Assignment 1, MACM 204, Fall 2017

Michael Monagan.

The purpose of this assignment is to learn the basics of Maple: how to input formulas, how to graph functions, solve equations, calculate derivatives and integrals, and to program some loops.

Due Tuesday September 19th at 3:00pm in the drop off box.

Do all calculations in Maple. Please print your Maple worksheets. You may compress the plots to save paper.

Question 1

Consider the function $f(x) = x e^{-x}$. Construct a plot of [f(x), f'(x), f''(x)] on the same graph for the domain $0 \le x \le 10$.

Read the help page for ?plot,options. Using the appropriate options, create a legend for the plot, and add a title.

Question 2

Using the **evalf** command, calculate the following values **to 20 decimal places**.

 $\pi = 3.141..., e^2 = 7.389..., \sqrt{2} = 1.414..., \ln(2) = 0.693..., \text{ and } \int_0^1 \sin(x^2) dx = 0.310...$

Question 3

Consider the polynomials $f := x^4 - 1$ and $g := x^4 - 4x^3 + 8x - 4$ and $h := x^4 - 4 \cdot x^3 + 4 \cdot x^2 - 8 \cdot x + 4$.

Graph each separately on a suitable domain for x so that we can see all real roots. Now factor the polynomials using the **factor** command.

Why does the factor command not factor them into linear factors?

Now, using **solve**, solve for the roots. Using Maple, verify that the 4 roots of the polynomial g are correct.

Now, using **fsolve**, solve for numerical approximations of the roots, including the complex roots.

Read the help page for **?fsolve** to find out how to get the complex roots.

Question 4

Shown in the plot below is a plot of $f := x^5 - 2x^4 + 4x - 1$ on the domain -1 < x < 2. Shown also is the line tangent to f(x) at $x = \frac{3}{2}$.

Use Maple to reproduce the plot. Do this by using the diff and eval commands to compute the slope of f(x) at $x = \frac{3}{2}$.

Now express the area enclosed by the tangent line and f(x) as a definite integral. Evaluate the definite integral using Maple.

> f := x^5-2*x^4+4*x-1;

Question 5

Consider the two equations $y^2 = x^3 + x$ and $x^2 + y^2 - 1$ which are the equations of an eliptic curve and a circle. Graph the two curves together using the **implicitplot** command in the **plots** package. Improve the smoothness of the plot using the **grid** option. The circle will appear distorted. Find out from ?plot,options how to scale the axes so that the circle looks like a circle (so that the plot looks like the figure below).

You can read off from the plot roughly where the curves intersect. Using the **fsolve** command compute the intersection points accurately.

Question 6

Calculate the following antiderivatives in Maple. (i) $\int x^2 e^{-x} dx$ (ii) $\int x^2 \cos(x) dx$ (iii) $\int \sqrt{x} \cos(x) dx$.

To check that the results are correct, use Maple to differentiate each antiderivative. Now try to find an antiderivative that Maple cannot do. [The last four questions are to get you to write some loops and to experiment.

Question 7

Consider the definite integral $\int_{0}^{\infty} x^{n} e^{-x} dx$.

Calculate the integral in Maple for n = 1, 2, 3, 4, 5. From these values deduce the formula for the integral as a function of n.

Question 8

The first n terms of the Taylor series for e^x are $1 + x + \frac{x^2}{2} + \frac{x^3}{6} + ... + \frac{x^n}{n!}$.

Write a Maple **for loop** that constructs the Taylor polynomial for any value of *n*. Don't use a Maple command that computes the Taylor polynomial, instead, construct it one term at a time by adding up the terms in a for loop. Run your code for n = 10.

Question 9

Consider the odd primes 3, 5, 7, 11, 13, 17, 19, etc.

Let S be the odd primes congruent to 1 mod 4 and T be the odd primes congruent to 3 mod 4.

So S = 5, 13, 17, 29, etc. and T = 3, 7, 11, 19, 23, etc.

Suppose we go through the odd primes in order counting the number of primes in S and T.

So at the first step S = $\{$ $\}$ and T = $\{3\}$ so T has more primes than S.

At the second step $S = \{5\}$ and $T = \{3\}$ so S and T have the same number of primes.

At the third step S = $\{5\}$ and T = $\{3,7\}$ so T has more primes than S again.

Here is a little table counting the size of S and T for the first 10 primes

Prime	3	5	7	11	13	17	19	23	29	31
S	0	1	1	1	2	3	3	3	4	4
T	1	1	2	3	3	3	4	5	5	6

Notice that $|T| \ge |S|$ for the first 10 primes. Does it ever happen that $|S| \ge |T|$? Using the builtin **nextprime** command write a loop that counts |S| and |T| for primes up to 10^6 and prints out the primes where |S| **becomes** greater than |T|. What do you conclude from the data you get?

Question 10

Let $A = \int_{a}^{b} f(x) dx$. Recall that the value of A may be approximated by the **Midpoint rule**

on *n* intervals of width $h = \frac{(b-a)}{n}$ using the formula

$$M_n = h \cdot \left(f\left(a + \frac{h}{2}\right) + f\left(a + \frac{3}{2} \cdot h\right) + f\left(a + \frac{5}{2} \cdot h\right) + \dots + f\left(a + \frac{2 \cdot n - 1}{2} \cdot h\right) \right)$$

For $f(x) = x^2 \cdot \sin(2 \cdot x)$ and a = 0, b = 1, calculate A using Maple to 10 decimal places by using Maple's integration command. Now using a loop, calculate M_8 , M_{16} and M_{32} using 10 digit arithmetic (the default).