POLY : A new polynomial data structure for

Maple 17 that improves parallel speedup.

Michael Monagan

Centre for Experimental and Constructive Mathematics
Simon Fraser University.

Maplesoft presentation, August 14th, 2012

This is joint work with Roman Pearce.

Michael Monagan POLY

Representations for

[PROD7] x [1 [y [3]z[1]

[proDs] y [3] 2z [2]

\
Maple 16 PRo07[x [1y 2] 2] 1]
i
PROD3| x | 3 |
i
(st e[o |afe[6]%[8[5]1]

Michael Monagan POLY

Representations for

[PROD7] x [1 [y [3]z[1]

[pRODS| y [3] z] 2 |
i
Maple 16 PRo07[x [1y 2] 2] 1]
i
PROD3| x | 3 |
i
somri] & o []+ [+ 51

T e e e e e

KN T
o
3
2]

Singular 310 415 H
n ar 5.1. y
&l a5]

@ Memory access is not sequential.
@ Monomial multiplication costs circa 200 cycles.

Michael Monagan POLY

Our representation

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000| -5 |

Monomial encoding for graded lex order with x>y >z

Immediate advantages:

Michael Monagan POLY

Our representation

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000| -5 |

Monomial encoding for graded lex order with x>y >z

Immediate advantages:

@ It's about four times more compact.

Michael Monagan POLY

Our representation

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000| -5 |

Monomial encoding for graded lex order with x>y >z

Immediate advantages:
@ It's about four times more compact.

@ Memory access is sequential.

Michael Monagan POLY

Our representation

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000| -5 |

Monomial encoding for graded lex order with x>y >z

Immediate advantages:
@ It's about four times more compact.
@ Memory access is sequential.
@ The simpl table is not filled with PRODs.

Michael Monagan POLY

Our representation

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000| -5 |

Monomial encoding for graded lex order with x>y >z

Immediate advantages:
@ It's about four times more compact.
@ Memory access is sequential.
@ The simpl table is not filled with PRODs.

@ Monomial > and x cost ONE instruction.

Michael Monagan POLY

Our representation

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000| -5 |

Monomial encoding for graded lex order with x>y >z

Immediate advantages:
@ It's about four times more compact.
@ Memory access is sequential.
@ The simpl table is not filled with PRODs.
@ Monomial > and x cost ONE instruction.
o

Division cannot cause exponent overflow in graded lex order.

Michael Monagan POLY

Talk Outline

@ Sequential polynomial multiplication
o Parallel polynomial multiplication

@ A multiplication and factorization benchmark

Why is parallel speedup poor?
We’'ve made POLY the default in Maple.

New code
New timings
Integration details

Reflections

Future

Michael Monagan POLY

Multiplication using a binary heap.

let f=fh+h+ +handg=gi+g+ -+ &m
Compute f xg=f-g+h-g+--+f- g

Johnson, 1974, does a simultaneous n-ary merge using a heap.

Michael Monagan POLY

Multiplication using a binary heap.

letf=A+Fh+---+fhandg=g1+g + -+ &m-
Compute f xg=f-g+h-g+--+f- g

Johnson, 1974, does a simultaneous n-ary merge using a heap.

— 1 X (g+ St g+. +8,)

add he | H X (g+ &+ G+ .. +8,)

f1g+. +—— — i X (gt S+ &G+.. +g,)
f]gZ - :

Heap <~ X (g+ O+ G+ .. +8,)

@ |Heap| < n = O(nmlog n) comparisons.
e Implementation uses O(n + k) working space.

Michael Monagan POLY

Target Parallel Architecture

Intel Core i7, quad core, shared memory.

Michael Monagan POLY

Parallel Multiplication Algorithm

Local Heaps

Global
Heap /
A\ ¥ One thread per core.
Add results

\\ A in global heap.

Michael Monagan POLY

Parallel Multiplication Algorithm

Local Heaps
8
Global
Heap /
A\ ¥ One thread per core.
R Add results
‘\\ A in global heap.

Threads write to a finite circular buffer.

r w r mod N %wmodN

Threads try to acquire global heap as buffer fills up to balance load.

Michael Monagan POLY

Old multiplication and factorization benchmark.

Intel Core i5 750 2.66 GHz (4 cores) Times in seconds
Maple Maple 16 Magma Singular Mathem
multiply 13 | 1 core 4 cores 2.16-8 3.1.0 atica 7
p1:=fi(h +1) 1.60 | 0.053 0.029 0.30 0.58 4.79
ps = fi(+1) 26.76 | 0.422 0.167 4.09 6.96 50.36
pa = fa(fa + 1) 95.97 | 1.810 0.632 13.25 30.64 273.01
factor Hensel lifting is mostly polynomial multiplication!!
p1 12341 terms 31.10 2.66 2.54 6.15 12.28 11.82
p3 38711 terms 391.44 | 15.70 13.47 | 117.53 97.10 164.50
ps 135751 terms | 2953.54 | 56.68 44.06 | 332.86 404.86 655.49

Ai=1+x+y+2)20+1 1771 terms
=1+x+y+2z)*¥+1 5456 terms
fa=(l+x+y+z+t)0+1 10626 terms

Why is parallel speedup so poor?

Maple 14 Integration

To expand sums f x g Maple calls ‘expand/bigprod(f,g) ¢ if
#f > 2 and #g > 2 and and #f x #g > 1500.

‘expand/bigprod¢ := proc(a,b) # multiply two large sums
if type(a,polynom(integer)) and type(b,polynom(integer)) then
:= [op(indets(a) union indets(b))];
:= max(op(map2(degree, a, x) + map2(degree, b, x)));
:= iquo(kernelopts(wordsize), ilog2(d)+1); # bits per field
sdmp:-Import(a, plex(op(x)), pack=k);
:= sdmp:-Import(b, plex(op(x)), pack=k);
:= sdmp:-Multiply(A,B);
return sdmp:-Export(C);
else

QW= ® o K
i

sdmp:-Export = simpl(C) = shellsort, etc.

Michael Monagan POLY

POLY the default representation in Maple.

If all monomials pack into one word use

‘SEQ4‘x‘y‘z‘

[PoLY 12| ¢ [5131] 9 |5032 -4 |4121] -6 [3300] -8 [0000] -5 |

otherwise use the sum-of-products structure.

Michael Monagan POLY

POLY the default representation in Maple.

If all monomials pack into one word use

‘SEQ4‘x‘y‘z‘

[PoLY 12| ¢ [5131] 9 |5032 -4 |4121] -6 [3300] -8 [0000] -5 |

otherwise use the sum-of-products structure.

But must reprogram entire kernel for new POLY !

O(n) f; degree(f); has(f,z); indets(f);
O(t) degree(f,x); diff (f,x); expand(x*t);

For f with t terms in n variables and t > n.

We use American flag sort, an in-place radix sort.

Michael Monagan POLY

Everything except op and map is fast.

command Maple 16 Maple 17 speedup notes

coeff(f,x,20) 2.140 s 0.005 s 420x terms easy to locate
coeffs(f,x) 0.979 s 0.119 s 8x reorder exponents and radix
frontend(g,[f]) 3.730s 0.000 s — O(n) looks at variables only
degree(f, x) 0.073 s 0.003 s 24x stop early using monomial d
diff(f,x) 0.956 s 0.031s 30x terms remain sorted
eval(f,x = 6) 3.760 s 0.175 s 21x use Horner form recursively
expand(2*x*f) 1.190 s 0.066 s 18x terms remain sorted
indets(f) 0.060 s 0.000 s — O(n) first word in dag

op(f) 0.634 s 1.740 s 0.36x converts to sum-of-products
simpl(f) 0.898 s 0.009 s 100x only one object - already sor
subs(x =y, f) 1.160 s 0.076 s 15x combine exponents, sort, me
taylor(f,x,50) 0.668 s 0.055 s 12x get coefficients in one pass
type(f, polynom) 0.029 s 0.000 s — O(n) type check variables only

For f with n = 3 variables and t = 10° terms created by
f := expand(mul (randpoly(v,degree=100,dense) ,v=[x,y,z])):

Michael Monagan POLY

High performance solutions: coeff

‘SEQ4‘x‘y‘z‘

[PoLY 12| & [5131] 9 |5032 -4 [4121] -6 [3300] -8 [0000] -5 |

To compute coeff (f,y,3) we need to

(d1i131%]) L [o[d—3]iTx] 2

We can do step 1 in O(1) bit operations.
Can we do step 2 faster than O(n) bit operations?

Michael Monagan POLY

High performance solutions.

/* pre-compute masks for compress_fast */
static void compress_init(M_INT mask, M_INT *v)

/* compress monomial m using precomputed masks v */
/* in 0(log_2 WORDSIZE) bit operations */
static M_INT compress_fast(M_INT m, M_INT *v)

{ M_INT t;
if (v[0]) t =m & v[0], m=m "~ t | (t > 1);
if (W[]D) t=m& v[ll, m=m "~ t | (t > 2);
if (w2]) t=m&v[2l, m=m "~ t | (t > 4);
if (v[3]) t =m & v[3], m=m "~ t | (t > 8);
if (v[4]) t=m& v[4l, m=m "t | (t > 16);
#if WORDSIZE > 32
if (v[5]) t =m & v[5], m=m "~ t | (£t > 32);
#endif
return m;
}

o Costs 24 bit operations per monomial.
o Intel Haswell (2013): 1 cycle (PEXT/PDEP)

Michael Monagan POLY

New multiplication and factorization benchmark.

Intel Core i5 750 2.66 GHz (4 cores) Times in seconds
Maple 16 Maple 17 Magma Singular
multiply 1 core 4 cores | 1 core 4 cores 2.16-8 3.1.4
p1:= fi(h +1) 0.053 0.029 | 0.042 0.017 0.30 0.57
ps = (s + 1) 0.422 0.167 | 0.398 0.137 4.09 6.77
ps = f3(fa + 1) 1.810 0.632 | 1.730 0.508 13.25 30.99
factor Singular’s factorization improved!
p1 12341 terms 2.66 2.54 1.06 0.93 6.15 2.01

p3 38711 terms 15.70 13.47 8.22 6.13 117.53 12.48
pa 135751 terms | 56.68 44.06 | 26.43 16.17 | 332.86 61.85

i=l+x+y+22+1 1771 terms
B=1+x+y+2z)3¥+1 5456 terms
fa=(l+x+y+z+t)20+1 10626 terms

Michael Monagan POLY

Profile for factor(pl); for 1 core.

Maple 16 New Maple Faster coeftayl
function time time% time time% time time%
coeftayl 1.086s 41.06 | 0.310s 28.21 | 0.095s 12.03
expand 0.506s 19.13 | 0.263s 23.93 | 0.255s 32.28
diophant 0.424s 16.03 | 0.403s 34.94 | 0.299s 37.85
divide 0.256s 9.68 | 0.034s 3.09 | 0.035s 4.43
factor 0.201s 7.60 | 0.011s 1.00 | 0.010s 1.27
factor/hensel 0.127s 4.80 | 0.064s 5.82 | 0.063s 7.97
factor/unifactor | 0.045s 1.70 | 0.033s 3.00 | 0.033s 4.18
total: 2.645s 100.00% | 1.099s 100.00% | 0.790s 100.00%

coeftayl(f,x=a,k); computes the coefficient of (x — a)¥ in f
using eval (diff (f,x$k) ,x=a)/k! which is 3.5x faster.

But add(coeff (f,x,1i) al binomial(i,k), i=1..degree(f,x)) is
3x faster again!

Michael Monagan POLY

Latest timings for factorization benchmark.

Intel Core i5 750 2.66 GHz (4 cores) Times in seconds
Maple 16 Maple 17 Singular
factor 1core 4 cores | 1 core (best) 4 cores (best 3.14

)
p1 12341 terms 2.66 254 | 1.06 (0.75) 0.94 (0.62) 2.01
p3 38711 terms 15.70 13.47 8.22 (6.46) 6.13 (4.32) 12.48
ps 135751 terms | 56.68 44.06 | 26.43 (23.20) 16.17 (12.94) 61.85
With improvements to coeftayl and factor/diophant.

Reflecting on the gain?

1 core: 56.68 — 23.20 = 33.48 and 3338 = 2.44x

4 cores: 44.06 — 12.94 = 31.12 and 5.3 = 3.40x.

Michael Monagan POLY

Notes on the new integration for Maple 17.

We store f using POLY if
(i) fis an expanded polynomial, in names, with integer coefficients
(i) d >1and t > 1 where d =degf and t = #terms.

(iii) we can pack all monomials of f into one 64 bit word

e, if d <2° where b= [;%

Otherwise we use the old sum-of-products representation.

Michael Monagan POLY

Notes on the new integration for Maple 17.

We store f using POLY if
(i) fis an expanded polynomial, in names, with integer coefficients
(i) d >1and t > 1 where d =degf and t = #terms.

(iii) we can pack all monomials of f into one 64 bit word

e, if d <2° where b= [;%

Otherwise we use the old sum-of-products representation.

@ Packing is fixed by n = #variables.

Michael Monagan POLY

Notes on the new integration for Maple 17.

We store f using POLY if
(i) fis an expanded polynomial, in names, with integer coefficients
(i) d >1and t > 1 where d =degf and t = #terms.

(iii) we can pack all monomials of f into one 64 bit word

e, if d <2° where b= [;%

Otherwise we use the old sum-of-products representation.

@ Packing is fixed by n = #variables.

@ If n=38, (iii) = we use b= |64/9] =7 bits per exponent field
hence POLY restricts d < 128.

Michael Monagan POLY

Notes on the new integration for Maple 17.

We store f using POLY if
(i) fis an expanded polynomial, in names, with integer coefficients
(i) d >1and t > 1 where d =degf and t = #terms.

(iii) we can pack all monomials of f into one 64 bit word

e, if d <2° where b= [;%

Otherwise we use the old sum-of-products representation.

@ Packing is fixed by n = #variables.

@ If n=38, (iii) = we use b= |64/9] =7 bits per exponent field
hence POLY restricts d < 128.

@ The representation is invisible to the Maple user.
Conversions are automatic.

Michael Monagan POLY

POLY polynomials are displayed in sorted order.

> f = 1l+x+y;
fi=14+x+y

> g = 1-yxx+y~3;

g=y' —xy+1

> dismantle(g) ;
POLY(8)
EXPSEQ(3)
NAME(4): x
NAME(4): y
DEGREES(HW): ~“3 "0 "3
INTPOS(2): 1
DEGREES(HW): "2 "1 "1
INTNEG(2): -1
DEGREES(HW): ~“0 "0 "0
INTPOS(2): 1

Michael Monagan POLY

Reflections

We will not get high performance using these

[PROD7] x [1 [y [3]z]1]

[proDs[y [3] 2] 2]

[PROD7] x [1 [y[2]z]1]
A
PROD3| x | 3 |
A
[sumit[¢ [o] s 4l [-6[¢[8]5]1]
[PoLvef——sl ol el ol]|
9 AT
x| 1 T e A R
I 3] [z ol [
2[4 2]) Lo [

Michael Monagan POLY

Reflections

' . 1 N =
Amdahl’s law: duwp < — = #cores
a harsh mistriss Speedib = g7y (1-S)/N S = overhead%

Michael Monagan POLY

Reflections

' . 1 N = #cores
Amdahl’s law: speedup < ———
a harsh mistriss P P=797 (1-S)/N S = overhead%

overhead 5% — 5% — 1%
speedup (N=4) | 1.6x — 35x — 3.9
speedup (N=16) | 1.9x — 9.1x — 13.9x

Michael Monagan POLY

Reflections

' . 1 N = #cores
Amdahl’s law: speedup < ———
a harsh mistriss P P=797 (1-S)/N S = overhead%

overhead 5% — 5% — 1%
speedup (N=4) | 1.6x — 35x — 3.9
speedup (N=16) | 1.9x — 9.1x — 13.9x

POLY 5 d = total degree
. Xyz
Improve Slmp” packing dxyz dxyz dxyz dxyz dxyz
O(t3/4) hashalg o——[5131] » 5032 ¢ [4121] « [3300] -8 [0000] 5 |

American flag sort Y

[GMPdata A |GMPdata B |GMPdata C |

Michael Monagan POLY

What about these?

2 17
x? + §X— 9 and y?>—231y+1.29

x* — t RootOf ((Z* — t)x* +3t and y"(x) —cy'(x)+3

1+xf+x2—{—x3—|—x4—|—x5—|—X6—|—x7—|—x8+x9+x10

+ X11X12 + X13X14 + X15X16 + X17X18 + X19X20

Michael Monagan POLY

