
FPSAC 2012, Nagoya, Japan DMTCS proc. (subm.), by the authors, 1–12

A new edge selection heuristic for computing
the Tutte polynomial of an undirected graph.

Michael Monagan1†

1Department of Mathematics, Simon Fraser University, Burnaby, B.C., V5A 1S6, CANADA.

Abstract We present a new edge selection heuristic and vertex ordering heuristic that together enable one to compute
the Tutte polynomial of much larger sparse graphs than was previously doable. As a specific example, we are able
to compute the Tutte polynomial of the truncated icosahedron graph using our Maple implementation in under 15
minutes on a single CPU. This compares with a recent result of Haggard, Pearce and Royle whose special purpose
C++ software took one week on 150 computers.

Keywords: Tutte polynomials, edge deletion and contraction algorithms, NP-hard problems.

1 Introduction
Let G be an undirected graph. The Tutte polynomial of G is a bivariate polynomial T (G, x, y) which
contains information about how G is connected. It is also the most general graph invariant that can be
defined by edge deletion and edge contraction. We recall Tutte’s original definition for T (G, x, y). Let
e = (u, v) be an edge in G. Let G − e denote the graph obtained by deleting e and let G/e denote the
graph obtained by contracting e, that is, first deleting e then joining vertexes u and v. Figure 1 below
shows an example of edge contraction.

u u
u

e

�
�
�A
A
A u u

u
�
�
� u u

G G− e G/ e

Fig. 1: Graph edge deletion and contraction.

†This work was supported by the Mprime NCE of Canada

subm. to DMTCS c© by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
http://www.dmtcs.org/proceedings/dm(subm.)ind.html

2 Michael Monagan

Definition 1 Let G be a connected undirected graph. The Tutte polynomial T (G, x, y) is the bivariate
polynomial defined by

T (G) =

1 if |E| = 0,
xT (G/e) if e is a cut-edge in G,
y T (G− e) if e is a loop in G
T (G− e) + T (G/e) if the edge e is neither a loop nor a cut-edge in G.

(1)

This definition immediately gives a recursive algorithm for computing T (G, x, y). In general, a naive
implementation of the algorithm will make an exponential number of recursive calls, because of the last
case in (1). If G has n vertexes and m edges, the number of recursive calls C(n+m) is bounded by

C(n+m) ≤ C(n+m− 1) + C(n− 1 +m− 1).

This is the Fibonacci sequence. Hence C(n + m) ∈ O(1.618n+m). One way to reduce C(n + m) is to
apply the following theorem.

Theorem 1 (Tutte [9]) Let G be a graph with m biconnected components (blocks) B1, B2, . . . , Bm.
Then T (G, x, y) = Πm

i=1T (Bi, x, y).

Another way to reduce C(n+m) is to “remember” the Tutte polynomials computed in the computation
tree and use a graph isomorphism test to test whether a graph in the computation tree has been seen before.
In [3], Haggard, Pearce and Royle present timings for random graphs (cubic, quartic, and dense) that
shows that employing graph isomorphism is very effective; it roughly doubles the size (doubles n + m)
of the graphs that can be handled in a given time. A factor in determining how effective this isomorphism
testing is, is the order in which the edges are selected. In [7], Haggard, Pearce and Royle investigate
various edge ordering heuristics. Two heuristics, which they call MINDEG and VORDER, are found to
perform consistently better than random selection. In section 2 we describe the MINDEG and VORDER
heuristics and present a new edge selection heuristic. The VORDER heuristic, and our new heuristic,
also depend on the ordering of the vertexes in G. We present an ordering that we have found works
particularly well with our edge selection heuristic. In section 3 we describe our Maple implementation
and explain how we test for isomorphic graphs in the computation tree. Another experimental finding in
this paper is that the VORDER edge selection heuristic, and our new edge selection heuristic result in over
95% of isomorphic graphs in the computation tree being identical. In section 4 we present benchmarks
comparing the three heuristics with and without the new vertex ordering. The data presented shows that
our new heuristic again roughly doubles the size of sparse graphs that can be handled in a given time.

We end the introduction with some further information about available software for computing Tutte
polynomials and related polynomials. Useful references include the very good Wikipedia webpage
http://en.wikipedia.org/wiki/Tutte polynomial and Bollobás’ text [1]. The graph theory packages in Math-
ematica and Maple include commands for computing Tutte polynomials. The Mathematica algorithm
does not look for identical or isomorphic graphs in the computation tree (see [8]). The TuttePolynomial
command in Maple 11 and more recent versions (see [4]) uses the VORDER heuristic and hashing to
test for identical graphs in the computation tree. The fastest available software for computing Tutte poly-
nomials and related polynomials is that of Haggard, Pearce and Royle [7, 3]. It is available on David
Pearce’s website at http://homepages.ecs.vuw.ac.nz/˜djp/tutte/. It uses the canonical
graph ordering available in Brendan Mckay’s nauty package (see [5]) to identify isomorphic graphs.

Computing Tutte Polynomials 3

Definition 2 Let G be an undirected graph. The reliability polynomial of G, denoted Rp(G), is the
probability that G remains connected when each edge in G fails with probability p.

Definition 3 Let G be an undirected graph. The chromatic polynomial of G, denoted Pλ(G), counts the
number of ways the vertexes of G can be colored with λ colors.

For example, Rp(s s) = 1 − p and Pλ(s s) = λ(λ − 1). The reliability and chromatic poly-
nomials can also be computed by the edge deletion and contraction algorithm. If G has n vertexes and m
edges, the they are related to the Tutte polynomial as follows:

Rp(G) = (1− p)(n−1) p(m−n+1) T (G, 1, p−1), (2)

Pλ(G) = (−1)(n−1) λ T (G, 1− λ, 0). (3)

Since graph coloring is NP−complete, it follows that computing the the chromatic polynomial is NP−hard.
Thus (3) implies computing the Tutte polynomial is also NP−hard. It is also known that computingRp(G)
is NP-hard (see [6]). This does not mean, however, that computing the Tutte polynomial for a given graph
is not polynomial time. Our new edge selection heuristic is polynomial time for some non-trivial struc-
tured sparse graphs.

2 Edge selection heuristics.
In applying the identity T (G) = T (G − e) + T (G/e) we are free to choose any edge which is neither
a cut-edge nor a loop. [If G has a cut-edge or loop, then those edges should be processed first.] In [7],
Haggard, Pearce and Royle propose two heuristics, the minimum degree heuristic (MINDEG) and the
vertex order heuristic (VORDER). We describe the heuristics here and introduce our new heuristic which
is a variation on VORDER.

2.1 The minimum degree heuristic: MINDEG
Consider the graph G in Figure 2 below.

t1 t3 t4

��@@
D
DD

�
��

l
ll

t5 t2 t1 t3 t4

t5
��

D
DD

�
��

l
ll

t2 t1 t3 t4
D
DD

�
��

l
ll

t2

G G− e G / e

Fig. 2: The minimum degree heuristic.

The minimum degree heuristic picks the edge e = (u, v) where u is the first vertex of minimum degree
(u = 2 in the example) and v is the first vertex adjacent to u of minimum degree (v = 5 in the example).
Hence e = (2, 5) is chosen. Shown in the figure are the graphs G − e and G/e. The reader can see that
the next edge that will be selected in G − e is the edge (2, 4), which is a cut-edge. The algorithm will
then contract the edge (2, 4), then select the edge (1, 5), another cut-edge. After contracting (1, 5) what
is left is the triangle on vertexes 1, 3, 4. For the graph G/e, the MINDEG heuristic selects the edge (2,1).
After deleting (2,1), MINDEG will select and contract the edge (2,4) again yielding the triangle 1, 3, 4.
This example shows how identical graphs in the computation tree arise.

4 Michael Monagan

2.2 The vertex order heuristic: VORDER
Consider again the graph G shown in the Figure 3 below.

t2
t5

t4

��@@
�
��

l
ll

t1 t3
D
DD

t2
t5

t4t3

��@@
�
��

l
ll

t1 t4

t2
t5

t4

��@@
�
��

l
ll

t1 t4
G G− e G / e

Fig. 3: The VORDER-pull heuristic.

The vertex order heuristic picks the edge e = (u, v) where u is simply the first vertex in the G and v is
the first vertex adjacent to u. In our example u = 1, v = 3, hence e = (1, 3) is chosen. Shown in Figure 3
are the graphs G− e and G/e where when we contracted the edge e = (1, 3) we “pulled” vertex 3 down
to vertex 1. The next edge selected in G/e will be one of the edges (1,4).

There is alternative choice here when constructing the graph G/e. Instead of “pulling” vertex v = 3
down to u = 1, if instead we “push” vertex u = 1 up to v = 3 we get the contracted graph shown in
Figure 4 below. Observe that the two contracted graphs G/e in figures 3 and 4 are isomorphic. However,
in the vertex order heuristic, the next edge selected in G/e is different. In figure 3 the vertex order
heuristic selects edge (1,4). In figure 4 it selects edge (2,4). We will call the two vertex order heuristics
VORDER-pull and VORDER-push, respectively.

t2
t5

t4

��@@
�
��

l
ll

t1 t3
D
DD

t2
t5

t4t3

��@@
�
��

l
ll

t1 t4

t2
t5

t3 �
�
��@@t4

t2
�
��

G G− e G / e

Fig. 4: The VORDER-push heuristic.

To visualize the difference between VORDER-pull and VORDER-push, picture the computation tree
of graphs produced by the algorithm as it applies the identity

T (G) = T (G− e) + T (G/e).

On the left of the computation tree we repeatedly delete edges. On the right of the tree we repeatedly
contract edges. The two vertex order heuristics differ when we contract. In the VORDER-pull heuristic,
we always select the same first vertex and contract (pull) other vertexes to it thus typically increasing the
degree of the first vertex. In the VORDER-push heuristic, we select the first vertex and push it away (into
the middle of the graph) and move on to the next vertex in the ordering. Thus one measurable difference
between VORDER-pull and VORDER-push is that the degree of the vertex u selected will generally be
greater in VORDER-pull than in VORDER-push.

Computing Tutte Polynomials 5

2.3 The vertex label ordering
The VORDER-pull and VORDER-push heuristics, and also to a lesser extent, the MINDEG heuristic,
also depend on the input permutation of the labels of the vertexes in G. All three heuristics are sensitive
to this ordering with a random ordering producing a bad behavior. In [7], Haggard, Pearce and Royle state
“using an ordering where vertexes with higher degree come lower in the ordering generally also gives
better performance”. Their idea is to increase the probability that more identical graphs appear higher in
the computation tree. To achieve this we propose to label the vertexes in the input graph in an order so that
the algorithm deletes and contracts edges locally. We found that the following vertex ordering heuristic
works well. To simplify the presentation we assume G is connected and has no vertex of degree 1. We
describe it below with pseudo-code and an example.

Algorithm SHARC - short arc order.
Input: An undirected graph G on n > 0 vertexes V = {1, 2, ..., n}.
Assumes G is connected and has no vertex of degree 1.

1 Initialize the ordered list S = [1]

2 while |S| < n do the following

3 Using breadth first search (BFS), starting from the vertexes in S find the first path
from S back to S which includes at least one new vertex, that is, find a path u →
v1 → v2 → ... → vm → w where u ∈ S, w ∈ S, m > 0, vi ∈ V \S. We argue
that such a path must exist if G is connected and has no vertex of degree 1. Now
append v1, v2, ..., vm to S.

end while

5 output S.

We explain step 3 with an example. Consider again the graph G below.

t2
t5

t4

�
�@
@
�
��

l
ll

t1 t3
D
DD

Initially we have S = [1]. Using BFS we insert all vertexes adjacent to the vertexes in S not already in S
into a queue Q. In the example, we obtain Q = [3, 4, 5]. Hence we have paths 1 → 3, 1 → 4 and 1 → 5
which we maintain in an array P = [0, 0, 1, 1, 1], that is P3 = 1 stores the edge from 1 to 3 and P1 = 0
indicates the end of a path. We take the first vertex 3 from Q and consider the new edge (3, 4). Since P4

is not zero we know there is a path from 1 back to 4 stored in P . Since 3 came from Q we know there is
a path from 1 to 3 stored in P . Thus we are done this iteration; we extract the path 1→ 3→ 4→ 1 from
P and append 3, 4 to S obtaining S = [1, 3, 4]. In the second iteration the algorithm will find the path
1→ 5→ 2→ 4 and set S = [1, 3, 4, 5, 2]. Since |S| = 5 the algorithm stops. The reader can see that the
algorithm finds a short cycle in the first iteration, then in the subsequent iterations, finds short arcs from S
back to S. We will call this a short arc ordering (SHARC). By picking the first path found using BFS, the
short arc ordering maintains locality in S. Although it would be simpler to order the vertexes in simple
breadth first search order, that ordering did not prove to be as good as SHARC in our experiments.

6 Michael Monagan

3 Maple Implementation
We use a list of neighbors representation for a multi-graph in our Maple implementation. We illustrate
with an example in Figure 5 below.

t1 t2 t3 t4 [[2], [1,3,3], [2,2,4], [3]]

Fig. 5: Maple list of lists data structure for G

To identify identical graphs in the computation tree we make use of option remember. This is a
feature of the Maple programming language that enables our Maple procedure to automatically identify
identical graphs in the computation tree using hashing. For this to work we canonically re-label vertexes
to be 1, 2, ..., n− 1 after edge contraction.

To identify non-equal isomorphic graphs we have implemented our own graph isomorphism test for
multi-graphs as the IsIsomorphic command in Maple’s GraphTheory package (see [4]) treats sim-
ple graphs only. Instead of searching all previous graphs, we first hash on the characteristic polynomial
of the Laplacian matrix of G, a known graph invariant. The Laplacian matrix is an n by n matrix D − A
where D is the degree matrix of G and A is the adjacency matrix of G. For increased efficiency, we
compute the characteristic polynomial of D − A modulo a machine prime p. This can be computed in
O(n3) arithmetic operations in Fp. See Algorithm 2.2.9 in Chapter 2 of [2].

Our Maple code may be downloaded from http://www.cecm.sfu.ca/˜mmonagan/tutte

4 Experiments
4.1 Random cubic graphs
In this experiment we generated five random connected cubic graphs on n vertexes. We computed the av-
erage and median time it takes our Maple program to compute the Tutte polynomial, using the MINDEG,
VORDER-pull and VORDER-push heuristics, on a 2.66 Ghz Intel Core i7 computer. We do this for two
permutations of the vertex labels, random (see Table 1) and SHARC (the short arc ordering) (see Table 2).
The data shows that VORDER-push with SHARC is much better than VORDER-pull, and VORDER-push
with SHARC is much better than VORDER-push with the input random ordering. This extends the size
of the graphs for which Tutte polynomials can be computed. We find similar results for random quartic
graphs.

4.2 Generalized Petersen graphs.
The generalized Petersen graph P (n, k) with 1 ≤ k < n/2 is a cubic graph on 2n vertexes. Figure 6
shows P (5, 1) and P (5, 2). P (5, 2) is the familiar Petersen graph. To construct P (n, k) the vertexes
are divided into two sets 1, 2, ..., n and n + 1, n + 2, ..., 2n, which are placed on two concentric circles
as shown in figure 4. The first set of vertexes are connected in a cycle 1, 2, ..., n, 1. The second set are
connected to the first with vertex i connected to n+ i for 1 ≤ i ≤ n. The second parameter governs how
the second set is connected. Connect n+ i to n+ (n+ i± k mod n) for 1 ≤ i ≤ n.

Computing Tutte Polynomials 7

MINDEG heuristic VORDER pull VORDER push
n m ave med ave med ave med
16 24 0.47 0.50 0.70 0.63 0.22 0.15
18 27 1.66 1.72 2.45 2.28 0.96 0.94
20 30 5.27 4.73 7.31 7.91 2.06 1.75
22 33 16.48 14.43 23.91 17.74 9.26 9.45
24 36 85.58 72.49 136.33 94.60 48.14 58.65

Tab. 1: Timings in CPU seconds for random cubic graphs with n vertices using random vertex order.

MINDEG heuristic VORDER pull VORDER push
n m ave med ave med ave med
16 25 0.23 0.20 0.41 0.36 0.03 0.03
18 27 0.77 0.83 1.22 1.11 0.05 0.04
20 30 2.32 2.06 3.94 4.16 0.08 0.07
22 33 7.52 5.76 15.67 10.86 0.32 0.26
24 36 31.88 31.78 63.68 52.76 0.51 0.70
26 39 0.78 0.42
30 45 2.63 2.42
34 51 8.59 4.93
38 57 76.09 7.86
42 63 159.61 57.96
46 69 463.08 390.98

Tab. 2: Timings in CPU seconds for random cubic graphs with n vertices using SHARC vertex order.

The SHARC vertex order for P (5, 1) and P (5, 2) is [1,2,7,6,10,5,4,3,8,9] and [1,5,4,3,2,8,6,9,10,7]
respectively. In Table 3 below, we compare the time it takes to compute the Tutte polynomials of P (n, 3)
for increasing n using the VORDER-push heuristic. Shown in the column labelled #calls is the number
of recursive calls made by the algorithm. Column #ident counts the number of recursive calls for which
the graph is identical to a graph previously computed in the computation tree. Column #isom counts
the number of recursive calls for which the graph is not identical but isomorphic to a graph previously
computed in the computation tree. Both heuristics are using the SHARC vertex order which is better than
the vertex order in which the graphs are constructed.

In comparing the data for P (n, 3), it’s clear that VORDER-push is much better than VORDER-pull.

t1
�
�
� t2

Q
Q

Q

t3�
�
�
�

t4

t5
C
C
C
C

t
6�

� t
7

A
At8t

9

t
10

"
"

@�

b
b

t1
�
�
� t2

Q
Q

Q

t3�
�
�
�

t4

t5
C
C
C
C

t
6 t

7
"
"

t8t
9

t
10

�
�
�
�

C
C
C
C

@
@�
�
"
"

@�

b
b

Fig. 6: Petersen graphs P (5, 1) and P (5, 2).

8 Michael Monagan

VORDER-pull with SHARC VORDER-push with SHARC
n |V | m time #calls #ident #isom time #calls #ident #isom
8 16 24 1.30 28641 10419 0 0.11 2980 1181 0
9 18 27 1.47 30235 9818 3 0.07 1423 543 1
10 20 30 4.83 90772 31049 22 0.23 4739 1889 7
11 22 33 28.27 434402 149286 244 0.76 12833 5176 20
12 24 36 36.84 471530 152284 978 1.26 18644 7454 31
13 26 39 190.76 1668636 552034 7072 2.55 30168 12124 63
14 28 42 875.05 4035615 1346519 45340 4.50 41706 16691 184
15 30 44 2227.01 6330229 2016961 149699 7.35 52753 20818 388
16 32 48 9312.27 18010314 5813528 799349 11.47 66086 25975 687
18 36 54 22.48 93584 36495 1294
20 40 60 37.58 122869 47766 2002
22 44 66 53.46 151954 58873 2746
24 48 72 81.56 181918 70346 3487
26 52 78 114.26 211681 81767 4240
28 56 84 156.69 241364 93134 4995
30 60 90 210.17 271434 104649 5740

Tab. 3: Data for P (n, 3) for VORDER-pull and VORDER-push.

In fact, VORDER-push is polynomial time in n. The reader can see that the number of graphs (column
#calls) is increasing linearly with n by approximately 15, 000/2. We find the same linear increase for
VORDER-push for P (n, 1), P (n, 2), P (n, 3) and P (n, 4). For P (n, 5) and P (n, 6) the data is not clear.
The data for P (n, 3) also shows that a high percentage of isomorphic graphs in the computation tree are
identical (compare columns #ident and #isom). In Table 4 we show data for P (n, 6).

VORDER-pull VORDER-push
n girth time(s) #calls #ident #isom time(s) #calls #ident #isom
13 5 85.55 875232 270060 5562 1.41 31968 7821 0
14 6 1262.37 5524084 1807371 76980 5.12 97699 26474 1
15 5 17.67 317811 89410 26
16 7 87.36 1015162 289361 29
17 6 25.12 374269 109601 88
18 3 3.32 36638 8721 97
19 6 28.32 282938 76715 489
20 7 479.94 3271429 963127 1393
21 7 1630.94 8789909 2706765 901

Tab. 4: Data for P (n, 6) for VORDER-pull and VORDER-push.

The irregularity of the data in Table 4 is partly explained by low girth. In particular, P (18, 6) has 6
triangles. The girth of P (n, k) is a minimum when k divides n where the girth is n/k. In Table 5 we have
fix n to be 17 and vary k to show the dependence on the girth.

Computing Tutte Polynomials 9

VORDER-pull VORDER-push
k |V | girth time(s) #calls deg time(s) #calls deg
1 28 4 6.12 54040 6.48 0.16 693 2.10
2 28 5 209.33 1362412 5.19 0.65 4727 2.30
3 28 6 806.92 4035615 4.32 3.82 40142 2.47
4 28 7 2273.75 8430139 4.61 7.71 88579 2.49
5 28 6 1218.51 6208087 4.49 5.62 71717 2.50
6 28 6 979.73 5524084 4.44 6.43 71054 2.47

Tab. 5: Data for P (14, k) for VORDER-pull and VORDER-push. Column deg shows the average degree of the first
vertex in the computation tree.

4.3 The truncated icosahedron graph.

The Tutte polynomial of a planar graphG and its dualG∗ are related by T (G, x, y) = T (G∗, y, x). Shown
in Figure 7 is the truncated icosahedron graph TI and it’s dual TI∗.

Fig. 7: The truncated icosahedron graph and its dual.

In [3], Haggard, Pearce and Royle report that they computed the Tutte polynomial for TI∗ in one week
on 150 computers. They used the VORDER-pull heuristic. Using the VORDER-push heuristic, and the
vertex ordering as shown in the figure 7, we computed the Tutte polynomial for TI on a single core of a
2.66 Ghz Intel Core i7 desktop in under 14 minutes and 2.6 gigabytes, and for TI∗ in under 18 minutes
and 7.3 gigabytes. Notice that the vertexes of TI (and also TI∗) are numbered in concentric cycles. This

10 Michael Monagan

was the ordering that we input the graph from a picture. Notice that the vertex ordering is a short arc
ordering. This is why we tried the short arc ordering.

4.4 Dense graphs.
Up to this point, the data shows that VORDER-push is much better than VORDER-pull. This, however,
is not the case for dense graphs. In Table 6 we give data for the complete graphs Kn on n vertexes.
VORDER-pull is clearly better than VORDER-push.

VORDER-pull VORDER-push
n m time(s) #calls #ident deg time #calls #ident deg
10 45 0.08 2519 1002 7.40 0.24 7448 2826 4.84
11 55 0.18 5075 2024 8.27 0.64 17178 6667 5.25
12 66 0.46 10191 4070 9.12 1.72 38940 15372 5.70
13 78 1.07 20427 8164 10.02 4.57 87070 34829 6.10
14 91 2.43 40903 16354 10.90 12.64 192544 77838 6.54
15 105 6.10 81859 32736 11.81 39.00 421922 172047 6.95
16 120 16.36 163775 65502 12.71 113.42 917540 376848 7.37

Tab. 6: Data for Kn for VORDER-pull and VORDER-push

4.5 Monitoring execution for large graphs.
For large graphs, the user of software for computing Tutte polynomials will need a way to know how
far a large computation has progressed and how much memory has been consumed so that the user can
stop the computation when it becomes obvious that it not going to terminate in a reasonable time. When
the Tutte polynomial for a graph G of size n vertexes in the computation tree is computed for the first
time, we display the additional time it took to compute T (G) since the time it took to compute the Tutte
polynomial for a graph of size n − 1 for the first time, and the total space used after T (G) is computed.
The output for n ≥ 20 for the truncated icosahedron is shown in Table 7.

n time(s) space n time space n time space n time(s) space
21 0.08 0.564gb 31 2.45 0.564gb 41 21.42 0.564gb 51 107.66 1.361gb
22 0.11 0.564gb 32 0.02 0.564gb 42 26.54 0.564gb 52 87.20 1.587gb
23 0.20 0.564gb 33 4.35 0.564gb 43 0.03 0.564gb 53 47.92 1.740gb
24 0.01 0.564gb 34 0.02 0.564gb 44 7.08 0.564gb 54 59.78 1.894gb
25 0.19 0.564gb 35 0.88 0.564gb 45 29.09 0.564gb 55 74.56 2.065gb
26 0.01 0.564gb 36 0.02 0.564gb 46 34.32 0.648gb 56 2.28 2.083gb
27 0.92 0.564gb 37 8.51 0.564gb 47 0.03 0.648gb 57 96.12 2.335gb
28 0.01 0.564gb 38 0.02 0.564gb 48 64.73 0.854gb 58 26.18 2.393gb
29 1.29 0.564gb 39 14.66 0.564gb 49 48.11 0.986gb 59 45.46 2.529gb
30 0.01 0.564gb 40 0.02 0.564gb 50 0.10 0.989gb 60 9.00 2.546gb

Tab. 7: Trace of time and space for the truncated icosahedron. Total time 822.29 seconds.

Computing Tutte Polynomials 11

5 Conclusion
We have presented a new edge selection heuristic that for sparse graphs, outperforms the previous heuris-
tics considered by Haggard, Pearce and Royle in [7] by several orders of magnitude and which signif-
icantly increases the range of graphs that can be computed for what is an NP-hard problem. For some
graphs, including grid graphs and the Petersen graphs P (n, k) for 1 ≤ k ≤ 4, our new heuristic automat-
ically finds polynomial time constructions for the Tutte polynomial. At this point we only have a partial
understanding of why and when VORDER-push is so effective. Graphs with large girth appear to be more
difficult. It seems likely to us that further significant gains in efficiency will be made by refining the vertex
ordering to further improve locality.

References
[1] Béla Bollobás. Modern Graph Theory. Springer Graduate Texts in Mathematics. No. 184, 1998.

[2] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag Graduate
Texts in Mathematics. No. 138, 1993.

[3] Gary Haggard, David Pearce, and Gordon Royle. Computing Tutte Polynomials. Transactions on
Mathematical Softare 37:3 (2011) article 24.

[4] J. Farr, M. Khatarinejad, S. Khodadad, M. Monagan. A Graph Theory Package for Maple.
Proceedings of the 2005 Maple Conference, pp. 260–271, Maplesoft, 2005. Also available at
http://www.cecm.sfu.ca/CAG/papers/GTpaper.pdf .

[5] Brendan Mckay. The nauty page. http://cs.anu.edu.au/˜bdm/nauty/

[6] James Oxley and Dominic Welsh. Chromatic, Flow and Reliability Polynomials: The Complexity
of their Coefficients. J. Combinatorics, Probability and Computing 11 (2002) 403−426.

[7] Pearce D.J., Haggard G., Royle G. Edge-Selection Heuristics for Computing Tutte Polynomials.
Chicago J. of Theoretical Computer Science, Vol. 2010, (2010) article 6.

[8] Pemmaraju, S., and Skiena, S. Computation Discrete Mathematics: Combinatorics and Graph The-
ory with Mathematica. Cambridge University Press, 2003.

[9] William Tutte. A contribution to the theory of chromatic polynomials. Can. J. Math. 6 (1954) 80−91.

12 Michael Monagan

	Introduction
	Edge selection heuristics.
	The minimum degree heuristic: MINDEG
	The vertex order heuristic: VORDER
	The vertex label ordering

	Maple Implementation
	Experiments
	Random cubic graphs
	Generalized Petersen graphs.
	The truncated icosahedron graph.
	Dense graphs.
	Monitoring execution for large graphs.

	Conclusion

