
About Random Bits

Martin Geisler 〈mg@daimi.au.dk〉

Mikkel Krøigård 〈mk@daimi.au.dk〉

Andreas Danielsen 〈beldin@daimi.au.dk〉

December 3, 2004

Contents

1 Random Bit Generators 2

1.1 Pseudo-Random Bit Generators . 2

2 Physical Sources for Random Bits 3

2.1 Exploiting Air Turbulence in Hard Disk Drives 3

2.2 Generating Unbiased Random Bits 4

3 Generating Random Seeds 5

3.1 Obtaining Random Timings . 6
3.2 Locating Good Offsets . 6

3.3 Estimating the Bias . 7

3.4 Harvesting the Entropy . 8

4 Boosting Randomness 8

4.1 The Blum Blum Shub Algorithm 8
4.2 Improvements . 12

5 Statistical Tests 12

5.1 The Diehard Test-Suite . 13

6 Conclusion 14

A An Introduction to Hard Disk Drives 15

B Auxiliary Definitions 15

1

Introduction

Random numbers (and therefore also random bits) are becoming increas-
ingly important in a number of settings as strong cryptography finds use

in more and more applications.
If an application wants to do strong cryptography, then it does not mat-

ter how good the cryptographic algorithms are if the seeds used to initialize

them can be effectively predicted. Over the years there have been several
examples of software implementations where the seeds used were weak. A

prime example is the Netscape browser, which in an early version used the

system clock to derive a seed for use with SSL connections [3]. When such
a connection was made, an adversary would have a good estimate of the

system time, and would therefore end up with a small set of candidates for
the seed.

We will start by looking at pseudo-random bit generators in general.

Section 2 describes how to use physical processes to obtain random bits,
and how they can be turned into secure random bits. We present our imple-

mentation of a practical way of obtaining secure random bits in Section 3.

Although practical, the generation will still be too slow for most uses, so
Section 4 presents the Blum Blum Shub (BBS) algorithm for generating many

random bits from only a small random input. We will also give a proof of
security for BBS, which is based on an assumption about the hardness of

a certain number-theoretic problem. Finally, in Section 5 we will test our

generators using a statistic test-suite.

1 Random Bit Generators

In this section we will define several kinds of bit generators and explain

what it means for such a generator to be cryptographically strong. Random
number generators are easily constructed using random bit generators, so

it is enough to look at bit generators. First we need to be able to measure

the “randomness” of a bit.

Definition 1. Let b be a bit which takes the value 0 with probability p, and
1 with probability 1−p. The bias ε is then ε = p− 1

2
. We say that a bit with

a bias ε = 0 is unbiased.

We are now ready to state the properties we expect from a good random

bit generator.

Definition 2. A true random bit generator is something that produces in-
dependent and unbiased bits.

1.1 Pseudo-Random Bit Generators

In Section 3 we will give an example of a true random bit generator. Un-
fortunately, true random bit generators are generally slow and may consist

of special hardware. Therefore we need generators that produce bits faster

and do it in software.

2

Definition 3. A pseudo-random bit generator (PRBG) is a deterministic al-

gorithm that given some initial value, called the seed, produces a number

of random bits.

Since they are deterministic, PRBGs always produce the same bits for
each seed. For this reason, it is obvious that a PRBG cannot be secure if the

seed is predictable in any way. The idea is to use a true random bit gen-
erator to make the seed, which a PRBG will use to generate a much larger

number of bits — this is what we call boosting randomness. In cryptography,

we will need certain high-quality PRBGs so that it is computationally infea-
sible to predict the generated numbers. There are two definitions of what

it means for a PRBG to be cryptographically strong: passing all polynomial-

time statistic tests and passing the next-bit test. According to Yao [18] these
definitions are equivalent, so we will be using the next-bit test. Moreover,

it does not matter from the point of view of the statistical tests if the se-
quence is reversed. So predicting the next or previous bit are equally hard

problems.

The set-up for the next-bit test is the following: We have an adversary
A and an oracle O. The oracle knows a bit sequence s, and A is allowed to

ask the oracle about the next bit any number of times, as long as there is

at least one unseen bit left. After seeing the first l bits, A must guess the
l+1’st bit. A wins if this guess is correct. We define the advantage of A to

be advA = |1/2− pA|, where pA is the probability that A succeeds.

Definition 4. A PRBG is said to be cryptographically strong if it passes the
next-bit test. That means that for any polynomial-time adversary A, advA
is negligible. The time and advantage are functions of a security parameter.

So if a PRBG is cryptographically strong, an adversary A might as well

flip a coin to predict the next bit. The security parameter mentioned above
could be a bit length, for example the security parameter we have in BBS is

the bit length of a number n = pq where p and q are (Blum) primes, see
Definition 10 on page 9.

2 Physical Sources for Random Bits

The best way to obtain truly random bits would be to observe a physi-

cal phenomenon which is believed to exhibit random behavior. The basic
postulates of Quantum Mechanics tells us that one cannot reliably predict

the outcome of certain physical experiments: a well-known example is the

question of when a radioactive atom will decay.
Unfortunately one does not find radioactive sources and Geiger counters

as a standard peripheral on modern PCs, so this way of obtaining random

bits is not practical. That is not to say that it has not been done, see HotBits
by Walker [13]. Other examples of exotic sources of randomness includes

random.org by Haahr [4] and the LavaRnd project by Noll et al. [11].

2.1 Exploiting Air Turbulence in Hard Disk Drives

Another physical phenomenon which is believed to be unpredictable is air

turbulence. With our current understanding of the underlying dynamics, we

3

cannot predict the behavior of turbulent air to any high degree. Likewise,

objects moving in air will both cause and be influenced by the turbulence,

and so they are believed to be a good source of unpredictable behavior [2].
Fortunately we have such objects on all modern PCs: the hard disk drive,

see Appendix A for a description of the operation of a hard disk drive. Stud-
ies made by Davis et al. [2] on big models of disk drives submerged in water

have shown that there is a strong turbulence present when a drive operates.

This turbulence is expected to disturb the time it takes to repeatedly read
the same block from the disk, and the access times can therefore be used

as a source of random bits.

Jakobsson et al. [7] describes how they successfully implemented a pro-
gram to extract random bits from timed readings on a hard disk drive. We

have made a program which follows their basic ideas, but which deviates in
a number of ways.1 This is the topic of Section 3. Here we will now describe

how the readings from any source can be transformed into unbiased bits.

2.2 Generating Unbiased Random Bits

If one were to take the raw readings and convert them into bits directly,
then one would most likely not end up with a true random bit generator as

defined by Definition 2. The problem is that we have no reason to believe
that the bits are uncorrelated and unbiased.

Theorem 6 gives us a way to transform any sequence of biased bits into

a single bit with an arbitrary small bias. To prove this we need the following
lemma.

Lemma 5. Given a sequence of independent bits b1, . . . , bn with correspond-

ing biases ε1, . . . , εn, then the bit b defined by

b =

n
⊕

i=1

bi

has bias

ε = 2n−1
n
∏

i=1

εi.

Proof. We prove the claim by induction in n, the number of bits. With only
a single bit the result clearly holds. Now assume it holds for n bits so

b =

n
⊕

i=1

bi has bias ε = 2n−1
n
∏

i=1

εi.

We will show the result for n+ 1 bits. We start by writing

n+1
⊕

i=1

bi = b ⊕ bn+1.

1It has come to our attention that our work might be illegal(!) — see United States Patent
No. 6,317,499 [5]. But since Davis et al. [2] state that the idea of extracting random bits from
storage devices is more than 50 years old (citing Lewis [9], itself an old book from 1975), we
cannot really take the patent seriously.

4

By the induction hypothesis the bias of b is ε, so the probability of b

being 0 is ε + 1
2 . Similarly bn+1 is 0 with probability εn+1 +

1
2 . So we have

Pr[b ⊕ bn+1 = 0] = Pr[b = 0∧ bn+1 = 0]+ Pr[b = 1∧ bn+1 = 1]

= (ε +
1
2)(εn+1 +

1
2)+ (

1
2 − ε)(

1
2 − εn+1)

=
1

2
+ 2εεn+1 =

1

2
+ 2n

n+1
∏

i=1

εi.

Thus the bias of n + 1 bits b1, . . . , bn+1 is 2n
∏n+1
i=1 εi, which was what we

wanted to prove.

Theorem 6. Given ε > 0 and a sequence b1, . . . of bits with biases ε1, . . .

there exists an n such that

b =

n
⊕

i=1

bi

has bias less than ε.

Proof. This follows from Lemma 5 by writing

ε = 2n−1
n
∏

i=1

εi =
1

2

n
∏

i=1

(2εi).

Since εi <
1
2 for all i we have that ε −→ 0 for n −→ ∞.

3 Generating Random Seeds

In this section we will describe our program which uses timings from a hard

disk drive to derive what we assume to be true random bits. The program
works as follows:

1. Temporary files are created, one which will be used for the timings
(called the work file), and one which will be used to flood the disk

cache on the drive (the disk file).

2. A sequence of good offsets into the work file is determined. Subsec-

tion 3.2 describes what good offsets are, and how they are found.

3. A number of timing runs are made through the sequence of offsets.

4. The timing results are reduced to single bits, and an estimate of the
bias is calculated.

5. Using Theorem 6 we then calculate the number of reduced timings
that need to be combined (using exclusive-or) to produce a single tim-

ing with a known small bound on the bias.

6. The program is now ready to produce bits: we repeatedly run through

the offsets, combine the timings to lower the bias, output a bit (or

byte) and repeat.

5

3.1 Obtaining Random Timings

As described in Section 2, we expect air turbulence inside the disk drive to
disturb the time it takes to read a given block from the disk. This distur-

bance is rather small, but still measurable — we just have to make sure that

our read requests really result in a physical read on the disk.
The key is to defeat the buffering in the OS and the disk cache. Since

hard disk access is slow compared to main memory access, the OS and
the hard disk try to buffer data as much as possible. This involves storing

recently read data, and reading ahead in an attempt to predict future read

requests.
The buffering on the OS level can easily be turned off (on a Linux system)

by opening a file with a O_DIRECT flag set. This can be done without needing

any special privileges.
Bypassing the hard disk cache is a more difficult problem. Modern hard

disks typically have a cache 8 MiB, but it is not sufficient to simply read
8 MiB of random data to fill up the cache. This is a result of cache segments

which make the cache acts as if it consisted of several independent caches.

So with four segments, the cache would be able to intelligently cache the
data read by four programs at four different places on the disk.

So if our program simply reads 8 MiB of data we would most likely just

fill one segment. The answer is to read from four different places in the
disk file, and so convince the disk that it should cache the data in different

segments. The result is that the entire cache is filled with our garbage bytes,
and so our next read request to the work file will result in a physical read.

3.2 Locating Good Offsets

The aim of the program is to output highly random bits as fast as possible,
so we want the program to take advantage of as much available entropy

in our source as possible. This is done by selecting offsets in the file that

corresponds to large access times.
As described in more detail in Appendix A, the time taken to access a

particular block on a hard disk is the sum of several factors, including seek

time and rotational latency. We are interested in access times with as large
a rotational latency as possible, for it is this factor that will render our

measurements unpredictable. The other factors, such as interrupts, could

(in principle) be predicted by an adversary, but we believe that the turbulent
air inside the disk is unpredictable.

Finding such offsets with a large rotational latency boils down to find-
ing offsets with a large access time — after all, that is the only thing we can

measure from the program. Fortunately it turns out that one can measure

the rotational latency quite easily by simply timing blocks further and fur-
ther into file, for this means that we time further and further along a track.

The program measures the time it takes to read blocks at offsets a and b,

for a fixed a and increasingly large b.
The access times increases (almost) linearly up to a maximum, followed

by a sudden drop, see Figure 1 on the next page. The drop occurs when we
have read all the way around a track on the disk, something which can be

seen from the fact that the access time (for a 7200 RPM disk) drop with just

6

0 ms

1 ms

2 ms

3 ms

4 ms

5 ms

6 ms

7 ms

8 ms

9 ms

10 ms

0 KiB 256 KiB 512 KiB 768 KiB 1024 KiB

Figure 1: Access times versus file offset. From offset 528 KiB to 536 KiB
there was a drop of 8.2 ms, which tells us that this was made on a 7200 RPM

disk.

around 8.3 ms, which is the time it takes for such a disk to make one revo-
lution. As seen in Figure 1 the increase is not completely linear, where the

small jumps observed are probably due to fragmentation in the hard disk

drive, see Appendix A. These jumps can result in a pair of addresses that
does not require a full rotation, and therefore does not give the maximal

entropy. The jumps are rather small and we believe that, even in a worst
case scenario, the loss in entropy does not corrupt our final result.

3.3 Estimating the Bias

Given a good set of offsets we need to estimate the bias of the timings. First
each timing is turned into a reduced timing by taking the exclusive-or of all

the bits in the timing. The single resulting bit will be 0 or 1, and these bits

will be independent since they corresponds to independent timings on the
disk. The hope is that the fluctuations in the timings will give us a fairly

unbiased source of bits in this way.

Our program estimates the bias by counting the number of zero bits,
this directly gives us p, the probability of getting a 0. From p we find the

bias ε as ε = |p − 1/2|, thereby treating a negative bias as a positive. This
works because of the symmetry present in all the calculations: if p < 1

2
,

then our bias corresponds to having p be the probability of getting a 1

instead of a 0.
Assuming that all the readings from the disk have the same bias, we can

use Theorem 6 to drive the bias down under any user-specifiable bound.

Letting ε̂ε denote the bias just calculated and solving for n, the number of

7

bits to combine, we obtain the expression

n =
log2 ε − 1

1+ log2 ε̂ε
,

where ε is the desired bound on the bias. With a default setting of 2−20

for the maximum allowed bias, our program normally needs to combine

between 4 and 8 reduced timings to ensure the low bias.

Notice that this calculation ensures a high entropy in the output, since
a low bias gives a probability close to 1

2
, which in turn gives a high entropy.

3.4 Harvesting the Entropy

With a knowledge of the available entropy, our program is now finally ready
to do what it was created for: outputting highly random bits.

This step is fairly simple, consisting only of a never-ending loop in which
the program runs through the sequence of offsets determined earlier. The

timings are reduced, and the reduced timings are combined into single bits.

The bits are then combined into bytes which are outputted on the standard
output stream.

4 Boosting Randomness

Given a small number of random bits, it is possible to generate a much
larger sequence of bits that are computationally infeasible to predict. In

fact, it has been proved that if one-way functions exist, it is possible to con-

struct a cryptographically strong PRBG (CPRBG) [6]. Several CPRBGs have
been constructed based on one-way functions such as RSA, and some are

based on the hardness of the discrete log problem. The generator we have

chosen is based on modular squarings of a number, and prediction of bits
can be reduced to deciding quadratic residuosity, which we will discuss be-

low. This generator is quite effective compared with other generators such
as the RSA generator, since modular squarings are much faster to perform

than larger exponentiations of numbers.

4.1 The Blum Blum Shub Algorithm

The Blum Blum Shub algorithm boosts randomness by using modular squar-
ings and extracting a certain number of the lower-order bits per squaring

modulo a number n. The algorithm we study only extracts the lowest or-
der bit, the parity of the number. In the following, we shall describe the

algorithm in detail, the theory on which it relies and prove that it is cryp-

tographically strong based on a certain number theoretic assumption. The
algorithm is taken from the original paper by Blum et al. [1] and many of the

number theoretical results are taken from the notes on quadratic residues

in the paper by Junod [8].
To understand the Blum Blum Shub algorithm and its proof of security,

we need some basic theory about quadratic residues.

8

Generate random Blum primes p,q such that p ≠ q
n := pq

Generate random number s ∈ Z
∗
n

x := s2 mod n

for i = 0, . . . do

x := x2 mod n
bi := x mod 2

Output bit bi
end for

Figure 2: The Blum Blum Shub Algorithm

Definition 7. An integer x ∈ Z
∗
n is called a quadratic residue modulo n if

there exists some y such that y2 mod n = x. Otherwise, x is a quadratic

non-residue modulo n. We denote the set of quadratic residues modulo n

by QRn, and the set of quadratic non-residues modulo n by QNRn.

The following result tells us how Z
∗
n can be divided into certain impor-

tant subsets.

Theorem 8. Let n = pq be the product of two distinct odd primes and let

Z
∗
n(+1) denote the numbers in Z

∗
n with Jacobi symbol 1 and Z

∗
n(−1) the

numbers with Jacobi symbol −1. Then half of the elements of Z
∗
n are in

Z
∗
n(+1) and the other half in Z

∗
n(−1). Half the elements of Z

∗
n(+1) and none

of the elements of Z
∗
n(−1) are quadratic residues, so QRn ⊂ Z

∗
n(+1).

Now for x chosen uniformly from Z
∗
n(+1), the probability that x ∈QRn

is
1
2 . The quadratic residuosity problem is the problem of deciding whether

such an x is a quadratic residue. Solving this problem is assumed to be

hard in the following sense.

Assumption 9. Any polynomial-time (probabilistic) algorithm P for deciding

the quadratic residuosity of x ∈ Z
∗
n(+1), where n = pq is the product of two

distinct odd primes, will have probability of success at most
1
2
+ ε, where ε is

negligible in the bit-length of n.

This assumption is often called the Quadratic Residuosity Assumption,

and we will refer to it by QRA. From now on we will be working with a
certain kind of prime called a Blum prime.

Definition 10. A prime p is called a Blum prime if

p ≡ 3 (mod 4).

We are now ready to look at the BBS algorithm. The pseudo-code for
the algorithm is shown in Figure 2. Notice that when s is squared in the

algorithm, we will get a quadratic residue modulo n. To prove that BBS is
secure, we will look at another problem, which is based on a result which

we will not prove here.

Theorem 11. Let n = pq be the product of two distinct Blum primes. Then

every quadratic residue x modulo n has four distinct square-roots. Exactly

one of them is also a quadratic residue and we let
√

x denote this unique

root.

9

Z
∗
n(−1) Z

∗
n(+1)

QRn

x

√

x

−
√

x

y

−y

Figure 3: A symbolic map of Z
∗
n.

Figure 3 illustrates the four roots of x and their relative location in Z
∗
n.

The theorem raises a new question: given x ∈ QRn, what is the parity of the

unique root
√

x ? Using this problem, we can now show the basic reduction

that proves the security of BBS.
Let us assume that we have an algorithmA which, given a BBS sequence

b0, . . . , bi, outputs b−1 with a certain probability. In other words it predicts

sequences to the left. Given a quadratic residue x, we can generate the se-
quence b0, . . . , bi as in the algorithm and feed this sequence to A. Then A

will find b−1 = parity(
√

x) with the same success probability as before. Let
us call this new algorithm A′. But now Theorem 17, which we will prove

shortly, tells us that we can build an algorithm B deciding quadratic resid-
uosity with the same probability of success, and B runs in polynomial time

if A′ does.

What this means is that if a polynomial-time algorithm A could predict
sequences to the left with probability 1

2
+δ, where δ is non-negligible, there

is an algorithm B deciding quadratic residuosity with probability
1
2 + δ,

which contradicts the QRA. This proves that BBS is a cryptographically

strong PRBG.
We need to prove the reduction from the problem of deciding the par-

ity of
√

x to the problem of deciding quadratic residuosity. To do this we
need a little more number theory. The following lemma is based on the

isomorphism provided by the Chinese Remainder Theorem.

Lemma 12. Let n = pq be the product of two distinct odd primes, then

x ∈ QRn ⇐⇒ x mod p ∈ QRp ∧ x mod q ∈ QRq.

Lemma 13. Given an odd prime p, then

p ≡ 3 (mod 4) ⇐⇒ −1 ∈QNRp.

Lemma 14. Let n = pq be the product of two distinct Blum primes. Then x

and −x have the same Jacobi symbol.

Proof. This follows directly since
(

−x

n

)

=

(

−1

n

)(

x

n

)

=

(

−1

p

)(

−1

q

)(

x

n

)

= (−1)2
(

x

n

)

=

(

x

n

)

.

10

Here we used Lemma 13.

We now prove that the four roots of x in the symbolic map given in

Figure 3 on the preceding page are placed correctly.

Lemma 15. The function x 7−→ x2 is a 2–1 function on Z
∗
n(+1) when n = pq

is the product of two Blum primes.

Proof. We know that one of the four roots (the one denoted by
√

x) lies in

Z
∗
n(+1). Then −

√

x ∈ Z
∗
n(+1) as well by Lemma 14. Now assume that a

third root y ∈ Z
∗
n(+1). Then

1 =

(

y

n

)

=

(

y

p

)(

y

q

)

,

and we conclude that the two Legendre symbols are equal. But since y is

not a quadratic residue, Lemma 12 implies that both symbols are −1. And
so −y is a quadratic residue, since

(

−y

p

)

=

(

−1

p

)(

y

p

)

= (−1)2 = 1,

and likewise for (−y/q). But this contradicts the fact that
√

x is the unique

root in QRn.
So for any x exactly two of its four roots lie in Z

∗
n(+1), and this proves

that the function x 7−→ x2 is 2–1 on Z
∗
n(+1).

The following lemma more or less directly gives us the reduction we

need.

Lemma 16. Let n = pq where p and q are Blum primes. We have for all

x ∈ Z
∗
n(+1) that

x ∈ QRn ⇐⇒ parity(x) = parity
(

√

x2
)

.

Proof. The first case when x ∈ QRn is trivial, since Theorem 11 directly

tells us that
√

x2 = x.
For the other case take x ∉ QRn. Since (x/n) = 1 it follows, as in the

proof of Lemma 15, that −x is a quadratic residue. So −x =
√

x2 , and x

and −x have different parities since n is odd.

We now prove the main theorem, which basically states that finding the

parity of
√

x is just as hard as deciding quadratic residuosity.

Theorem 17. Given an algorithm A that finds the parity of
√

x , we can

construct another algorithm B that decides the quadratic residuosity of x.

The two algorithms have the same probability of success.

Proof. Given A we can define B as follows:

B(n,x) =A(n,x2 mod n)⊕ parity(x)⊕ 1.

11

Note that the two algorithms output either 1 or 0, where 1 means “yes”

and 0 means “no”. We want to show that the probability of success for B is

equal to the one for A, that is

Pr[A(n,x) = 1 | G −→ n,x ∈R QRn, rA ∈ {0,1}
tA]

= Pr[B(n,x) = 1 | G −→ n,x ∈R Z
∗
n(+1), rB ∈ {0,1}

tB].

The first probability is the success probability of A. We condition on

all the variables that take part in the evaluation of A(n,x), that is the
generation of n, the uniform selection of x ∈ QRn, and the random choices

rA that A might need. Similarly for the second probability which is the

success probability of B.
First we notice that tA = tB , that is the two algorithms use the same

number of random choices, since B does not contribute with any extra
random choices.

Since the input x for B is chosen uniformly in Z
∗
n(+1), the input x2 to

A will also be uniformly distributed in QRn. This is because the function
x 7−→ x2 is a 2–1 function on Z

∗
n(+1) by Lemma 15.

Lemma 16 says that parity(
√

x2) = parity(x) if and only if x ∈ QRn
and so B guesses correctly exactly when A does.

This concludes the proof that BBS is secure. The next section tells us
that we can actually do a little better.

4.2 Improvements

It has been proved that predicting BBS sequences to the left is not only as
hard as deciding quadratic residuosity, but also as hard as factoring n [12].

But an even stronger result has also been proved — it is possible to extract

as much as log logn lower-order bits for each squaring. This is exactly what
our implementation of BBS does.

5 Statistical Tests

It is impossible to give a mathematical proof that a generator is a truly
random bit generator, but it is possible, however, to measure the quality

of a random bit generator. This can be done in many ways, for example

it is obvious that any good random generator should generate approxi-
mately the same amount of zeros and ones. If we were only to test that

our sequences consist of equally many ones and zeros, then sequences of

the form 0101 . . . would be “random”, while being highly structured. One
could then expand the test by considering so-called runs of bits, i.e., subse-

quences containing the same bit-value. A run of zeros is called a gap and a

run of ones is called a block. We expect a large number of small runs and
a small number of larger runs, and we also expect the number of blocks to

be approximately equal to the number of gaps. Again one could think of
many sequences that obey these rules, but still are not random.

12

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4: Results using ten 12 MiB files generated using our program to
seed.

5.1 The Diehard Test-Suite

To test our random bit generators we have used the so-called “diehard”

test-suite[10] which consists of 15 tests. Most of the tests give as result

some p-values which, for a random sequence, should be uniformly dis-
tributed over [0,1).

We have tested 4 sequences with diehard: two sequences produced by
our BBS random bit generator seeded using Java’s built-in random bit gen-

erator, and two sequences where our physical random generator produced

the seed. The seed given to BBS in both cases is two Blum primes each of
length 512 bits, and a random number s of length 1024 bits. The diehard

battery of tests only works on files at least of size 11 MiB. Since our true

random bit generator only produces 2 bytes per second, it has not been
possible to test a random sequence generated only by our true random

generator.

We have made a frequency analysis of the obtained p-values, and the
results can be seen in Figures 4– 5 on the next page. Each test run gives

about 230 values for p, and we made ten tests for each of the two genera-
tors. So each line in the plots corresponds to the frequencies found for one

test run, and there are ten lines in each plot.

We then grouped the results into buckets of size 0.1 — the idea is that
if the p-values are uniform, then each bucket should receive an an approx-

imately equal number of values. That would in turn give flat curves in the

plot.
We find it hard to conclude anything based on these figures, other than

the fact that both generators produce p-values which appear to be spread

13

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: Results using ten 12 MiB files generated using our Java to seed.

uniformly in the interval [0,1]. So according to the Diehard test-suite one

cannot tell the difference between using the built-in random generator, and
our random generator. Of course, if one knows the seed used for the built-

in Java random bit generator, then one could predict the seed given by it to

the BBS algorithm, whereas there are no seeds involved in the generation
of bits from our generator.

6 Conclusion

We have given basic definitions and results regarding random bit gene-
rators. An example of a random bit generator which used air turbulence

in hard disk drives was presented and implemented. We believe it can be

thought of as a true random bit generator, since it is unknown how to pre-
dict the effects of air turbulence.

We also gave an example of a cryptographically strong random bit gen-

erator (the BBS or x2 mod N generator) which takes true random bits as a
seed and boosts them into many more random bits, and we gave a a proof

of the security of this generator.
We then implemented and combined the two generators and tested

them using the diehard test-suite. In the implementation of the true ran-

dom bit generator, it is assumed that it is run in an environment without
special hardware or privileges.

The results of the Diehard test-suite indicate that our generator is at

least as strong as the built-in Java random bit generator, and so it seems to
be sound.

14

A An Introduction to Hard Disk Drives

The following is a summary of the information in [14–17].
A hard disk drive contains a number of rotating platters (typically be-

tween 1 and 3). In-between the platters one finds the read-write heads. Dur-
ing the operations of the drive the heads will move back and forth between

the outer edge and the center of the platters (called seeking) and this move-

ment will cause turbulence in the air inside the disk. The time used to move
the head from one track to another is called the seek time, the additional

time needed until the wanted data is situated under the head is called the

rotational delay.
There exists some factors, interrupts and bus arbitration, that affect the

time spent from when a user issues a request to the hard drive, until it
is performed by the hard drive. The computer bus transfers data and ad-

dresses back and forth between the devices to the CPU and main memory.

If several programs are running, some of them might try to access the bus
at the same time, and then some will experience a delay from when the

request is issued until it is actually performed. Interrupts are used by the

operating system in multitasking. Since a desktop, with one processor, can
only perform one instruction at a time, interrupts are used to stop one pro-

gram and (re)start another. Since the modern CPUs are so fast, it looks like,
to any user, that several programs are now running concurrently.

Fragmentation of the hard disk drive is something that happens when

different sized files are created and deleted. When a file is removed it leaves
a gap somewhere in the hard disk, and at some point the computer needs

to use this space again for a new file. If the new file is larger than the

gaps created earlier, the operating system splits the file up into smaller
fragments, and writes it to different locations on the disk drive.

B Auxiliary Definitions

In this section we define the Jacobi symbol for the readers who are unfa-

miliar with it.

Definition 18. Let p be an odd prime. For a ∈ Z
∗
p the Legendre symbol is

defined by:

(

a

p

)

=















0, p | a

1, a ∈QRp

−1, a ∈QNRp.

Definition 19. Let n be odd integer with factorization

n =
∏

i

p
ei
i .

For a ∈ Z
∗
p we define the Jacobi symbol to be

(

a

n

)

=
∏

i

(

a

pi

)ei

,

where (a/pi) is the Legendre symbol.

15

References

[1] Lenore Blum, Manual Blum, and Michael Shub. A Simple Unpredict-
able Pseudo-Random Number Generator. SIAM Journal on Computing,

15(2):364–383, May 1986.

[2] Don Davis, Ross Ihaka, and Philip Fenstermacher. Cryptographic Ran-
domness from Air Turbulence in Disk Drives. In Proceedings of the

14th Annual International Cryptology Conference on Advances in Cryp-

tology, pages 114–120. Springer-Verlag, 1994. ISBN 3-540-58333-5.

[3] Ian Goldberg and David Wagner. Randomness and the Netscape
Browser. How secure is the World Wide Web? Dr. Dobb’s Jour-

nal, January 1996. Online: http://www.ddj.com/documents/s=965/

ddj9601h/.

[4] Mads Haahr. random.org — True Random Number Service. October
1998. Online: http://random.org/.

[5] Bruce Kenneth Hillyer, Bjorn Markus Jakobsson, and Elizabeth

Shriver. Storage device random bit generator. United States Patent

No. 6,317,499, August 1998.

[6] J. Håstad, R. Impagliazzo, L. Levin, and M. Luby. A Pseudo-Random
Generator from any One-Way Function. SIAM Journal of Computing,

28(4):1364–1396, 1999.

[7] Markus Jakobsson, Elizabeth Shriver, Bruce K. Hillyer, and Ari Juels. A

Practical Secure Physical Random Bit Generator. In M. Reiter, editor,
Proceedings of the 5th ACM Conference on Computer and Communica-

tions Security, pages 103–111. ACM Press, 1998. ISBN 1-58113-007-4.

[8] Pascal Junod. Cryptographic Secure Pseudo-Random Bits Genera-

tion: The Blum-Blum-Shub Generator. August 1999. Online: http:
//crypto.junod.info/bbs.pdf.

[9] T. G. Lewis. Distribution Sampling for Computer Simulation. Lexington

Books, Lexington, Massachusetts, 1975. ISBN 0-669-97139-1.

[10] George Marsaglia. Diehard. A Battery of Tests for Random Number
Generators. January 1997. Online: http://stat.fsu.edu/~geo/

diehard.html.

[11] Landon Curt Noll, Simon Cooper, and Mel Pleasant. LavaRnd. 2000.

Online: http://lavarnd.org/.

[12] Umesh V. Vazirani and Vijay V. Vazirani. Efficient and Secure Pseudo-
Random Number Generation. In Proceedings of Symposium on the

Foundations of Computer Science. 1984.

[13] John Walker. HotBits: Genuine Random Numbers, Generated by

Radioactive Decay. 1996. Online: http://www.fourmilab.ch/

hotbits/.

16

[14] Wikipedia. Fragmentation. In Wikipedia, the free encyclopedia.

The Wikipedia Community, November 2004. Online: http://en.

wikipedia.org/wiki/Fragmentation.

[15] Wikipedia. Hard disk. In Wikipedia, the free encyclopedia. The Wiki-
pedia Community, November 2004. Online: http://wikipedia.org/

wiki/Hard_disk.

[16] Wikipedia. Rotational delay. In Wikipedia, the free encyclopedia. The

Wikipedia Community, June 2004. Online: http://wikipedia.org/
wiki/Rotational_delay.

[17] Wikipedia. Seek time. In Wikipedia, the free encyclopedia. The Wiki-

pedia Community, August 2004. Online: http://wikipedia.org/
wiki/Seek_time.

[18] A. C. Yao. Theory and application of trapdoor function. In Proceedings.

23rd IEEE Symp. on Foundations of Comp. Science, pages 80–91. IEEE,

Chicago, 1982.

17

