POLY: A new polynomial data structure for Maple 17 that improves parallel speedup.

Michael Monagan

Department of Mathematics, Simon Fraser University British Columbia, CANADA

Parallel Computer Algebra Applications ACA 2012, Sofia, Bulgaria June 25-28, 2012

This is joint work with Roman Pearce.

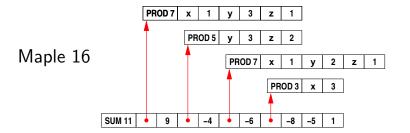
Polynomial data structures in Maple and Singular are slow.
 Our data structure.

- Polynomial data structures in Maple and Singular are slow.
 Our data structure.
- Johnson's polynomial multiplication using a heap from 1973.
 Our parallelization of it.
 A multiplication and factorization benchmark in Maple 16.

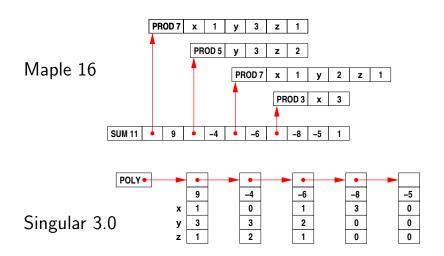
- Polynomial data structures in Maple and Singular are slow.
 Our data structure.
- Johnson's polynomial multiplication using a heap from 1973.
 Our parallelization of it.
 A multiplication and factorization benchmark in Maple 16.
- Why is parallel speedup poor?
 Solution and new timings.

- Polynomial data structures in Maple and Singular are slow.
 Our data structure.
- Johnson's polynomial multiplication using a heap from 1973.
 Our parallelization of it.
 A multiplication and factorization benchmark in Maple 16.
- Why is parallel speedup poor?
 Solution and new timings.
- ullet Notes on integration into Maple kernel for Maple ≥ 17 .
- Conclusion

Representations for $9 \times y^3 z - 4 y^3 z^2 - 6 \times y^2 z - 8 x^3 - 5$.

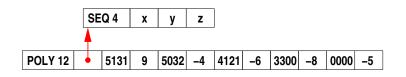


Representations for $9 \times y^3 z - 4 y^3 z^2 - 6 \times y^2 z - 8 x^3 - 5$.



- Memory access is not sequential.
- Monomial multiplication costs O(100) cycles.

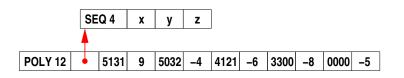
Our representation $9 \times y^3 z - 4 y^3 z^2 - 6 \times y^2 z - 8 x^3 - 5$.



Monomial encoding for graded lex order with x>y>zEncodes $x^iy^jz^k$ in a single word $\boxed{d\ |\ j\ |\ k}$ where d=i+j+k.

Advantages

Our representation $9 \times y^3 z - 4 y^3 z^2 - 6 \times y^2 z - 8 x^3 - 5$.



Monomial encoding for graded lex order with x>y>zEncodes $x^iy^jz^k$ in a single word $\boxed{d\ |\ i\ |\ j\ |\ k}$ where d=i+j+k.

Advantages

- It's more compact.
- Memory access is sequential.
- Fewer objects to clutter tables.
- Monomial > and × cost One instruction.

Multiplication using a binary heap.

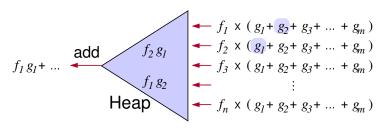
Let
$$f = f_1 + f_2 + \dots + f_n$$
 and $g = g_1 + g_2 + \dots + g_m$.
Compute $f \times g = f_1 \cdot g + f_2 \cdot g + \dots + f_n \cdot g$.

Johnson, 1974, does a simultaneous *n*-ary merge using a heap.

Multiplication using a binary heap.

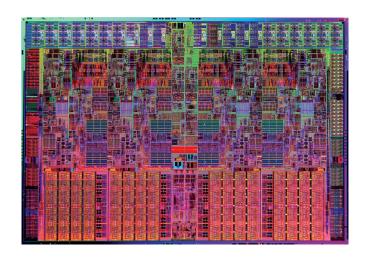
Let
$$f = f_1 + f_2 + \cdots + f_n$$
 and $g = g_1 + g_2 + \cdots + g_m$.
Compute $f \times g = f_1 \cdot g + f_2 \cdot g + \cdots + f_n \cdot g$.

Johnson, 1974, does a simultaneous *n*-ary merge using a heap.



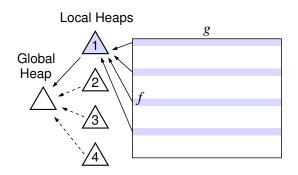
- $|Heap| \le n \implies O(nm \log n)$ comparisons.
- Can pick $n \leq m$.
- Algorithm outputs $f \times g$ in descending order.

Target Parallel Architecture



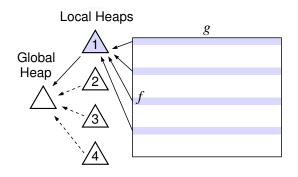
Intel Core i7, quad core, shared memory.

Parallel Multiplication Algorithm



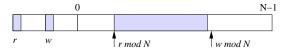
One heap per core. Add (merge) results in global heap.

Parallel Multiplication Algorithm



One heap per core. Add (merge) results in global heap.

Threads write to a finite circular buffer.



Threads try to acquire global heap as buffer fills up to balance load.

Old multiplication and factorization benchmark.

Intel Core i5 750 2.66 GHz (4 cores)

Times in seconds

	Maple	Map	le 16	Magma	Singular	Mathem
multiply	13	1 core	4 cores	2.16-8	3.1	atica 7
$p_1 := f_1(f_1+1)$	1.60	0.053	0.029	0.30	0.58	4.79
$p_3 := f_3(f_3+1)$	26.76	0.422	0.167	4.09	6.96	50.36
$p_4:=f_4(f_4+1)$	95.97	1.810	0.632	13.25	30.64	273.01
factor	Hens	sel lifting	is mostly	polynomial	multiplicat	ion!!
p ₁ 12341 terms	31.10	2.58	2.46	6.15	12.28	11.82
p ₃ 38711 terms	391.44	15.19	13.00	117.53	97.10	164.50
<i>p</i> ₄ 135751 terms	2953.54	53.52	44.84	332.86	404.86	655.49

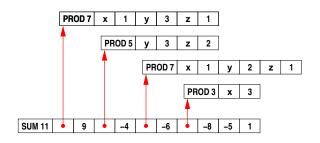
$$f_1 = (1 + x + y + z)^{20} + 1$$
 1771 terms
 $f_3 = (1 + x + y + z)^{30} + 1$ 5456 terms
 $f_4 = (1 + x + y + z + t)^{20} + 1$ 10626 terms

The Maple timings are for expand(f1*(f1+1)) and factor(p1).

Maple Integration

```
To expand sums f \times g Maple calls 'expand/bigprod(f,g)'
if \#f > 2 and \#g > 2 and \#f \times \#g > 1500.
'expand/bigprod' := proc(a,b) # multiply two large sums
   if type(a,polynom(integer)) and type(b,polynom(integer)) then
     x := indets(a) union indets(b); k := nops(x);
     A := sdmp:-Import(a, plex(op(x)), pack=k);
     B := sdmp:-Import(b, plex(op(x)), pack=k);
     C := sdmp:-Multiply(A,B);
     return sdmp:-Export(C);
   else
'expand/bigdiv' := proc(a,b,q) # divide two large sums
     x := indets(a) union indets(b); k := nops(x)+1;
     A := sdmp:-Import(a, grlex(op(x)), pack=k);
     B := sdmp:-Import(b, grlex(op(x)), pack=k);
```

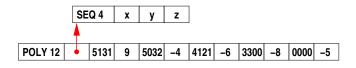
Almost everything is slow.



```
Many operations cost O(nt). [ n=\#variables, t=\#terms ] E.g. indets(f); degree(f,x); coeff(f,x,i); Some operations add sorting cost of O(t^{1.25}). E.g. diff(f,x); expand(x*f); taylor(f,x,d);
```

Make POLY the default representation in Maple.

If we can pack all monomials into one word use



```
O(1) degree(f); lcoeff(f); indets(f);
O(n) has(f,z); type(f,polynom(integer));
O(n+t) degree(f,x); expand(x*t); diff(f,x);
```

For f with t terms in n variables.

Almost everything is fast.

command	Maple 16	Maple 17	speedup	notes
coeff(f, x, 20)	2.140 s	0.005 s	420x	terms easy to locate
coeffs(f,x)	0.979 s	0.119 s	8x	reorder exponents and radix
frontend(g, [f])	3.730 s	0.000 s	$\rightarrow O(n)$	looks at variables only
degree(f,x)	0.073 s	0.003 s	24x	stop early using monomial de
diff(f,x)	0.956 s	0.031 s	30×	terms remain sorted
eval(f, x = 6)	3.760 s	0.175 s	21x	use Horner form recursively
$\overline{\text{expand}(2*x*f)}$	1.190 s	0.066 s	18x	terms remain sorted
indets(f)	0.060 s	0.000 s	$ ightarrow {\it O}(1)$	first word in dag
subs(x = y, f)	1.160 s	0.076 s	15×	combine exponents, sort, me
taylor(f, x, 50)	0.668 s	0.055 s	12x	get coefficients in one pass
type(f, polynom)	0.029 s	0.000 s	$\rightarrow O(n)$	type check variables only

For f with n=3 variables and $t=10^6$ terms created by f := expand(mul(randpoly(v,degree=100,dense),v=[x,y,z])):

New multiplication and factorization benchmark.

Intel Core i5 750 2.66 GHz	(4 cores)
----------------------------	-----------

l imes in seconds	S	S	l	d	(1	r	ı)	С	Ì		(9	E	5	S			١	r	ı	I		5	5	Э	6	1	ľ	n	I	I				
-------------------	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	--	--	---	---	---	---	--	---	---	---	---	---	---	---	---	---	--	--	--	--

	Мар	le 16	Мар	le 17	Magma	Singular					
multiply	1 core	4 cores	1 core	4 cores	2.16-8	3.1					
$p_1 := f_1(f_1+1)$	0.053	0.029	0.047	0.017	0.30	0.58					
$p_3:=f_3(f_3+1)$	0.422	0.167	0.443	0.132	4.09	6.96					
$p_4 := f_4(f_4 + 1)$	1.810	0.632	1.870	0.506	13.25	30.64					
factor	Hensel lifting is mostly polynomial multiplication.										
p ₁ 12341 terms	2.58	2.46	1.20	0.94	6.15	12.28					
p ₃ 38711 terms	15.19	13.00	9.57	6.16	117.53	97.10					
<i>p</i> ₄ 135751 terms	53.52	44.84	31.83	16.48	332.86	404.86					

$$f_1 = (1 + x + y + z)^{20} + 1$$
 1771 terms
 $f_3 = (1 + x + y + z)^{30} + 1$ 5456 terms
 $f_4 = (1 + x + y + z + t)^{20} + 1$ 10626 terms

More benchmarks and details available in preprint.

Profile for factor(p1);

Profile for factor(p1); Real time from 2.63s to 1.11s real.

		Ма	ple 16	New	Maple
function	#calls	time	time%	time	time%
coeftayl	216	0.999s	36.96	0.270s	22.39
expand	1934	0.561s	20.75	0.375s	31.09
factor/diophant	236	0.475s	17.57	0.371s	30.76
divide	419	0.267s	9.88	0.055s	4.56
factor	1	0.206s	7.62	0.017s	1.41
factor/hensel	1	0.140s	5.18	0.075s	6.22
factor/unifactor	2	0.055s	2.03	0.043s	3.57
total:	2809	2.703s	100.00%	1.206s	100.00%

The coeftayl(f,x=a,k); command is defined by coeff(taylor(f,x=a,k+1),x,k); and is computed via eval(diff(f,x\$k),x=a) / k! which is 4x faster.

Notes on the new integration for Maple 17.

Let $f \in R[x_1, x_2, ..., x_n]$ with $\deg_{x_i} f > 0$. We store f using POLY if

- (i) f has integer coefficients
- (ii) d > 1 and t > 1 where $d = \deg f$ and t = #terms.
- (iii) we can pack all monomials of f into one 64 bit word, i.e. if $d < 2^b$ where $b = \lfloor \frac{64}{n+1} \rfloor$

Otherwise we use the old sum-of-products representation.

Notes on the new integration for Maple 17.

Let $f \in R[x_1, x_2, ..., x_n]$ with $\deg_{x_i} f > 0$. We store f using POLY if

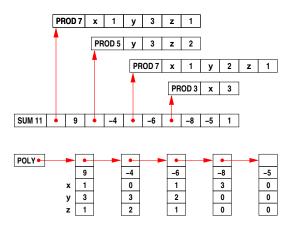
- (i) f has integer coefficients
- (ii) d > 1 and t > 1 where $d = \deg f$ and t = #terms.
- (iii) we can pack all monomials of f into one 64 bit word, i.e. if $d < 2^b$ where $b = \lfloor \frac{64}{n+1} \rfloor$

Otherwise we use the old sum-of-products representation.

- Packing is fixed by n = #variables.
- If n = 8, (iii) \implies we use $b = \lfloor 64/9 \rfloor = 7$ bits per exponent field hence POLY restricts d < 128.
- The representation is invisible to the Maple user.
 Conversions are automatic.
- POLY polynomials will be displayed in sorted order.

Conclusion

We will not get good parallel speedup using these



Thank you for attending my talk.