
Parallel Sparse Polynomial Powering Using Heaps

Michael Monagan ∗

Department of Mathematics
Simon Fraser University

Burnaby, B.C. V5A 1S6, CANADA.
mmonagan@cecm.sfu.ca

Roman Pearce
Department of Mathematics

Simon Fraser University
Burnaby, B.C. V5A 1S6, CANADA.

rpearcea@cecm.sfu.ca

ABSTRACT
We present a new algorithm for expanding powers of sparse
distributed polynomials on a multicore processor. The new
method has better complexity and lower space requirements
than previous algorithms. It is designed to run in the cache
and achieve superlinear speedup. On a series of benchmark
problems, we compare our new algorithm implemented in C
to previous methods and to the routines of other computer
algebra systems.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algebraic Algorithms

General Terms: Algorithms, Design, Performance

Keywords: Parallel, Sparse, Polynomial, Power, Heaps

1. INTRODUCTION
Expanding powers of sparse polynomials is an elementary

operation in computer algebra systems. Despite receiving a
great deal of attention in the 1970’s, a fragmented situation
exists today where the fastest algorithms all make time and
memory tradeoffs that are undesirable in some cases. Thus,
programmers of computer algebra systems must implement
multiple routines and select carefully among them to obtain
good performance.

For an introduction to this problem and current methods
it is hard improve on the papers by Richard Fateman [1, 2].
He characterizes the relative performance of the algorithms
by counting coefficient operations. We briefly discuss these
results. Let f be a polynomial with t terms to be raised to
a power k > 1. We consider two cases: sparse and dense.

In the sparse case, the terms of f interact as if they were
algebraically independent, e.g. as in f = x1 + x2 + · · ·+ xt.
Raising f to the power k produces

(
k+t−1
k

)
terms, the most

possible. In the dense case, the terms of f combine as much
as possible, e.g. as in f = x+ x2 + · · ·+ xt. If there are no
cancellations, fk will have k(t− 1) + 1 terms.

∗We gratefully acknowledge the support of the MITACS
NCE of Canada and NSERC of Canada

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

We wanted a sparse algorithm that performs well enough
in both cases that it can be called without reservation. The
most prominent methods in the literature the following:

RMUL computes f i = f · f i−1 for i = 2 . . . k. The memory
taken by f i−2 is reused to hold f i in our implementation.

RSQR computes f i = (f i/2)2 for i = 2 . . . blog2 kc, with an
extra multiplication by f at each 1 in the binary expansion
of k, read left-to-right. E.g. f13 = f11012 = (((f)2 · f)2)2 · f .

It was first pointed out by Gentleman [4] and Heindel [5]
that RSQR is vastly slower than RMUL in the sparse case.
RMUL can conserve memory by using an online algorithm
to multiply f · f i−1 using O(#f) temporary storage [8, 14].
The total memory can be kept to less than twice the result.

BINA picks a term f1 ∈ f and expands g = (f1 + 1)k with
the binomial theorem. It computes (f − f1)i for i = 2 . . . k

by multiplication and merges fk =
∑k
i=0 gi · (f − f1)i. Our

routine avoids unbalanced merging by storing the products
and doing a simultaneous n-ary merge.

BINB is similar to BINA except that f is split into equal-
sized parts f = g+h. It computes fk =

∑k
i=0

(
k
i

)
· gi ·hn−i.

The binomial algorithms were introduced by Fateman [1],
who shows that BINB is nearly optimal in the sparse case.
Alagar and Probst [12] improve on it by using recursion, and
Rowan [17] expands the set of powers {gi} more efficiently,
both in the sparse case only. In the dense case, Fateman [2]
shows that BINA is much faster than BINB.

MNE generates all combinations of terms and multinomial
coefficients directly. See [6]. It sorts to combine like terms.
This quickly becomes infeasible in the dense case.

FFT performs multipoint evaluations and interpolations at
roots of unity modulo primes. Chinese remaindering is used
to recover the result.

As noted by Ponder in [11], the FFT is often competitive
in practice because powers of a polynomial tend to “fill-in”.
For multivariate polynomials, one should use the Kronecker
substitution as suggested by Moenck [10]. Finally, consider
this classical method for power series due to Euler [2, 3, 9].

SUMS is a dense method. Let f =
∑d
i=0 fix

i. To compute

g = fk =
∑kd
i=0 gix

i it powers g0 = fk0 and uses the formula

gi = 1
if0

∑min(d,i)
j=1 ((k + 1)j − i)fjgi−j for i = 1 . . . kd.

The complexity of these methods in the sparse and dense
cases is shown in Table 1. For the sparse case, we also note
an important theorem from Fateman [1].

Theorem 1. No algorithm can compute g = fk in fewer
than #g −#f coefficient multiplications in the sparse case.

Table 1: Cost to power (t terms)k.

sparse case dense case

RMUL
(k + t− 1)!

(t− 1)!(k − 1)!
− t t(k − 1)(kt− k + 2)/2

BINA
t · (k + t− 2)!

(t− 1)!(k − 1)!
+ 2k t(k − 1)(kt− 2k + 4)/2 + 2

BINB
(k + t− 1)!

k!(t− 1)!
+ . . . k2(k − 1)(t− 2)2/24 + . . .

SUMS
(2t− 1)(k + t− 1)!

k!(t− 1)!
(2t− 1)((t− 1)k + 1)

Table 1 counts coefficient multiplications and divisions to
estimate the cost of each method. In the sparse case, BINB
approaches the size of the result, RMUL adds a factor of k,
and BINA adds a factor of kt/(k + t− 1). Sparse SUMS is
the method of this paper which adds a factor of 2t− 1.

In the dense case, SUMS is the best method, RMUL and
BINA add factors of k, and BINB adds a factor of kt. Our
impression is that improvements to the sparse case damage
performance in the dense case, which may be a bad tradeoff
in practice. Most problems become dense as k increases.

The paper is organized as follows. Section 2 develops the
algorithm and presents a complexity analysis. We find that
sparse SUMS is highly competitive in both time and space
for the sparse and dense cases. Section 3 describes how we
parallelized the algorithm for modern multicore processors.
In Section 4 we present benchmarks of our implementation.

2. SPARSE SUMS
Two features of SUMS suggest a sparse algorithm: it has

an outer loop constructing terms of the result in order, and
its inner loop computes terms by adding pairwise products.
We can safely skip over products where fj or gi−j are zero.
The formula then describes a multiplication of g = fk by f
where pairwise products are scaled and merged to compute
new terms of g.

Our first task is to modify SUMS to compute new terms
in descending order, dividing by the leading coefficient of f
instead of the constant term f0. This simplifies the method
in the sparse case and also handles the problem of f0 = 0.

Algorithm: SUMS (descending order).
Input: dense polynomial f = f0 + f1x+ · · ·+ fdx

d, fd 6= 0,
stored as an array [f0, f1, . . . , fd] indexed from zero.
positive integer k.

Output: dense polynomial g = fk.
g := an array with kd+ 1 elements indexed from zero
gkd := fkd
for i from kd− 1 to 0 by -1 do
e := kd− i
c :=

∑min(d,e)
j=1 ((k + 1)j − e) · fd−j · gi+j

gi := c/(e · fd)
return g

In the algorithm above, we identify i as the degree of the
next term being computed for g. To compute gi, we merge
products of degree i+ d, scaling by ((k+ 1)j − e). To make
the sparse algorithm, we express this scale factor using the
terms’ degrees. To merge fαx

α × gβxβ where α+ β = i+ d
we scale by ((k + 1)j − e) = β − kα.

Algorithm: Sparse SUMS.
Input: sparse polynomial f = f1 + f2 + · · ·+ ft, fi > fi+1.

monomial ordering <.
positive integer k.

Output: sparse polynomial g = fk.
H := an empty heap ordered by < with max element H1

g := fk1
insert f2 × g1 = (2, 1,mon(f2) ·mon(g1)) into H
while |H| > 0 and deg(H1) ≥ deg(f) do
M := mon(H1); C := 0; Q := {};
while |H| > 0 and mon(H1) = M do

(i, j,M) := extract max(H)
(α, β) := (degree(fi), degree(gj))
C := C + (β − kα) · cof(fi) · cof(gj)
Q := Q ∪ {(i, j)}

for all (i, j) ∈ Q do
if j < #g and (i = 1 or fi−1 × gj+1 was merged)

insert fi × gj+1 into H
if i < #f and fi+1 × g not in H

insert fi+1 × gj into H
if C 6= 0
C := C/((degree(g1)− degree(M)) · cof(f1))
M := M/mon(f1)
g = g + C ·M
if f2 × g has no term in H

insert f2 × g#g into H
return g

The sparse version of SUMS is presented above. It uses a
heap of pointers into f and g to combine only the products
fi × gj with fi and gj non-zero. The approach is described
in further detail in [15]. The idea is to use a heap to merge
the set of all pairwise products fi × gj in descending order.
Properties of the monomial ordering are used to reduce the
number of products compared in the heap at any one time.
In particular, we insert fi × gj+1 after merging fi × gj , and
only if fi−1 × gj+1 has already been merged.

In computer memory, the heap is an array of size O(#f)
with pointers into a second array with the products fi × gj .
For each fi ∈ f , we store a pointer to the next term gj ∈ g
for which we have yet to merge fi× gj . This makes the test
of whether fi−1 × gj has been merged easy. We simply test
if the pointer for fi−1 has advanced further than gj .

In the dense case, the chaining optimization we described
in [15] is used to amalgamate terms with equal monomials.
This reduces the cost of heap operations from O(log #f) to
O(1) so that the overhead of the heap is negligible. A proof
is given in [14]. For multivariate polynomials we employ the
Kronecker substitution to handle the problem as univariate.
In particular, we use a bit-packing scheme described in [15]
to store all of the exponents in one machine word.

Theorem 2. The sparse sums algorithm expands g = fk

using (2 #f − 1) #g + 2 log k coefficient multiplications and
#g divisions and O(#f #g log #f) monomial comparisons.
It uses O(#f + #g) memory.

Proof. For g1 = fk1 binary powering does at most 2 log k
multiplications. We merge the set of all products {fi × gj}
for 2 ≤ i ≤ #f and 1 ≤ j ≤ #g using the heap, performing
two coefficient multiplications and log #f comparisons each.
This does not count the multiplication in β − kα. For each
term of the result g, we perform one multiplication and one
division to compute its coefficient. The only objects stored
are the heap of size #f and the result #g. The terms of g
are constructed to satisfy f · g′ = k · g · f ′ so g = fk. This
may be verified by induction on the dense version.

3. PARALLELIZATION
Our design for a parallel version of this algorithm follows

the approach we used for sparse polynomial division in [16].
Both algorithms share exactly the same problem, which is a
tight data-dependency among the terms in the result. Each
new term of g may depend on any subset of previous terms
with no predictable pattern since the problem is sparse. To
create parallelism we split the computation into interacting
pieces and exploit the problem’s structure to hide latencies
in communication. We avoid synchronization at all costs.

Figure 1: Components of the parallel algorithm.

Global

Threads
j

s

j+1g = f ^k g g

f

1

3

2

4

Figure 1 shows numerous design features common to our
parallel algorithms for sparse polynomial multiplication and
and division in [13, 16]. The work of merging products figj
is divided into strips along the terms of f , so processors are
given subsets of f to multiply by g. The working storage of
the heap is similarly divided, which allows the algorithm to
achieve superlinear speedup. There is a global function that
combines these results and computes new terms of g. This
function is protected by a lock and can be called by any of
the threads. That allows the threads to collectively balance
their loads by performing different amounts of global work.

Another feature is borrowed from [16] and used to resolve
the data-dependency. The first strip of f is assigned to the
global function, so that as new terms gj are computed there
is no communication delay for f2×gj . Recall that this term
must be compared to all others immediately, as it could be
merged next in the computation.

The global strip is also used to resolve the nasty problem
of blocked threads. Threads block when they merge fi × gj
and go to insert fi × gj+1 into their heap, only to find that
gj+1 does not exist. This can occur for a number of reasons.
Perhaps the term has simply not been computed yet. But a
more sinister reason is that fi × gj may not have produced
a new term of g, so the global function now needs fi+1 × gj
to make progress. Our solution is for the global function to
steal rows from the threads when this happens.

To implement stealing, we have two shared variables that
are read by all of the threads. The first variable nt contains
the number of terms in the result we have computed so far,
while rs contains the number of rows stolen by the global
function. To ensure correctness, the threads read rs before
nt and that order must be enforced using memory barriers.
Likewise, the global function must always update nt before
incrementing rs. Updating nt means that a new term of g
was computed, and along with its monomial and coefficient
the global function stores a copy of the current value of rs.
This ensures that the threads know exactly which products
fi × gj were stolen and computed by the global function.

Subroutine: Global Function.
Input: updates the global state of the algorithm.
Output: constructs new terms of g = fk when possible.
Globals: global heap G, sets B and Q, polynomials f , g.

rows stolen rs, number of terms computed nt
integer power k

// B is the set of buffers with terms from threads
for all buffers b in B do

if buffer b is not empty then
extract a term (c,m) from buffer b
insert [b, c,m] into global heap G for merging

else if buffer b has been closed by its thread
discard buffer b from B (thread is done)

else
rs := rs+ 1 (steal a new row)
return (to the calling thread)

// now we can merge terms
m := mon(G1); c := 0; Q := {};
while |G| > 0 and deg(G1)

(i, j,m) := extract max(G)
if i points to a buffer
c := c+ j (scaled by thread)

else
(α, β) := (degree(fi), degree(gj))
c := c+ (β − kα) · cof(fi) · cof(gj)
Q := Q ∪ {(i, j)}

for all (i, j) ∈ Q do
if j < nt and (i = 1 or fi−1 × gj+1 was merged)

insert fi × gj+1 into G
if i < #f and i < rs(gj) and fi+1 × g not in G

insert fi+1 × gj into G (insert stolen row)
if c 6= 0 then
c := c/((degree(g1)− degree(m)) · cof(f1))
m := m/mon(f1)
g := g + [c ·m, rs]
nt := nt+ 1
if f2 × g has no term in G

insert f2 × gnt into G
return (to the calling thread)

Subroutine: Thread Function.
Input: array of assigned indices t in f , buffer b.
Output: writes terms to the buffer b when possible.
Globals: rows stolen rs, number of terms computed nt

lock L, polynomials f and g, integer power k
insert ft1 × g1 into H
while |H| > 0 and deg(H1) ≥ deg(f) do
m := mon(H1); c := 0; Q := {};
while |H| > 0 and mon(H1) = m do

(i, j,m) := extract max(H)
(α, β) := (degree(fi), degree(gj))
c := c+ (β − kα) · cof(fi) · cof(gj)
Q := Q ∪ {(i, j)}

for all (i, j) ∈ Q do
γ := minimum value in t larger than i
if γ exists and fγ × g not in H

insert fγ × gj into H
retry:
RS := rs; NT := nt;
if j < NT and rs(gj) < i

insert fi × gj+1 into H
else if j < NT or j ≤ RS // discard stolen fi × gj
γ := minimum value in t larger than i
if γ exists and fγ × g not in H
i := γ; goto retry:

else if trylock(L)
global function() // compute terms of g
goto retry:

else
spinwait() // thread is blocked
goto retry:

close buffer b

4. BENCHMARKS
Our benchmarks were performed on an Intel Core i7 920

2.66GHz running 64-bit Linux. A salient feature of this cpu
is the shared L3 cache that allows communication between
the cores at high throughput and low latency. Our software
(sdmp) is designed to perform well on any cpu, but for fine
grained data-dependencies a shared cache is important.

4.1 Sparse Problems
To create polynomials with t terms whose powers up to k

are completely sparse, we may use Kronecker’s substitution
on F = 1 + x1 + x2 + · · ·+ xt−1 to construct

f = 1 + x+ x(k+1) + x(k+1)2 + · · ·+ x(k+1)t−2

.

Observe that one can not have too many terms t before the
integer exponents become massive. This suggests that most
practical problems (whose result can be stored) have t� k,
so the extra factor of 2t − 1 in the cost of sparse SUMS is
not as disadvantageous as it may first appear. We compare
the times for our sequential algorithm to RMUL and BINA
which we previously implemented in C.

Table 2: Time for completely sparse (t terms)k.
t k #g SUMS BINA RMUL
3 100 5151 0.001 s 0.001 s 0.030 s
3 250 31626 0.010 s 0.010 s 0.480 s
3 500 125751 0.050 s 0.050 s 4.570 s
3 1000 501501 0.320 s 0.290 s 45.630 s
3 2500 3128751 4.130 s 5.260 s –
4 50 23426 0.005 s 0.005 s 0.030 s
4 100 176851 0.060 s 0.060 s 0.760 s
4 200 1373701 0.480 s 0.480 s 13.308 s
4 400 10827401 5.180 s 5.160 s 252.230 s
5 40 135751 0.030 s 0.020 s 0.130 s
5 60 635376 0.180 s 0.130 s 0.580 s
5 80 1929501 0.580 s 0.460 s 6.460 s
5 100 4598126 1.530 s 1.280 s 19.950 s
5 120 9381251 3.240 s 2.690 s 50.170 s
5 140 17178876 6.320 s 5.190 s 110.340 s
6 20 53130 0.010 s 0.010 s 0.030 s
6 30 324632 0.060 s 0.040 s 0.190 s
6 40 1221759 0.370 s 0.220 s 1.500 s
6 50 3478761 1.150 s 0.810 s 6.670 s
6 60 8259888 2.770 s 2.170 s 20.170 s
6 70 17259390 6.050 s 4.840 s 51.140 s
8 15 170544 0.020 s 0.020 s 0.050 s
8 20 888030 0.190 s 0.130 s 0.380 s
8 25 3365856 0.730 s 0.490 s 1.670 s
8 30 10295472 3.030 s 1.620 s 6.670 s
8 35 26978328 10.030 s 6.090 s 29.950 s

12 10 352716 0.060 s 0.050 s 0.070 s
12 12 1352078 0.280 s 0.210 s 0.360 s
12 14 4457400 1.060 s 0.760 s 1.340 s
12 16 13037895 3.170 s 2.250 s 4.330 s
12 18 34597290 8.570 s 6.260 s 12.680 s
20 8 2220075 0.490 s 0.330 s 0.390 s

We see that sparse sums performs about as well as BINA
on sparse problems, while using far less intermediate space.
This is because for BINA to run as fast as it does here, we
must store the polynomials (f − f1)i for 1 ≤ i ≤ k and use
a simultaneous n-ary merge to compute the result. Nothing
is combined on these sparse problems, but the routine must
detect like terms when they do exist. RMUL and BINA use
intermediate space that is O(#g) while SUMS is only O(t).
All of the algorithms perform well enough as the number of
terms increases.

4.2 Dense Problems
Dense problems are the best case for SUMS, but at lower

powers RMUL and BINA provide stiff competition. SUMS
probably should not be used to square or cube polynomials
but for higher powers it is superior. This benchmark shows
the effect of parallelization as well, since RMUL and BINA
use our parallel multiplication routine [13]. The thresholds
for starting {2, 3, 4} threads are #f = {64, 216, 512} terms.
The base time is our sequential implementation followed by
parallel speedup with the highest number of threads. When
this measurement is insufficiently precise we denote that by
a star. The polynomial f = 1 + x+ x2 + · · ·+ xt−1.

Table 3: Time for completely dense (t terms)k.
t k SUMS RMUL BINA

10 200 0.000 s – 0.085 s – 0.095 s –
10 500 0.005 s – 0.760 s – 1.035 s –
10 1000 0.020 s – 4.450 s – 7.930 s –
10 1500 0.040 s – 13.370 s – 28.950 s –
10 2000 0.070 s – 29.840 s – – –

100 50 0.020 s * 0.420 s 1.8x 0.420 s 1.8x
100 100 0.055 s * 2.090 s 1.8x 2.110 s 1.8x
100 200 0.155 s * 11.090 s 1.8x 11.425 s 1.8x
100 400 0.490 s 1.7x 65.980 s 1.9x 69.565 s 1.8x
100 800 1.700 s 1.7x 439.380 s 1.9x – –
500 10 0.085 s * 0.150 s * 0.150 s *
500 20 0.185 s * 1.330 s 2.7x 1.330 s 2.6x
500 40 0.440 s 2.5x 6.955 s 2.7x 6.955 s 2.7x
500 80 1.130 s 2.5x 35.075 s 2.8x 35.120 s 2.8x
500 160 3.235 s 2.6x 190.985 s 2.8x 70.030 s 2.8x

1000 3 0.035 s * 0.035 s * 0.035 s *
1000 5 0.065 s * 0.115 s * 0.115 s *
1000 10 0.345 s 3.5x 0.785 s 3.7x 0.790 s 3.6x
1000 20 0.765 s 3.6x 5.735 s 3.8x 5.725 s 3.7x
1000 40 1.840 s 3.7x 29.250 s 3.9x 29.190 s 3.8x
1000 80 4.790 s 3.7x 148.835 s 4.0x 148.450 s 3.8x

Obviously with dense polynomials one should switch to a
dense algorithm like the FFT as t increases. It is hard to
make a case for parallelizing SUMS based on the data here.
However multivariate polynomials are raised to moderately
high powers by various routines in Maple and in those cases
a parallel sparse powering algorithm appears warranted. We
are in the process of collecting good examples. The parallel
speedup for RMUL is hindered by the restarting of threads.
The parallel speedup for BINA is worse because the n-ary
merge at the end is sequential. The speedup for SUMS was
lousy but our parallel code is only preliminary.

4.3 Real Examples
We were first motivated to investigate sparse powering by

a post to the Sage development newsgroup by Tom Coates.
He wanted to raise the following polynomial to high powers
which no computer algebra system could do in a reasonable
amount of time. We thought it should be possible, and now
it might be, if only we could store the result.

f = xy3z2 + x2y2z + xy3z + xy2z2 + y3z2 + y3z

+ 2y2z2 + 2xyz + y2z + yz2 + y2 + 2yz + z
(1)

Table 4: Time to power fk.
k #g SUMS RMUL BINA

40 243581 0.150 s 0.980 s 0.840 s
70 1284816 0.970 s 11.080 s 9.330 s

100 3721951 3.050 s 49.690 s 42.930 s
150 12499176 11.750 s 276.320 s –
200 29553901 30.870 s – –

5. CONCLUSION
We have presented what may be the best general purpose

algorithm for powering sparse polynomials, and shown how
to parallelize it despite its inherently sequential nature. An
obvious question is whether this was worth doing. We think
it was, because when basic algorithms in computer algebra
are suboptimal it reflects poorly on the field. This problem
lacked a satisfactory algorithm for many years so it pleases
us to present a solution even if major applications are rare.

6. REFERENCES
[1] R. Fateman. On the computation of powers of sparse

polynomials. Studies in Appl. Math., 53 (1974), pp.
145–155.

[2] R. Fateman. Polynomial multiplication, powers, and
asymptotic analysis: some comments. SIAM J. Comput. 3,
3 (1974), pp. 196–213.

[3] H. Fettis. Algorithm 158. Communications of the ACM, 6
(1963), pp. 104.

[4] M. Gentleman. Optimal multiplication chains for
computing a power of a symbolic polynomial. Math Comp.
26, 120 (1972), pp. 935–939.

[5] L. Heindel. Computation of powers of multivariate
polynomials over the integers. J. Comput. Syst. Sci. 6, 1
(1972), pp. 1–8.

[6] E. Horowitz, S. Sahni. The computation of powers of
symbolic polynomials. SIAM J. Comput. 4, 2 (1975), pp.
201–208.

[7] E. Horowitz. The Efficient Calculation of Powers of
Polynomials. J. of Comp. Sys. Sci. 7, 5 (1973), pp. 469–480.

[8] S.C. Johnson. Sparse polynomial arithmetic. ACM
SIGSAM Bulletin, 8 (3) 63–71, 1974.

[9] D. Knuth. The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. Additson-Wesley (1998).

[10] R. Moenck. Another Polynomial Homomorphism. Acta
Informatica, 6, 153–169, 1976.

[11] C. Ponder. Parallel multiplication and powering of
polynomials. J. Symbolic. Comp., 11 (4), 307–320, 1991.

[12] D. Probst, V. Alagar. A Family of Algorithms for Powering
Sparse Polynomials. SIAM J. Comput. 8, 4 (1979), pp.
626–644.

[13] M. Monagan, R. Pearce. Parallel Sparse Polynomial
Multiplication Using Heaps. Proc. of ISSAC 2009, ACM
Press, 295–315.

[14] M. Monagan, R. Pearce. Polynomial Division Using
Dynamic Arrays, Heaps, and Packed Exponent Vectors.
Proc. of CASC 2007, Springer LNCS 4770, 295–315.

[15] M. Monagan, R. Pearce. Sparse Polynomial Division Using
a Heap. J. Symbolic. Comp., 46 (7), 807–922, 2011.

[16] M. Monagan, R. Pearce. Parallel Sparse Polynomial
Division Using Heaps. Proc. of PASCO 2010, ACM Press,
105–111, 2010.

[17] W. Rowan. Efficient Polynomial Substitutions of a Sparse
Argument. ACM Sigsam Bulletin, 15 (3), 17–23, 1981.

