefore $C(ml) \in O(ml log min(m,l))$.

Division in R[x1,--,xn]

Let $f,g \in R(x_1,...,x_n]$. Test if g|f. If so output g = f|g the quotient. In Maple divide (f,g,2); $g_1+g_2+g_3+...$

 $f - 219 - 929 - \dots - 2499 = f - 29$

The - alg does #9 divisions in (and #9(#9-1) mults
plus ?? monomial comps.

Universate Dense: $O(\pm g \cdot \pm g)$ monomial comparisons. Sparse Case: $O(\pm g \cdot \pm g^2)$ cubic.

(an we do - in O(#g#q log#q) "?