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@ Memory access is not sequential.
@ Monomial multiplication costs circa 200 cycles.
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Our representation

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000| -5 |

Monomial encoding for graded lex order with x>y >z

Immediate advantages:

Michael Monagan POLY



Our representation

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000| -5 |

Monomial encoding for graded lex order with x>y >z

Immediate advantages:

@ It's about four times more compact.

Michael Monagan POLY



Our representation

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000| -5 |

Monomial encoding for graded lex order with x>y >z

Immediate advantages:
@ It's about four times more compact.

@ Memory access is sequential.

Michael Monagan POLY



Our representation

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000| -5 |

Monomial encoding for graded lex order with x>y >z

Immediate advantages:
@ It's about four times more compact.
@ Memory access is sequential.
@ The simpl table is not filled with PRODs.

Michael Monagan POLY



Our representation

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000| -5 |

Monomial encoding for graded lex order with x>y >z

Immediate advantages:
@ It's about four times more compact.
@ Memory access is sequential.
@ The simpl table is not filled with PRODs.

@ Monomial > and x cost ONE instruction.

Michael Monagan POLY



Our representation

‘SEQ4‘x‘y‘z‘

(POLY 12| ¢ |5131] 9 [5032 -4 |4121] -6 [3300] -8 [0000| -5 |

Monomial encoding for graded lex order with x>y >z

Immediate advantages:
@ It's about four times more compact.
@ Memory access is sequential.
@ The simpl table is not filled with PRODs.
@ Monomial > and x cost ONE instruction.
o

Division cannot cause exponent overflow in graded lex order.
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Talk Outline

@ Sequential polynomial multiplication
o Parallel polynomial multiplication

@ A multiplication and factorization benchmark

Why is parallel speedup poor?
We’'ve made POLY the default in Maple.

New code
New timings
Integration details

Reflections

Future
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Multiplication using a binary heap.

let f=fh+h+ +handg=gi+g+ -+ &m
Compute f xg=f-g+h-g+--+f- g

Johnson, 1974, does a simultaneous n-ary merge using a heap.
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Multiplication using a binary heap.

letf=A+Fh+---+fhandg=g1+g + -+ &m-
Compute f xg=f-g+h-g+--+f- g

Johnson, 1974, does a simultaneous n-ary merge using a heap.

— 1 X (g+ St g+. +8,)

add he | H X (g+ &+ G+ .. +8,)

f1g+. +—— — i X (gt S+ &G+.. +g,)
f]gZ - :

Heap <~ X (g+ O+ G+ .. +8,)

@ |Heap| < n = O(nmlog n) comparisons.
e Implementation uses O(n + k) working space.
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Target Parallel Architecture

Intel Core i7, quad core, shared memory.
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Parallel Multiplication Algorithm

Local Heaps

Global
Heap /
A\ ¥ One thread per core.
Add results

\\ A in global heap.
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Parallel Multiplication Algorithm

Local Heaps
8
Global
Heap /
A\ ¥ One thread per core.
R Add results
‘\\ A in global heap.

Threads write to a finite circular buffer.

r w r mod N %wmodN

Threads try to acquire global heap as buffer fills up to balance load.
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Old multiplication and factorization benchmark.

Intel Core i5 750 2.66 GHz (4 cores) Times in seconds
Maple Maple 16 Magma  Singular Mathem
multiply 13 | 1 core 4 cores 2.16-8 3.1.0 atica 7
p1:=fi(h +1) 1.60 | 0.053 0.029 0.30 0.58 4.79
ps = fi(+1) 26.76 | 0.422 0.167 4.09 6.96 50.36
pa = fa(fa + 1) 95.97 | 1.810 0.632 13.25 30.64 273.01
factor Hensel lifting is mostly polynomial multiplication!!
p1 12341 terms 31.10 2.66 2.54 6.15 12.28 11.82
p3 38711 terms 391.44 | 15.70 13.47 | 117.53 97.10 164.50
ps 135751 terms | 2953.54 | 56.68 44.06 | 332.86 404.86 655.49

Ai=1+x+y+2)20+1 1771 terms
=1+x+y+2z)*¥+1 5456 terms
fa=(l+x+y+z+t)0+1 10626 terms

Why is parallel speedup so poor?



Maple 14 Integration

To expand sums f x g Maple calls ‘expand/bigprod(f,g) ¢ if
#f > 2 and #g > 2 and and #f x #g > 1500.

‘expand/bigprod¢ := proc(a,b) # multiply two large sums
if type(a,polynom(integer)) and type(b,polynom(integer)) then
:= [op(indets(a) union indets(b))];
:= max(op(map2(degree, a, x) + map2(degree, b, x)));
:= iquo(kernelopts(wordsize), ilog2(d)+1 ); # bits per field
sdmp:-Import(a, plex(op(x)), pack=k);
:= sdmp:-Import(b, plex(op(x)), pack=k);
:= sdmp:-Multiply(A,B);
return sdmp:-Export(C);
else

QW= ® o K
i

sdmp:-Export = simpl(C) = shellsort, etc.
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POLY the default representation in Maple.

If all monomials pack into one word use

‘SEQ4‘x‘y‘z‘

[PoLY 12| ¢ [5131] 9 |5032 -4 |4121] -6 [3300] -8 [0000] -5 |

otherwise use the sum-of-products structure.
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POLY the default representation in Maple.

If all monomials pack into one word use

‘SEQ4‘x‘y‘z‘

[PoLY 12| ¢ [5131] 9 |5032 -4 |4121] -6 [3300] -8 [0000] -5 |

otherwise use the sum-of-products structure.

But must reprogram entire kernel for new POLY !

O(n) f; degree(f); has(f,z); indets(f);
O(t) degree(f,x); diff (f,x); expand(x*t);

For f with t terms in n variables and t > n.

We use American flag sort, an in-place radix sort.
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Everything except op and map is fast.

command Maple 16 Maple 17 speedup notes

coeff(f,x,20) 2.140 s 0.005 s 420x terms easy to locate
coeffs(f,x) 0.979 s 0.119 s 8x reorder exponents and radix
frontend(g,[f]) 3.730s 0.000 s — O(n) looks at variables only
degree(f, x) 0.073 s 0.003 s 24x stop early using monomial d
diff(f,x) 0.956 s 0.031s 30x terms remain sorted
eval(f,x = 6) 3.760 s 0.175 s 21x use Horner form recursively
expand(2*x*f) 1.190 s 0.066 s 18x terms remain sorted
indets(f) 0.060 s 0.000 s — O(n) first word in dag

op(f) 0.634 s 1.740 s 0.36x converts to sum-of-products
simpl(f) 0.898 s 0.009 s 100x only one object - already sor
subs(x =y, f) 1.160 s 0.076 s 15x combine exponents, sort, me
taylor(f,x,50)  0.668 s 0.055 s 12x get coefficients in one pass
type(f, polynom) 0.029 s 0.000 s — O(n)  type check variables only

For f with n = 3 variables and t = 10° terms created by
f := expand(mul (randpoly(v,degree=100,dense) ,v=[x,y,z])):
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High performance solutions: coeff

‘SEQ4‘x‘y‘z‘

[PoLY 12| & [5131] 9 |5032 -4 [4121] -6 [3300] -8 [0000] -5 |

To compute coeff (f,y,3) we need to

(d1i131%]) L [o[d—3]iTx] 2

We can do step 1 in O(1) bit operations.
Can we do step 2 faster than O(n) bit operations?
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High performance solutions.

/* pre-compute masks for compress_fast */
static void compress_init(M_INT mask, M_INT *v)

/* compress monomial m using precomputed masks v */
/* in 0( log_2 WORDSIZE ) bit operations */
static M_INT compress_fast(M_INT m, M_INT *v)

{ M_INT t;
if (v[0]) t =m & v[0], m=m "~ t | (t > 1);
if (W[]D) t=m& v[ll, m=m "~ t | (t > 2);
if (w2]) t=m&v[2l, m=m "~ t | (t > 4);
if (v[3]) t =m & v[3], m=m "~ t | (t > 8);
if (v[4]) t=m& v[4l, m=m "t | (t > 16);
#if WORDSIZE > 32
if (v[5]) t =m & v[5], m=m "~ t | (£t > 32);
#endif
return m;
}

o Costs 24 bit operations per monomial.
o Intel Haswell (2013): 1 cycle (PEXT/PDEP)
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New multiplication and factorization benchmark.

Intel Core i5 750 2.66 GHz (4 cores) Times in seconds
Maple 16 Maple 17 Magma  Singular
multiply 1 core 4 cores | 1 core 4 cores 2.16-8 3.1.4
p1:= fi(h +1) 0.053 0.029 | 0.042 0.017 0.30 0.57
ps = (s + 1) 0.422 0.167 | 0.398 0.137 4.09 6.77
ps = f3(fa + 1) 1.810 0.632 | 1.730 0.508 13.25 30.99
factor Singular’s factorization improved!
p1 12341 terms 2.66 2.54 1.06 0.93 6.15 2.01

p3 38711 terms 15.70 13.47 8.22 6.13 117.53 12.48
pa 135751 terms | 56.68 44.06 | 26.43 16.17 | 332.86 61.85

i=l+x+y+22+1 1771 terms
B=1+x+y+2z)3¥+1 5456 terms
fa=(l+x+y+z+t)20+1 10626 terms
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Profile for factor(pl); for 1 core.

Maple 16 New Maple Faster coeftayl
function time time% time time% time time%
coeftayl 1.086s 41.06 | 0.310s 28.21 | 0.095s 12.03
expand 0.506s 19.13 | 0.263s 23.93 | 0.255s 32.28
diophant 0.424s 16.03 | 0.403s 34.94 | 0.299s 37.85
divide 0.256s 9.68 | 0.034s 3.09 | 0.035s 4.43
factor 0.201s 7.60 | 0.011s 1.00 | 0.010s 1.27
factor/hensel 0.127s 4.80 | 0.064s 5.82 | 0.063s 7.97
factor/unifactor | 0.045s 1.70 | 0.033s 3.00 | 0.033s 4.18
total: 2.645s 100.00% | 1.099s 100.00% | 0.790s 100.00%

coeftayl(f,x=a,k); computes the coefficient of (x — a)¥ in f
using eval (diff (f,x$k) ,x=a)/k! which is 3.5x faster.

But add(coeff (f,x,1i) al binomial(i,k), i=1..degree(f,x)) is
3x faster again!
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Latest timings for factorization benchmark.

Intel Core i5 750 2.66 GHz (4 cores) Times in seconds
Maple 16 Maple 17 Singular
factor 1core 4 cores | 1 core (best) 4 cores (best 3.14

)
p1 12341 terms 2.66 254 | 1.06 (0.75) 0.94 (0.62) 2.01
p3 38711 terms 15.70 13.47 8.22 (6.46) 6.13 (4.32) 12.48
ps 135751 terms | 56.68 44.06 | 26.43 (23.20) 16.17 (12.94) 61.85
With improvements to coeftayl and factor/diophant.

Reflecting on the gain?

1 core: 56.68 — 23.20 = 33.48 and 3338 = 2.44x

4 cores: 44.06 — 12.94 = 31.12 and 5.3 = 3.40x.
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Notes on the new integration for Maple 17.

We store f using POLY if
(i) fis an expanded polynomial, in names, with integer coefficients
(i) d >1and t > 1 where d =degf and t = #terms.

(iii) we can pack all monomials of f into one 64 bit word

e, if d <2° where b= [ ;%

Otherwise we use the old sum-of-products representation.
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Notes on the new integration for Maple 17.

We store f using POLY if
(i) fis an expanded polynomial, in names, with integer coefficients
(i) d >1and t > 1 where d =degf and t = #terms.

(iii) we can pack all monomials of f into one 64 bit word

e, if d <2° where b= [ ;%

Otherwise we use the old sum-of-products representation.

@ Packing is fixed by n = #variables.

@ If n=38, (iii) = we use b= |64/9] =7 bits per exponent field
hence POLY restricts d < 128.

@ The representation is invisible to the Maple user.
Conversions are automatic.
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POLY polynomials are displayed in sorted order.

> f = 1l+x+y;
fi=14+x+y

> g = 1-yxx+y~3;

g=y' —xy+1

> dismantle(g) ;
POLY(8)
EXPSEQ(3)
NAME(4): x
NAME(4): y
DEGREES(HW): ~“3 "0 "3
INTPOS(2): 1
DEGREES(HW): "2 "1 "1
INTNEG(2): -1
DEGREES(HW): ~“0 "0 "0
INTPOS(2): 1
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Reflections

We will not get high performance using these

[PROD7] x [ 1 [y [3]z]1]

[proDs[ y [3 ] 2] 2]

[PROD7] x [ 1 [ y[2]z]1]
A
PROD3| x | 3 |
A
[sumit[ ¢ [o] s 4l [-6[¢[8]5]1]
[PoLvef——sl ol el ol ]|
9 AT
x| 1 T e A R
I 3] [z ol [
2[4 2] ) Lo [
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Reflections

' . 1 N =
Amdahl’s law: duwp < — = #cores
a harsh mistriss Speedib = g7y (1-S)/N S = overhead%
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Reflections

' . 1 N = #cores
Amdahl’s law: speedup < ———
a harsh mistriss P P=797 (1-S)/N S = overhead%

overhead 5% — 5% — 1%
speedup (N=4) | 1.6x — 35x — 3.9
speedup (N=16) | 1.9x — 9.1x — 13.9x
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Reflections

' . 1 N = #cores
Amdahl’s law: speedup < ———
a harsh mistriss P P=797 (1-S)/N S = overhead%

overhead 5% — 5% — 1%
speedup (N=4) | 1.6x — 35x — 3.9
speedup (N=16) | 1.9x — 9.1x — 13.9x

POLY 5 d = total degree
. Xyz
Improve Slmp” packing dxyz dxyz dxyz dxyz dxyz
O(t3/4) hashalg o——[5131] » 5032 ¢ [4121] « [3300] -8 [0000] 5 |

American flag sort Y

[GMPdata A |GMPdata B |GMPdata C |
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What about these?

2 17
x? + §X— 9 and y?>—231y+1.29

x* — t RootOf ((Z* — t)x* +3t and y"(x) —cy'(x)+3

1+xf+x2—{—x3—|—x4—|—x5—|—X6—|—x7—|—x8+x9+x10

+ X11X12 + X13X14 + X15X16 + X17X18 + X19X20
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