
POLY : A new polynomial data structure for
Maple.

Michael Monagan

Center for Experimental and Constructive Mathematics
Simon Fraser University

British Columbia
CANADA

ASCM 2012, Beijing,
October 26-28, 2012

This is joint work with Roman Pearce.

Michael Monagan POLY

Talk Outline

Polynomial data structures in Maple and Singular are slow.
Our new data structure POLY

Johnson’s polynomial multiplication using a heap from 1973.
Our parallelization of it.

Maple 16 integration of POLY.
A multiplication and factorization benchmark.

Maple 17 integration of POLY.
New timings for same benchmark.

Notes on integration into Maple 17 kernel.

Status of Maple 17 integration.

Michael Monagan POLY

Talk Outline

Polynomial data structures in Maple and Singular are slow.
Our new data structure POLY

Johnson’s polynomial multiplication using a heap from 1973.
Our parallelization of it.

Maple 16 integration of POLY.
A multiplication and factorization benchmark.

Maple 17 integration of POLY.
New timings for same benchmark.

Notes on integration into Maple 17 kernel.

Status of Maple 17 integration.

Michael Monagan POLY

Talk Outline

Polynomial data structures in Maple and Singular are slow.
Our new data structure POLY

Johnson’s polynomial multiplication using a heap from 1973.
Our parallelization of it.

Maple 16 integration of POLY.
A multiplication and factorization benchmark.

Maple 17 integration of POLY.
New timings for same benchmark.

Notes on integration into Maple 17 kernel.

Status of Maple 17 integration.

Michael Monagan POLY

Talk Outline

Polynomial data structures in Maple and Singular are slow.
Our new data structure POLY

Johnson’s polynomial multiplication using a heap from 1973.
Our parallelization of it.

Maple 16 integration of POLY.
A multiplication and factorization benchmark.

Maple 17 integration of POLY.
New timings for same benchmark.

Notes on integration into Maple 17 kernel.

Status of Maple 17 integration.

Michael Monagan POLY

Talk Outline

Polynomial data structures in Maple and Singular are slow.
Our new data structure POLY

Johnson’s polynomial multiplication using a heap from 1973.
Our parallelization of it.

Maple 16 integration of POLY.
A multiplication and factorization benchmark.

Maple 17 integration of POLY.
New timings for same benchmark.

Notes on integration into Maple 17 kernel.

Status of Maple 17 integration.

Michael Monagan POLY

Talk Outline

Polynomial data structures in Maple and Singular are slow.
Our new data structure POLY

Johnson’s polynomial multiplication using a heap from 1973.
Our parallelization of it.

Maple 16 integration of POLY.
A multiplication and factorization benchmark.

Maple 17 integration of POLY.
New timings for same benchmark.

Notes on integration into Maple 17 kernel.

Status of Maple 17 integration.

Michael Monagan POLY

Representations for 9 xy3z− 4 y3z2 − 6 xy2z− 8 x3 − 5.

Maple 16

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

Singular 3.1.0

−4

3

2

0

POLY

−6

1

2

1

−8

3

0

0

−5

0

0

0

x

y

z

1

3

1

9

Memory access is not sequential.

Monomial multiplication costs O(100) cycles.

Michael Monagan POLY

Representations for 9 xy3z− 4 y3z2 − 6 xy2z− 8 x3 − 5.

Maple 16

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

Singular 3.1.0

−4

3

2

0

POLY

−6

1

2

1

−8

3

0

0

−5

0

0

0

x

y

z

1

3

1

9

Memory access is not sequential.

Monomial multiplication costs O(100) cycles.

Michael Monagan POLY

Our representation 9 xy3z− 4 y3z2 − 6 xy2z− 8 x3 − 5.

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

Monomial encoding for graded lex order with x>y>z

Encodes x iy jzk in a single word d i j k where d = i+j+k .

Advantages

It’s more compact (2 words per term instead of 9).

Memory access is sequential.

Fewer objects to clutter tables.

Monomial > and × cost one instruction.

Michael Monagan POLY

Our representation 9 xy3z− 4 y3z2 − 6 xy2z− 8 x3 − 5.

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

Monomial encoding for graded lex order with x>y>z

Encodes x iy jzk in a single word d i j k where d = i+j+k .

Advantages

It’s more compact (2 words per term instead of 9).

Memory access is sequential.

Fewer objects to clutter tables.

Monomial > and × cost one instruction.

Michael Monagan POLY

Parallel polynomial multiplication and division using heaps.

Let f = f1 + f2 + · · ·+ fn and g = g1 + g2 + · · ·+ gm.
Compute f × g = f1 · g + f2 · g + · · ·+ fn · g .

Naive merge: O(mn2) comparisons.
Johnson (1974) simultaneous n-ary merge (heap): O(mn log n).

[MM, RP (2009)] parallel multiplication.

[MM, RP (2010)] parallel division.

Local Heaps

Global
Heap

g

f

1

3

2

4

Target architecture: Intel Core i7 (quad core)

Michael Monagan POLY

Parallel polynomial multiplication and division using heaps.

Let f = f1 + f2 + · · ·+ fn and g = g1 + g2 + · · ·+ gm.
Compute f × g = f1 · g + f2 · g + · · ·+ fn · g .

Naive merge: O(mn2) comparisons.
Johnson (1974) simultaneous n-ary merge (heap): O(mn log n).

[MM, RP (2009)] parallel multiplication.

[MM, RP (2010)] parallel division.

Local Heaps

Global
Heap

g

f

1

3

2

4

Target architecture: Intel Core i7 (quad core)

Michael Monagan POLY

Old multiplication and factorization benchmark.

Intel Core i5 750 2.66 GHz (4 cores) Times in seconds

Maple Maple 16 Magma Singular Mathem
multiply 13 1 core 4 cores 2.16-8 3.1.0 atica 7

p1 := f1(f1 + 1) 1.60 0.053 0.029 0.30 0.58 4.79
p4 := f4(f4 + 1) 95.97 1.810 0.632 13.25 30.64 273.01

factor Hensel lifting is mostly polynomial multiplication!
p1 12341 terms 31.10 2.58 2.46 6.15 12.28 11.82
p4 135751 terms 2953.54 53.52 44.84 332.86 404.86 655.49

f1 = (1 + x + y + z)20 + 1 1771 terms
f4 = (1 + x + y + z + t)20 + 1 10626 terms

Parallel speedup for f4 × (f4 + 1) is 1.81 / .632 = 2.86×. Why?

Michael Monagan POLY

Maple 16 Integration of POLY

To expand sums f × g Maple calls ‘expand/bigprod(f,g)‘

if #f > 2 and #g > 2 and #f ×#g > 1500.

‘expand/bigprod‘ := proc(a,b) # multiply two large sums

if type(a,polynom(integer)) and type(b,polynom(integer)) then

x := indets(a) union indets(b); k := nops(x);

A := sdmp:-Import(a, plex(op(x)), pack=k);

B := sdmp:-Import(b, plex(op(x)), pack=k);

C := sdmp:-Multiply(A,B);

return sdmp:-Export(C);

else

...

‘expand/bigdiv‘ := proc(a,b,q) # divide two large sums

...

x := indets(a) union indets(b); k := nops(x)+1;

A := sdmp:-Import(a, grlex(op(x)), pack=k);

B := sdmp:-Import(b, grlex(op(x)), pack=k);

...

Michael Monagan POLY

Make POLY the default representation in Maple.

If we can pack all monomials into one word use

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

O(1) degree(f); lcoeff(f); indets(f);
O(n) has(f,z); type(f,polynom(integer));

O(n + t) degree(f,x); expand(x*t); diff(f,x);

For f with t terms in n variables.

Michael Monagan POLY

Almost everything is fast.

command Maple 16 Maple 17 speedup notes

coeff(f , x , 20) 2.140 s 0.005 s 420x terms easy to locate

coeffs(f , x) 0.979 s 0.119 s 8x reorder exponents and radix sort

frontend(g , [f]) 3.730 s 0.000 s → O(n) looks at variables only

degree(f , x) 0.073 s 0.003 s 24x stop early using monomial degree

diff(f , x) 0.956 s 0.031 s 30x terms remain sorted

eval(f , x = 6) 3.760 s 0.175 s 21x use Horner form recursively

expand(2 ∗ x ∗ f) 1.190 s 0.066 s 18x terms remain sorted

indets(f) 0.060 s 0.000 s → O(1) first word in dag

op(f) 0.634 s 2.420 s 0.26x has to construct old structure

for t in f do 0.646 s 2.460 s 0.26x has to construct old structure

subs(x = y , f) 1.160 s 0.076 s 15x combine exponents, sort, merge

taylor(f , x , 50) 0.668 s 0.055 s 12x get coefficients in one pass

type(f , polynom) 0.029 s 0.000 s → O(n) type check variables only

For f with n = 3 variables and t = 106 terms created by
f := expand(mul(randpoly(v,degree=100,dense),v=[x,y,z])):

Michael Monagan POLY

New multiplication and factorization benchmark

Intel Core i5 750 2.66 GHz (4 cores) Times in seconds

Maple 16 Maple 17 Magma Singular
multiply 1 core 4 cores 1 core 4 cores 2.16-8 3.1.4

p1 := f1(f1 + 1) 0.053 0.029 0.042 0.017 0.30 0.57
p4 := f4(f4 + 1) 1.810 0.632 1.730 0.508 13.25 30.99

factor Singular’s factorization improved!
p1 12341 terms 2.66 2.54 1.06 0.93 6.15 2.01
p4 135751 terms 56.68 44.06 26.43 16.17 332.86 61.85

f1 = (1 + x + y + z)20 + 1 1771 terms
f4 = (1 + x + y + z + t)20 + 1 10626 terms

Parallel speedup for f4 × (f4 + 1) is 1.730/0.508 = 3.41×.

Michael Monagan POLY

Profile for factor(p1);

Profile for factor(p1); Real time from 2.63s to 1.11s real.

Maple 16 New Maple
function #calls time time% time time%

coeftayl 216 0.999s 36.96 0.270s 22.39
expand 1934 0.561s 20.75 0.375s 31.09
factor/diophant 236 0.475s 17.57 0.371s 30.76
divide 419 0.267s 9.88 0.055s 4.56
factor 1 0.206s 7.62 0.017s 1.41
factor/hensel 1 0.140s 5.18 0.075s 6.22
factor/unifactor 2 0.055s 2.03 0.043s 3.57

total: 2809 2.703s 100.00% 1.206s 100.00%

The coeftayl(f,x=a,k); command is defined by
coeff(taylor(f,x=a,k+1),x,k); and is computed via
eval(diff(f,x$k),x=a) / k! which is 4x faster.

Michael Monagan POLY

Notes on the new integration for Maple 17.

Given a polynomial f (x1, x2, ..., xn), we store f using POLY if

(1) f is expanded and has integer coefficients,

(2) d > 1 and t > 1 where d = deg f and t = #terms,

(3) we can pack all monomials of f into one 64 bit word, i.e. if d < 2b

where b = b 64
n+1c

Otherwise we use the old sum-of-products representation.

The representation is invisible to the Maple user.
Conversions are automatic.

POLY polynomials will be displayed in sorted order.

Packing is fixed by n = #variables.

If n = 8, (3) =⇒ we use b = b64/9c = 7 bits per exponent field
hence POLY restricts d < 128.

Michael Monagan POLY

Notes on the new integration for Maple 17.

Given a polynomial f (x1, x2, ..., xn), we store f using POLY if

(1) f is expanded and has integer coefficients,

(2) d > 1 and t > 1 where d = deg f and t = #terms,

(3) we can pack all monomials of f into one 64 bit word, i.e. if d < 2b

where b = b 64
n+1c

Otherwise we use the old sum-of-products representation.

The representation is invisible to the Maple user.
Conversions are automatic.

POLY polynomials will be displayed in sorted order.

Packing is fixed by n = #variables.

If n = 8, (3) =⇒ we use b = b64/9c = 7 bits per exponent field
hence POLY restricts d < 128.

Michael Monagan POLY

Notes on the new integration for Maple 17.

Given a polynomial f (x1, x2, ..., xn), we store f using POLY if

(1) f is expanded and has integer coefficients,

(2) d > 1 and t > 1 where d = deg f and t = #terms,

(3) we can pack all monomials of f into one 64 bit word, i.e. if d < 2b

where b = b 64
n+1c

Otherwise we use the old sum-of-products representation.

The representation is invisible to the Maple user.
Conversions are automatic.

POLY polynomials will be displayed in sorted order.

Packing is fixed by n = #variables.

If n = 8, (3) =⇒ we use b = b64/9c = 7 bits per exponent field
hence POLY restricts d < 128.

Michael Monagan POLY

Notes on the new integration for Maple 17.

Given a polynomial f (x1, x2, ..., xn), we store f using POLY if

(1) f is expanded and has integer coefficients,

(2) d > 1 and t > 1 where d = deg f and t = #terms,

(3) we can pack all monomials of f into one 64 bit word, i.e. if d < 2b

where b = b 64
n+1c

Otherwise we use the old sum-of-products representation.

The representation is invisible to the Maple user.
Conversions are automatic.

POLY polynomials will be displayed in sorted order.

Packing is fixed by n = #variables.

If n = 8, (3) =⇒ we use b = b64/9c = 7 bits per exponent field
hence POLY restricts d < 128.

Michael Monagan POLY

Notes on the new integration for Maple 17.

Given a polynomial f (x1, x2, ..., xn), we store f using POLY if

(1) f is expanded and has integer coefficients,

(2) d > 1 and t > 1 where d = deg f and t = #terms,

(3) we can pack all monomials of f into one 64 bit word, i.e. if d < 2b

where b = b 64
n+1c

Otherwise we use the old sum-of-products representation.

The representation is invisible to the Maple user.
Conversions are automatic.

POLY polynomials will be displayed in sorted order.

Packing is fixed by n = #variables.

If n = 8, (3) =⇒ we use b = b64/9c = 7 bits per exponent field
hence POLY restricts d < 128.

Michael Monagan POLY

Current Work and Paper Content

We are trying to get it ready for Maple 17.

Avoid operations like indets(f,type) which unpack POLY.

Some external C libraries need POLY support

The different ordering has exposed hidden bugs.

The paper gives details on

Why we chose a graded ordering instead of lex order.

How we repack polynomials efficiently e.g. for coeff(f , x , k).

A determinant benchmark showing a factor of 50 speedup.

Thank you for attending my talk.

Michael Monagan POLY

Current Work and Paper Content

We are trying to get it ready for Maple 17.

Avoid operations like indets(f,type) which unpack POLY.

Some external C libraries need POLY support

The different ordering has exposed hidden bugs.

The paper gives details on

Why we chose a graded ordering instead of lex order.

How we repack polynomials efficiently e.g. for coeff(f , x , k).

A determinant benchmark showing a factor of 50 speedup.

Thank you for attending my talk.

Michael Monagan POLY

Current Work and Paper Content

We are trying to get it ready for Maple 17.

Avoid operations like indets(f,type) which unpack POLY.

Some external C libraries need POLY support

The different ordering has exposed hidden bugs.

The paper gives details on

Why we chose a graded ordering instead of lex order.

How we repack polynomials efficiently e.g. for coeff(f , x , k).

A determinant benchmark showing a factor of 50 speedup.

Thank you for attending my talk.

Michael Monagan POLY

Current Work and Paper Content

We are trying to get it ready for Maple 17.

Avoid operations like indets(f,type) which unpack POLY.

Some external C libraries need POLY support

The different ordering has exposed hidden bugs.

The paper gives details on

Why we chose a graded ordering instead of lex order.

How we repack polynomials efficiently e.g. for coeff(f , x , k).

A determinant benchmark showing a factor of 50 speedup.

Thank you for attending my talk.

Michael Monagan POLY

Current Work and Paper Content

We are trying to get it ready for Maple 17.

Avoid operations like indets(f,type) which unpack POLY.

Some external C libraries need POLY support

The different ordering has exposed hidden bugs.

The paper gives details on

Why we chose a graded ordering instead of lex order.

How we repack polynomials efficiently e.g. for coeff(f , x , k).

A determinant benchmark showing a factor of 50 speedup.

Thank you for attending my talk.

Michael Monagan POLY

Current Work and Paper Content

We are trying to get it ready for Maple 17.

Avoid operations like indets(f,type) which unpack POLY.

Some external C libraries need POLY support

The different ordering has exposed hidden bugs.

The paper gives details on

Why we chose a graded ordering instead of lex order.

How we repack polynomials efficiently e.g. for coeff(f , x , k).

A determinant benchmark showing a factor of 50 speedup.

Thank you for attending my talk.

Michael Monagan POLY

Current Work and Paper Content

We are trying to get it ready for Maple 17.

Avoid operations like indets(f,type) which unpack POLY.

Some external C libraries need POLY support

The different ordering has exposed hidden bugs.

The paper gives details on

Why we chose a graded ordering instead of lex order.

How we repack polynomials efficiently e.g. for coeff(f , x , k).

A determinant benchmark showing a factor of 50 speedup.

Thank you for attending my talk.

Michael Monagan POLY

Current Work and Paper Content

We are trying to get it ready for Maple 17.

Avoid operations like indets(f,type) which unpack POLY.

Some external C libraries need POLY support

The different ordering has exposed hidden bugs.

The paper gives details on

Why we chose a graded ordering instead of lex order.

How we repack polynomials efficiently e.g. for coeff(f , x , k).

A determinant benchmark showing a factor of 50 speedup.

Thank you for attending my talk.

Michael Monagan POLY

