POLY : A new polynomial data structure for Maple.

Michael Monagan

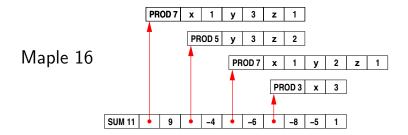
Center for Experimental and Constructive Mathematics Simon Fraser University British Columbia CANADA

> ASCM 2012, Beijing, October 26-28, 2012

> > This is joint work with Roman Pearce.

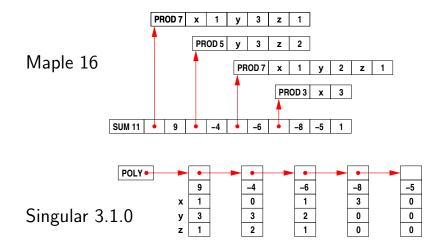
• Polynomial data structures in Maple and Singular are slow. Our new data structure POLY

- Polynomial data structures in Maple and Singular are slow. Our new data structure POLY
- Johnson's polynomial multiplication using a heap from 1973. Our parallelization of it.

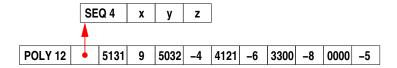

- Polynomial data structures in Maple and Singular are slow. Our new data structure POLY
- Johnson's polynomial multiplication using a heap from 1973. Our parallelization of it.
- Maple 16 integration of POLY. A multiplication and factorization benchmark.

- Polynomial data structures in Maple and Singular are slow. Our new data structure POLY
- Johnson's polynomial multiplication using a heap from 1973. Our parallelization of it.
- Maple 16 integration of POLY.
 A multiplication and factorization benchmark.
- Maple 17 integration of POLY. New timings for same benchmark.

- Polynomial data structures in Maple and Singular are slow. Our new data structure POLY
- Johnson's polynomial multiplication using a heap from 1973. Our parallelization of it.
- Maple 16 integration of POLY.
 A multiplication and factorization benchmark.
- Maple 17 integration of POLY. New timings for same benchmark.
- Notes on integration into Maple 17 kernel.

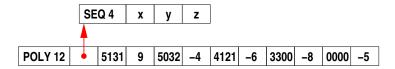

- Polynomial data structures in Maple and Singular are slow. Our new data structure POLY
- Johnson's polynomial multiplication using a heap from 1973. Our parallelization of it.
- Maple 16 integration of POLY.
 A multiplication and factorization benchmark.
- Maple 17 integration of POLY. New timings for same benchmark.
- Notes on integration into Maple 17 kernel.
- Status of Maple 17 integration.

Representations for $9 xy^3z - 4 y^3z^2 - 6 xy^2z - 8 x^3 - 5$.


/⊒ > < ∃ >

Representations for $9 xy^3z - 4 y^3z^2 - 6 xy^2z - 8 x^3 - 5$.

- Memory access is not sequential.
- Monomial multiplication costs O(100) cycles.


Our representation $9 xy^3z - 4 y^3z^2 - 6 xy^2z - 8 x^3 - 5$.

Monomial encoding for graded lex order with x > y > zEncodes $x^i y^j z^k$ in a single word d i j k where d = i+j+k.

Advantages

Our representation $9 xy^3z - 4 y^3z^2 - 6 xy^2z - 8 x^3 - 5$.

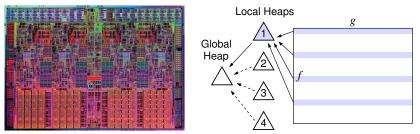
Monomial encoding for graded lex order with x > y > zEncodes $x^i y^j z^k$ in a single word d i j k where d = i + j + k.

Advantages

- It's more compact (2 words per term instead of 9).
- Memory access is sequential.
- Fewer objects to clutter tables.
- Monomial > and \times cost **ONE** instruction.

Parallel polynomial multiplication and division using heaps.

Let $f = f_1 + f_2 + \dots + f_n$ and $g = g_1 + g_2 + \dots + g_m$. Compute $f \times g = f_1 \cdot g + f_2 \cdot g + \dots + f_n \cdot g$.


Naive merge: $O(mn^2)$ comparisons. Johnson (1974) simultaneous *n*-ary merge (heap): $O(mn \log n)$.

Parallel polynomial multiplication and division using heaps.

Let $f = f_1 + f_2 + \dots + f_n$ and $g = g_1 + g_2 + \dots + g_m$. Compute $f \times g = f_1 \cdot g + f_2 \cdot g + \dots + f_n \cdot g$.

Naive merge: $O(mn^2)$ comparisons. Johnson (1974) simultaneous *n*-ary merge (heap): $O(mn \log n)$.

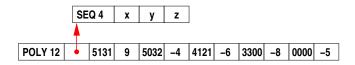
[MM, RP (2009)] parallel multiplication. [MM, RP (2010)] parallel division.

Target architecture: Intel Core i7 (quad core)

tel Core i5 750 2.66 GHz (4 cores)					n seconds
Maple	Maple 16		Magma	Singular	Mathem
13	1 core	4 cores	2.16-8	3.1.0	atica 7
1.60	0.053	0.029	0.30	0.58	4.79
95.97	1.810	0.632	13.25	30.64	273.01
Hensel lifting is mostly polynomial multiplication!					
31.10	2.58	2.46	6.15	12.28	11.82
2953.54	53.52	44.84	332.86	404.86	655.49
$f_1 = (1 + x + y + z)^{20} + 1$ $f_4 = (1 + x + y + z + t)^{20} + 1$			1771 te		
	Maple 13 1.60 95.97 Hense 31.10 2953.54	Maple Map 13 1 core 1.60 0.053 95.97 1.810 Hensel lifting 31.10 2.58 2953.54 53.52	Maple Maple 16 13 1 core 4 cores 1.60 0.053 0.029 95.97 1.810 0.632 Hensel lifting is mostly 31.10 2.58 2.46 2953.54 53.52 44.84	Maple Maple 16 Magma 13 1 core 4 cores 2.16-8 1.60 0.053 0.029 0.30 95.97 1.810 0.632 13.25 Hensel lifting is mostly polynomia 31.10 2.58 2.46 2953.54 53.52 44.84 332.86	Maple Maple 16 Magma Singular 13 1 core 4 cores 2.16-8 3.1.0 1.60 0.053 0.029 0.30 0.58 95.97 1.810 0.632 13.25 30.64 Hensel lifting is mostly polynomial multiplic 31.10 2.58 2.46 6.15 12.28 2953.54 53.52 44.84 332.86 404.86

Parallel speedup for $f_4 \times (f_4 + 1)$ is 1.81 / .632 = **2.86**×. Why?

Maple 16 Integration of POLY


To expand sums $f \times g$ Maple calls 'expand/bigprod(f,g)' if #f > 2 and #g > 2 and $\#f \times \#g > 1500$.

```
'expand/bigprod' := proc(a,b) # multiply two large sums
  if type(a,polynom(integer)) and type(b,polynom(integer)) then
    x := indets(a) union indets(b); k := nops(x);
    A := sdmp:-Import(a, plex(op(x)), pack=k);
    B := sdmp:-Import(b, plex(op(x)), pack=k);
    C := sdmp:-Multiply(A,B);
    return sdmp:-Export(C);
  else
   . . .
'expand/bigdiv' := proc(a,b,q) # divide two large sums
   . . .
    x := indets(a) union indets(b); k := nops(x)+1;
    A := sdmp:-Import(a, grlex(op(x)), pack=k);
    B := sdmp:-Import(b, grlex(op(x)), pack=k);
   . . .
```

(4月) (4日) (4日) 日

Make POLY the default representation in Maple.

If we can pack all monomials into one word use

<i>O</i> (1)	<pre>degree(f); lcoeff(f); indets(f);</pre>
<i>O</i> (<i>n</i>)	<pre>has(f,z); type(f,polynom(integer));</pre>
O(n+t)	<pre>degree(f,x); expand(x*t); diff(f,x);</pre>

For f with t terms in n variables.

Almost everything is fast.

nd radix
ly
nomial d
ursively
structu
structu
sort, me
ne pass
only
1

For f with n = 3 variables and $t = 10^6$ terms created by

f := expand(mul(randpoly(v,degree=100,dense),v=[x,y,z])):

)

Intel Core 15 750 2	2.66 GHz (4 cores) I imes in seconds					
	Maple 16		Maple 17		Magma	Singular
multiply	1 core	4 cores	1 core	4 cores	2.16-8	3.1.4
$p_1 := f_1(f_1 + 1)$	0.053	0.029	0.042	0.017	0.30	0.57
$p_4 := f_4(f_4 + 1)$	1.810	0.632	1.730	0.508	13.25	30.99
factor	Singular's factorization improved!					
<i>p</i> ₁ 12341 terms	2.66	2.54	1.06	0.93	6.15	2.01
p ₄ 135751 terms	56.68	44.06	26.43	16.17	332.86	61.85

ı.

 $f_1 = (1 + x + y + z)^{20} + 1$ 1771 terms $f_4 = (1 + x + y + z + t)^{20} + 1$ 10626 terms

Parallel speedup for $f_4 \times (f_4 + 1)$ is $1.730/0.508 = 3.41 \times .$

Profile for factor(p1);

		Ma	ple 16	New Maple		
function	#calls	time	time%	time	time%	
coeftayl	216	0.999s	36.96	0.270s	22.39	
expand	1934	0.561s	20.75	0.375s	31.09	
factor/diophant	236	0.475s	17.57	0.371s	30.76	
divide	419	0.267s	9.88	0.055s	4.56	
factor	1	0.206s	7.62	0.017s	1.41	
factor/hensel	1	0.140s	5.18	0.075s	6.22	
factor/unifactor	2	0.055s	2.03	0.043s	3.57	
total:	2809	2.703s	100.00%	1.206s	100.00%	

The coeftayl(f,x=a,k); command is defined by coeff(taylor(f,x=a,k+1),x,k); and is computed via eval(diff(f,x\$k),x=a) / k! which is 4x faster.

Given a polynomial $f(x_1, x_2, ..., x_n)$, we store f using POLY if

(1) f is expanded and has integer coefficients,

- (2) d > 1 and t > 1 where $d = \deg f$ and t = #terms,
- (3) we can pack all monomials of f into one 64 bit word, i.e. if $d<2^b$ where $b=\lfloor\frac{64}{n+1}\rfloor$

Otherwise we use the old sum-of-products representation.

Given a polynomial $f(x_1, x_2, ..., x_n)$, we store f using POLY if

- (1) f is expanded and has integer coefficients,
- (2) d > 1 and t > 1 where $d = \deg f$ and t = #terms,
- (3) we can pack all monomials of f into one 64 bit word, i.e. if $d<2^b$ where $b=\lfloor\frac{64}{n+1}\rfloor$

Otherwise we use the old sum-of-products representation.

• The representation is invisible to the Maple user. Conversions are automatic.

Given a polynomial $f(x_1, x_2, ..., x_n)$, we store f using POLY if

- (1) f is expanded and has integer coefficients,
- (2) d > 1 and t > 1 where $d = \deg f$ and t = #terms,
- (3) we can pack all monomials of f into one 64 bit word, i.e. if $d<2^b$ where $b=\lfloor\frac{64}{n+1}\rfloor$

Otherwise we use the old sum-of-products representation.

- The representation is invisible to the Maple user. Conversions are automatic.
- POLY polynomials will be displayed in sorted order.

Given a polynomial $f(x_1, x_2, ..., x_n)$, we store f using POLY if

- (1) f is expanded and has integer coefficients,
- (2) d > 1 and t > 1 where $d = \deg f$ and t = #terms,
- (3) we can pack all monomials of f into one 64 bit word, i.e. if $d<2^b$ where $b=\lfloor\frac{64}{n+1}\rfloor$

Otherwise we use the old sum-of-products representation.

- The representation is invisible to the Maple user. Conversions are automatic.
- POLY polynomials will be displayed in sorted order.
- Packing is fixed by n = #variables.

Given a polynomial $f(x_1, x_2, ..., x_n)$, we store f using POLY if

- (1) f is expanded and has integer coefficients,
- (2) d > 1 and t > 1 where $d = \deg f$ and t = #terms,
- (3) we can pack all monomials of f into one 64 bit word, i.e. if $d<2^b$ where $b=\lfloor\frac{64}{n+1}\rfloor$

Otherwise we use the old sum-of-products representation.

- The representation is invisible to the Maple user. Conversions are automatic.
- POLY polynomials will be displayed in sorted order.
- Packing is fixed by n = #variables.
- If n = 8, (3) ⇒ we use b = [64/9] = 7 bits per exponent field hence POLY restricts d < 128.

A B + A B +

• Avoid operations like indets(f,type) which unpack POLY.

- Avoid operations like indets(f,type) which unpack POLY.
- Some external C libraries need POLY support

- Avoid operations like indets(f,type) which unpack POLY.
- Some external C libraries need POLY support
- The different ordering has exposed hidden bugs.

The paper gives details on

- Avoid operations like indets(f,type) which unpack POLY.
- Some external C libraries need POLY support
- The different ordering has exposed hidden bugs.

The paper gives details on

• Why we chose a graded ordering instead of lex order.

- Avoid operations like indets(f,type) which unpack POLY.
- Some external C libraries need POLY support
- The different ordering has exposed hidden bugs.

The paper gives details on

- Why we chose a graded ordering instead of lex order.
- How we repack polynomials efficiently e.g. for coeff(f, x, k).

- Avoid operations like indets(f,type) which unpack POLY.
- Some external C libraries need POLY support
- The different ordering has exposed hidden bugs.

The paper gives details on

- Why we chose a graded ordering instead of lex order.
- How we repack polynomials efficiently e.g. for coeff(f,x,k).
- A determinant benchmark showing a factor of 50 speedup.

- Avoid operations like indets(f,type) which unpack POLY.
- Some external C libraries need POLY support
- The different ordering has exposed hidden bugs.

The paper gives details on

- Why we chose a graded ordering instead of lex order.
- How we repack polynomials efficiently e.g. for coeff(f, x, k).
- A determinant benchmark showing a factor of **50** speedup.

Thank you for attending my talk.