POLY: A new polynomial data structure for Maple 17 that improves parallel speedup.

Michael Monagan

Centre for Experimental and Constructive Mathematics Simon Fraser University.

Maplesoft presentation, August 14th, 2012

This is joint work with Roman Pearce.

- Memory access is not sequential.
- Monomial multiplication costs circa 200 cycles.

Monomial encoding for graded lex order with x>y>z

Monomial encoding for graded lex order with x>y>z

Immediate advantages:

It's about four times more compact.

Monomial encoding for graded lex order with x>y>z

- It's about four times more compact.
- Memory access is sequential.

Our representation $9 \times y^3 \times z - 4 y^3 \times z^2 - 6 \times y^2 \times z - 8 \times x^3 - 5$.

Monomial encoding for graded lex order with x>y>z

- It's about four times more compact.
- Memory access is sequential.
- The simpl table is not filled with PRODs.

Monomial encoding for graded lex order with x>y>z

- It's about four times more compact.
- Memory access is sequential.
- The simpl table is not filled with PRODs.
- Monomial > and × cost One instruction.

Monomial encoding for graded lex order with x>y>z

- It's about four times more compact.
- Memory access is sequential.
- The simpl table is not filled with PRODs.
- Monomial > and × cost One instruction.
- Division cannot cause exponent overflow in graded lex order.

Talk Outline

- Sequential polynomial multiplication
- Parallel polynomial multiplication
- A multiplication and factorization benchmark

Why is parallel speedup poor?

We've made POLY the default in Maple.

- New code
- New timings
- Integration details
- Reflections
- Future

Multiplication using a binary heap.

Let
$$f = f_1 + f_2 + \cdots + f_n$$
 and $g = g_1 + g_2 + \cdots + g_m$.
Compute $f \times g = f_1 \cdot g + f_2 \cdot g + \cdots + f_n \cdot g$.

Johnson, 1974, does a simultaneous *n*-ary merge using a heap.

Multiplication using a binary heap.

Let
$$f = f_1 + f_2 + \dots + f_n$$
 and $g = g_1 + g_2 + \dots + g_m$.
Compute $f \times g = f_1 \cdot g + f_2 \cdot g + \dots + f_n \cdot g$.

Johnson, 1974, does a simultaneous *n*-ary merge using a heap.

- $|Heap| \le n \implies O(nm \log n)$ comparisons.
- Implementation uses O(n+k) working space.

Target Parallel Architecture

Intel Core i7, quad core, shared memory.

Parallel Multiplication Algorithm

One thread per core.

Add results
in global heap.

Parallel Multiplication Algorithm

One thread per core.

Add results
in global heap.

Threads write to a finite circular buffer.

Threads try to acquire global heap as buffer fills up to balance load.

Old multiplication and factorization benchmark.

Intel Core i5 750 2.66 GHz (4 cores)

Times in seconds

	Maple	Maple 16		Magma	Singular	Mathem	
multiply	13	1 core	4 cores	2.16-8	3.1.0	atica 7	
$p_1 := f_1(f_1+1)$	1.60	0.053	0.029	0.30	0.58	4.79	
$p_3 := f_3(f_3 + 1)$	26.76	0.422	0.167	4.09	6.96	50.36	
$p_4:=f_4(f_4+1)$	95.97	1.810	0.632	13.25	30.64	273.01	
factor	Hensel lifting is mostly polynomial multiplication!!						
p ₁ 12341 terms	31.10	2.66	2.54	6.15	12.28	11.82	
p ₃ 38711 terms	391.44	15.70	13.47	117.53	97.10	164.50	
p ₄ 135751 terms	2953.54	56.68	44.06	332.86	404.86	655.49	

$$f_1 = (1 + x + y + z)^{20} + 1$$
 1771 terms
 $f_3 = (1 + x + y + z)^{30} + 1$ 5456 terms
 $f_4 = (1 + x + y + z + t)^{20} + 1$ 10626 terms

Why is parallel speedup so poor?

Maple 14 Integration

```
To expand sums f \times g Maple calls 'expand/bigprod(f,g)' if \#f > 2 and \#g > 2 and \#f \times \#g > 1500.
```

```
'expand/bigprod' := proc(a,b) # multiply two large sums
   if type(a,polynom(integer)) and type(b,polynom(integer)) then
     x := [op(indets(a) union indets(b))];
     d := max(op(map2(degree, a, x) + map2(degree, b, x)));
     k := iquo(kernelopts(wordsize), ilog2(d)+1 ); # bits per field
     A := sdmp:-Import(a, plex(op(x)), pack=k);
     B := sdmp:-Import(b, plex(op(x)), pack=k);
     C := sdmp:-Multiply(A,B);
     return sdmp:-Export(C);
   else
   . . .
sdmp:-Export \implies simpl(C) \implies shellsort, etc.
```

POLY the default representation in Maple.

If all monomials pack into one word use

otherwise use the sum-of-products structure.

POLY the default representation in Maple.

If all monomials pack into one word use

otherwise use the sum-of-products structure.

But must reprogram entire kernel for new POLY!

```
O(n) f; degree(f); has(f,z); indets(f);
O(t) degree(f,x); diff(f,x); expand(x*t);
```

For f with t terms in n variables and $t \ge n$.

We use American flag sort, an in-place radix sort.

Everything except op and map is fast.

command	Maple 16	Maple 17	speedup	notes
coeff(f, x, 20)	2.140 s	0.005 s	420x	terms easy to locate
coeffs(f,x)	0.979 s	0.119 s	8x	reorder exponents and radix
frontend(g,[f])	3.730 s	0.000 s	$\rightarrow O(n)$	looks at variables only
degree(f,x)	0.073 s	0.003 s	24x	stop early using monomial de
diff(f,x)	0.956 s	0.031 s	30×	terms remain sorted
eval(f, x = 6)	3.760 s	0.175 s	21x	use Horner form recursively
expand(2*x*f)	1.190 s	0.066 s	18x	terms remain sorted
indets(f)	0.060 s	0.000 s	$\rightarrow O(n)$	first word in dag
op(f)	0.634 s	1.740 s	0.36x	converts to sum-of-products
simpl(f)	0.898 s	0.009 s	100×	only one object - already sor
subs(x = y, f)	1.160 s	0.076 s	15×	combine exponents, sort, me
taylor(f, x, 50)	0.668 s	0.055 s	12x	get coefficients in one pass
type(f, polynom)	0.029 s	0.000 s	$\rightarrow O(n)$	type check variables only

For f with n=3 variables and $t=10^6$ terms created by f := expand(mul(randpoly(v,degree=100,dense),v=[x,y,z])):

High performance solutions: coeff

To compute coeff(f,y,3) we need to

We can do step 1 in O(1) bit operations.

Can we do step 2 faster than O(n) bit operations?

High performance solutions.

```
/* pre-compute masks for compress_fast */
static void compress_init(M_INT mask, M_INT *v)
/* compress monomial m using precomputed masks v */
/* in O( log_2 WORDSIZE ) bit operations */
static M_INT compress_fast(M_INT m, M_INT *v)
     M INT t:
      if (v[0]) t = m & v[0], m = m ^ t | (t >> 1);
      if (v[1]) t = m & v[1], m = m ^ t | (t >> 2);
      if (v[2]) t = m & v[2], m = m ^ t | (t >> 4);
      if (v[3]) t = m & v[3], m = m ^ t | (t >> 8);
      if (v[4]) t = m & v[4], m = m ^ t | (t >> 16);
#if WORDSIZE > 32
      if (v[5]) t = m & v[5], m = m ^ t | (t >> 32);
#endif
      return m;
}
```

- Costs 24 bit operations per monomial.
- Intel Haswell (2013): 1 cycle (PEXT/PDEP)

New multiplication and factorization benchmark.

Intel Core i5 750 2.66 GHz (4 cores)

	seconds

	Maple 16		Maple 17		Magma	Singular
multiply	1 core	4 cores	1 core	4 cores	2.16-8	3.1.4
$p_1 := f_1(f_1+1)$	0.053	0.029	0.042	0.017	0.30	0.57
$p_3 := f_3(f_3+1)$	0.422	0.167	0.398	0.137	4.09	6.77
$p_4 := f_4(f_4 + 1)$	1.810	0.632	1.730	0.508	13.25	30.99
factor	Singular's factorization improved!					
p ₁ 12341 terms	2.66	2.54	1.06	0.93	6.15	2.01
p ₃ 38711 terms	15.70	13.47	8.22	6.13	117.53	12.48
<i>p</i> ₄ 135751 terms	56.68	44.06	26.43	16.17	332.86	61.85

$$f_1 = (1 + x + y + z)^{20} + 1$$
 1771 terms
 $f_3 = (1 + x + y + z)^{30} + 1$ 5456 terms
 $f_4 = (1 + x + y + z + t)^{20} + 1$ 10626 terms

Profile for factor(p1); for 1 core.

	Maple 16		New Maple		Faster coeftayl	
function	time	time%	time	time%	time	time%
coeftayl	1.086s	41.06	0.310s	28.21	0.095s	12.03
expand	0.506s	19.13	0.263s	23.93	0.255s	32.28
diophant	0.424s	16.03	0.403s	34.94	0.299s	37.85
divide	0.256s	9.68	0.034s	3.09	0.035s	4.43
factor	0.201s	7.60	0.011s	1.00	0.010s	1.27
factor/hensel	0.127s	4.80	0.064s	5.82	0.063s	7.97
factor/unifactor	0.045s	1.70	0.033s	3.00	0.033s	4.18
total:	2.645s	100.00%	1.099s	100.00%	0.790s	100.00%

coeftayl(f,x=a,k); computes the coefficient of $(x-a)^k$ in f using eval(diff(f,x\$k),x=a)/k! which is 3.5x faster.

But $add(coeff(f,x,i) \ a^i \ binomial(i,k), \ i=1..degree(f,x))$ is $3x \ faster \ again!$

Latest timings for factorization benchmark.

Intel Core i5 750 2.66 GHz (4 cores)

Times in seconds

	Мар	le 16	Мар	Singular	
factor	1 core	4 cores	1 core (best)	4 cores (best)	3.1.4
p ₁ 12341 terms	2.66	2.54	1.06 (0.75)	0.94 (0.62)	2.01
p ₃ 38711 terms	15.70	13.47	8.22 (6.46)	6.13 (4.32)	12.48
p ₄ 135751 terms	56.68	44.06	26.43 (<mark>23.20</mark>)	16.17 (<mark>12.94</mark>)	61.85

With improvements to coeftayl and factor/diophant.

Reflecting on the gain?

1 core:
$$56.68 - 23.20 = 33.48$$
 and $\frac{56.68}{23.20} = 2.44x$

4 cores:
$$44.06 - 12.94 = 31.12$$
 and $\frac{44.06}{12.94} = 3.40x$.

We store *f* using POLY if

- (i) f is an expanded polynomial, in names, with integer coefficients
- (ii) d > 1 and t > 1 where $d = \deg f$ and t = #terms.
- (iii) we can pack all monomials of f into one 64 bit word i.e., if $d < 2^b$ where $b = \lfloor \frac{64}{n+1} \rfloor$

Otherwise we use the old sum-of-products representation.

We store f using POLY if

- (i) f is an expanded polynomial, in names, with integer coefficients
- (ii) d > 1 and t > 1 where $d = \deg f$ and t = #terms.
- (iii) we can pack all monomials of f into one 64 bit word i.e., if $d < 2^b$ where $b = \lfloor \frac{64}{n+1} \rfloor$

Otherwise we use the old sum-of-products representation.

• Packing is fixed by n = #variables.

We store *f* using POLY if

- (i) f is an expanded polynomial, in names, with integer coefficients
- (ii) d > 1 and t > 1 where $d = \deg f$ and t = #terms.
- (iii) we can pack all monomials of f into one 64 bit word i.e., if $d < 2^b$ where $b = \lfloor \frac{64}{n+1} \rfloor$

Otherwise we use the old sum-of-products representation.

- Packing is fixed by n = #variables.
- If n = 8, (iii) \implies we use $b = \lfloor 64/9 \rfloor = 7$ bits per exponent field hence POLY restricts d < 128.

We store *f* using POLY if

- (i) f is an expanded polynomial, in names, with integer coefficients
- (ii) d > 1 and t > 1 where $d = \deg f$ and t = #terms.
- (iii) we can pack all monomials of f into one 64 bit word i.e., if $d < 2^b$ where $b = \lfloor \frac{64}{n+1} \rfloor$

Otherwise we use the old sum-of-products representation.

- Packing is fixed by n = #variables.
- If n = 8, (iii) \implies we use $b = \lfloor 64/9 \rfloor = 7$ bits per exponent field hence POLY restricts d < 128.
- The representation is invisible to the Maple user.
 Conversions are automatic.

POLY polynomials are displayed in sorted order.

```
> f := 1+x+y;
                            f := 1 + x + y
> g := 1-y*x+y^3;
                           g := y^3 - xy + 1
> dismantle(g);
POLY(8)
   EXPSEQ(3)
      NAME(4): x
      NAME(4): y
   DEGREES(HW): ^3 ^0 ^3
   INTPOS(2): 1
   DEGREES (HW): ^2 ^1 ^1
   INTNEG(2): -1
   DEGREES (HW): ^0 ^0 ^0
   INTPOS(2): 1
```

We will not get high performance using these

speedup
$$\leq \frac{1}{S + (1 - S)/N}$$
 $N = \#cores$
 $S = \text{overhead}\%$

$$N = \#cores$$

 $S = overhead\%$

Amdahl's law: speedup
$$\leq \frac{1}{S + (1 - S)/N}$$
 $N = \#cores$ $S = \text{overhead}\%$

speedup
$$\leq \frac{1}{S + (1 - S)/N}$$
 $N = \#cores$
 $S = \text{overhead}\%$

Improve simpl! $O(t^{3/4})$ hashalg American flag sort

Future Work

What about these?

$$x^2 + \frac{2}{3}x - \frac{17}{9}$$
 and $y^2 - 2.31y + 1.29$

$$x^4 - t RootOf(_Z^2 - t) x^2 + 3t$$
 and $y''(x) - c y'(x) + 3$

$$1 + x_1^8 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10}$$

+ $x_{11}x_{12} + x_{13}x_{14} + x_{15}x_{16} + x_{17}x_{18} + x_{19}x_{20}$