
Lazy and Forgetful Polynomial Arithmetic and Applications

Paul Vrbik ∗

University of Western Ontario
Department of Computer Science

London, ON Canada
pvrbik@csd.uwo.ca

Michael Monagan
Simon Fraser University

Department of Mathematics
Burnaby, B.C. Canada

mmonagan@cecm.sfu.ca

ABSTRACT
We present lazy and forgetful algorithms for adding, mul-
tiplying and dividing multivariate polynomials. The lazy
property allows us to compute the i-th term of a polynomial
without doing the work required to compute all the terms.
The forgetful property allows us to forget earlier terms that
have been computed to save space.

For example, given polynomials A, B, C, D, E we can com-
pute the exact quotient Q = A×B−C×D

E
without explicitly

computing the numerator A×B−C×D which can be much
larger than any of A, B, C, D, E and Q.

As applications we apply our lazy and forgetful algorithms to
reduce the maximum space needed by the Bareiss fraction-
free algorithm for computing the determinant of a matrix
of polynomials and the extended Subresultant algorithm for
computing the inverse of an element in a polynomial quo-
tient ring.

1. INTRODUCTION
Let D be an integral domain and R = D[x1, x2, ..., xn] be a
polynomial ring. Let f = f1 + f2 + ... + fn be a polynomial
in R where each term fi of f is of the form fi = aiXi where
ai ∈ D and Xi is a monomial in x1, ..., xn. Two terms aiXi,
ajXj are like terms if Xi = Xj . We say f is in standard
form if ai 6= 0 and X1 ≻ X2 ≻ . . . ≻ Xn in a monomial
ordering �. This form is often called the sparse distributed
form for polynomials in R. In what follows we use #f to
indicate the number of terms of f for readability.

Let f, g be polynomials in R in standard form. In this pa-
per we present lazy and forgetful algorithms for computing
the i-th term of f + g, f × g and f ÷ g in a manner where
calculations are done only when necessary. For example, if
asked to compute the first two terms of the product f×g our

∗We gratefully acknowledge the support of the MITACS
NCE of Canada.

algorithms will compute f1g1, f2g1 and f1g2 only. Lazy algo-
rithms were first introduced into computer algebra systems
by Burge and Watt [1] where they were used in Scratch-
pad II for power series arithmetic. The idea was that if one
had computed the n-th term of a power series, but needed
another term, one should not have to redo the entire com-
putation to get it. Lazy power series solved this. But not
all of the lazy power-series algorithms were efficient. For ex-
ample, the most obvious algorithm for computing exp(f(x))
to O(xn) requires O(n3) arithmetic operations whereas the
lazy algorithm required O(n4) many. Watt showed how to
reduce this to O(n2) [11].

van der Hoven considers lazy algorithms for multiplication of
power series to O(xn) which are asymptotically fast [10]. A
lazy analogue of Karatsuba’s divide and conquer algorithm is
given which does O(nlog2 3) arithmetic operations (the same
as the as non-lazy algorithm) but uses O(n log n) space, an
increase of a factor of log n. van der Hoven also gives a
lazy multiplication based on the FFT which does O(n log2 n)
arithmetic operations, a factor of log n more than the non-
lazy multiplication. However, all af these results assume
dense power series and our interest is the sparse case.

Our lazy algorithm for polynomial multiplication is a variant
of Johnson’s heap method [6] and our lazy division algorithm
is based on the heap division algorithm of Monagan and
Pearce [8]. To illustrate these variations let us develop an
algorithm for multiplication.

A naive algorithm for multiplying f = f1 + ... + fn by g =
g1 + ... + gm computes

f × g = ((f × g1 + f × g2) + f × g3) + . . . + f × gm

where additions are done using a simple merge. For dense
polynomials this method does O(#f#g) monomial compar-
isons but for sparse polynomials it may do O(#f#g2).

To reduce the number of monomial comparisons one could
instead compute a list of terms in the product

L = [f1g1, . . . , fng1, f1g2, . . . , fng2, . . . , f1gm, . . . , fngm],

sort L using O(#f#g log #f#g) monomial comparisons,
then add terms with like monomials. But this method re-
quires space for storing #f#g terms which is poor for dense
polynomials where the product h = #f#g may have only
O(#f + #g) terms.

The sorting problem can be reduced to doing a simultaneous

m-ary merge on the set of sorted sequences

S = {(f1g1, . . . , fng1), . . . , (f1gm, . . . , fngm)}.

Johnson’s contribution was to use a heap H, initialized to
contain the terms f1g1, f1g2, . . . , f1gm, to merge the m se-
quences. Since the number of terms in the heap never ex-
ceeds #g, inserting into and extracting terms from H costs
O(log #g) monomial comparisons per insertion/extraction.
Since all #f#g terms are eventually inserted and extracted
from the heap, the algorithm does a total of O(#f#g log #g)
monomial comparisons.

A lazy algorithm should use as few terms of f and g as
possible. But Johnson’s method uses every term of g (to
initialize the heap H). We give an optimization that avoids
this.

Claim 1. Let S[j] = (f1gj , . . . , fngj). If f1gj is in the
heap H , then no term of the sequences S[j + 1], . . . , S[m]
can be the ≻-largest term of H .

Proof. By the definition of a monomial ordering we have:
if gj ≻ gj+1 ≻ . . . ≻ gm, then f1gj ≻ f1gj+1 ≻ . . . ≻ f1gm.
As f1gj+1, . . . , f1gm are (respectively) the �-largest terms
of S[j + 1], . . . , S[m], it follows that f1gj is �-larger than
any term of S[j + 1], . . . , S[m]. The claim is an immediate
consequence of this.

Using this claim we can ensure that no unnecessary terms
are put in the heap. We will not begin inserting terms of the
sequence S[j+1] until the term f1gj has been extracted from
the heap (Claim 1 ensures that these terms could not be the
�-largest). In other words, we do not introduce new terms
of g unless we have to. The same can be said of the terms of
f , since fi+1gj will only be inserted if figj is extracted. To
merge elements of S using heaps and a replacement scheme
we do the following:

1. Create a heap H = [f1g1] and an empty sequence F .

2. Extract the �-largest element of H , say figj .

3. Add figj to the last term of F if they are like terms
(this constitutes collecting like terms). Otherwise, make
figj the next term of F .

4. If i < #f then insert fi+1gj (the �-next largest term
of S[j]) into the heap.

5. If i = 1 and j < #g then add f1gj+1 to the heap (that
is, begin merging S[j + 1] with S[1], . . . , S[j]).

6. Repeat steps 2 to 5 until the heap is empty.

This heap algorithm for doing polynomial multiplication can
be extended to polynomial division. Recall that when we do
f÷g we are trying to construct the quotient q and remainder
r such that f − qg − r = 0. We use a heap to store the sum
f − qg by merging the set of #q + 1 sequences

{(f1, . . . , fn), (−q1g1, . . . ,−qkg1), . . . , (−q1gm, . . . ,−qkgm)}.

Alternatively we may see the heap as storing the sum

f −

m
X

i=1

gi × (q1 + q2 + . . . + qk)

where #g = m, #q = k and the terms qi may be unknown.

As with multiplication, we replace a term coming out of the
heap with the �-next largest term in the sequence it was
taken from. That is, we replace fi with fi+1 and −qigj

with −qi+1gj (we also use the optimization that says only
add −q1gj+1 after removing −q1gj). However, it is possi-
ble that we remove −qi−1gj before qi is known, in which
case we would not be able to insert the term −qigj . But,
since −qigj can certainly not be required to calculate qi, the
terms needed to determine qi must already be in the heap.
Therefore, we can just remember the terms that should have
been added to the heap, and eventually add them once qi

has been calculated. In the lazy division algorithm, this is
referred to as ‘sleeping’.

2. LAZY ARITHMETIC
The intended purpose of working in a lazy way is to improve
performance by avoiding unnecessary calculations. To apply
this to polynomial arithmetic we restrict access to a polyno-
mial to that of a single term. For instance, to calculate the
n-th term of a sum of two polynomials would not require the
calculation of the (n + 1)-st term. Furthermore, if we saved
intermediate results from this calculation, then the i-th term
where i ≤ n could be ‘calculated’ instantaneously.

Definition 1. A lazy polynomial, F , is an approximation
of the polynomial f = f1+ . . .+fn (in standard form), given

by F N =
PN

i=1 fi where 0 ≤ N ≤ n.

The terms F1, . . . , FN are called the forced terms of F and
the nonzero terms of f −F N are called the delayed terms of
F . We denote the number of forced terms of a lazy polyno-
mial F by |F | (and to be consistent let #F = |F∞| = #f).
Note that it is always the case that Fi = fi for all i and that
F N+1 is a better approximation of f than F N when N < n.

A lazy polynomial must satisfy two conditions regarding
computation: all the forced terms of F are cached for re-
access and calculating a delayed term of F uses as few terms
of g and h as possible.

From now on it will be necessary to distinguish regular poly-
nomials from those that are lazy. When a polynomial is de-
layed we will denote it with capitals letters, typically F , G
or H and continue using lower case letters when they are
not.

Remark 1. The polynomial f = f1 + . . . + fn that we are
approximating is unknown. Since this also means that n is
unknown we are unable to say if F N exists. For instance,
if f = x + y then F 3 would not have a value by Definition
1. To resolve this we append an infinite amount of zeros to
the end of f so that f = f1 + . . . + fn + 0 + 0 + . . . (now
F 3 = x+y+0). This admits the useful notation F∞ which is
the lazy polynomial with no delayed terms. That is F∞ = f
when F is approximating f .

Let us refine our focus and address the problem of deter-
mining the n-th term of a polynomial when it is the result
of some operation. First note that naive algorithms prema-
turely access terms. To best illustrate this, recall the first
step of naive multiplication, where we merge f1 × g with
f2 × g. To accomplish this, it would be necessary to use
every term of g. Division is similar. When updating f by
f − qi × g, all terms of g are needed.

We use the heap methods for division and multiplication
and a simple merge for addition. Since these methods build
the result in �-order anyways, we simply halt and return
once n non-zero terms are generated. But we also require
no work to be repeated to calculate XN−1, . . . , X1 after cal-
culating XN . To achieve this we pass our algorithms the
approximation XN which must also remember the state of
the algorithm it was passed to. Specifically, it must remem-
ber the heap the calculation was using and local variables
that would otherwise get erased (we will assume that this
information is associated with XN in some way and can be
retrieved and updated).

Lazy algorithms for doing addition, multiplication and divi-
sion are now presented. Note that the algorithm for division
returns terms of the quotient (while updating the remain-
der), but could easily be modified to instead return terms
of the remainder (while updating the quotient). Complexity
results for multiplication and division follow their respective
algorithms.

Algorithm 1 - Lazy Addition

Input: The delayed polynomials F and G so that F∞ = f
and G∞ = g, a positive integer N (the desired term),
and the delayed polynomial X so that X∞ = f + g.

Output: The N-th term of the sum f + g.
1: if N ≤ |X| then

2: {XN has already been calculated.}
3: return XN ;
4: end if

5: if |X|=0 then

6: {X has no information.}
7: (i, j, k)← (1, 1, 1);
8: else

9: Set i and j to the values associated with X;
10: k ← |X|;
11: end if

12: while Fi 6= 0 or Gj 6= 0 do

13: if Fi and Gj are like terms then

14: if Fi + Gj 6= 0 then

15: Xk ← Fi + Gj ;
16: (i, j, k)← (i + 1, j + 1, k + 1);
17: else

18: (i, j)← (i + 1, j + 1);
19: end if

20: else if Fi 6= 0 and Fi ≻ Gj then

21: Xk ← Fi;
22: (i, k)← (i + 1, k + 1)
23: else if Gj 6= 0 then

24: Xk ← Gj

25: (j, k)← (j + 1, k + 1)
26: end if

27: if k = N then

28: Associate i and j with X;

29: return Xk;
30: end if

31: end while

32: Associate i and j with X;
33: return 0;

Algorithm 2 - Lazy Multiplication

Input: The lazy polynomials F and G so that F∞ = f and
G∞ = g, a positive integer N (the desired term), and
the lazy polynomial X so that X∞ = f × g.

Output: The N-th term of the product f × g.
1: if N ≤ |X| then

2: {XN has already been calculated.}
3: return XN ;
4: end if

5: if |X|=0 then

6: {X has no information.}
7: Initialize a heap H and insert (F1G1, 1, 1) {Order the

heap by � on the monomials in the first position.}
8: k ← 1;
9: else

10: Let H be the heap associated with X.
11: k ← number of elements in H ;
12: end if

13: while H is not empty do

14: t← 0;
15: repeat

16: Extract (s, i, j) ← Hmax from the heap and assign
t← t + s;

17: if Fi+1 6= 0 then

18: Insert (Fi+1Gj , i + 1, j) into H ;
19: end if

20: if i = 1 and Gj+1 6= 0 then

21: Insert (F1Gj+1, 1, j + 1) into H ;
22: end if

23: until (H is empty) or (t and Hmax are not like terms)
24: if t 6= 0 then

25: Xk ← t;
26: k← k + 1;
27: end if

28: if k = N then

29: Associate the heap H with X.
30: return Xk;
31: end if

32: end while

33: Associate the (empty) heap H with X.
34: return 0;

Theorem 1. To force every term of X (that is to com-
pletely determine the standard form of f × g) in Algorithm
2, requires O(#f#g log #g) monomial comparisons, space
for a heap with at most #g terms, and space for O(#f#g)
terms of the product.

Proof. The size of the heap is not effected by line 18, as
this merely replaces the term coming out of the heap in line
16. The only place the heap can grow is on line 21, which
is bounded by the number of terms of g. Therefore O(#g)
space is required for the heap. Since the product f × g has
at most #f#g many terms it will require O(#f#g) space.

Extracting/inserting from/to a heap with #g elements does

O(log #g) many monomial comparisons. Since every term
of the product passes through the heap, we do O(#f#g)
extractions/insertions totaling O(#f#g log #g) monomial
comparisons[9].

Remark 2. It is possible to improve multiplication so that
the heap requires space for only min(#f, #g) terms and the
number of monomial comparisons done is
O(#f#g log min(#f, #g)). If #f < #g and we could switch
the order of the input (i.e. calculate g × f instead of f × g)
then the heap would be of size #f . But we we may not
know #f and #g! So, we must quote the worst case sce-
nario in our complexities (in fact we will emphasize this by
using max(#f, #g) in our space complexities).

Algorithm 3 - Lazy Division

Input: The delayed polynomials F and G so that F∞ = f
and G∞ = g, a positive integer N (the desired term),
and the delayed polynomials Q and R so that f = g ×
Q∞ + R∞.

Output: The N-th term of the quotient from f ÷ g.
1: if F1 = 0 then

2: return 0
3: end if

4: if N ≤ |Q| then

5: {QN has already been calculated.}
6: return QN ;
7: end if

8: if |Q| = 0 then

9: {Q has no information.}
10: Initialize a new heap H and insert F1 into H ;
11: s← 2;
12: else

13: Let H be the heap associated with Q;
14: end if

15: while H is not empty do

16: t← 0;
17: repeat

18: Extract x ← Hmax from the heap and assign t ←
t + x;

19: if x = Fi and Fi+1 6= 0 then

20: Insert Fi+1 into H ;
21: else if x = GiQj and Qj+1 is forced then

22: Insert −GiQj+1 into H ;
23: else if x = GiQj and Qj+1 is delayed then

24: s ← s + 1; {Sleep −GiQj+1}
25: end if

26: if x = GiQ1 and Gi+1 6= 0 then

27: Insert −Gi+1Q1 into H ;
28: end if

29: until (H is empty) or (t and Hmax are not like terms)
30: if t 6= 0 and g1|t then

31: Q|Q|+1 ← t/G1; {Now Q|Q|+1 is a forced term.}
32: for k from 2 to s do

33: Insert −Gk · t/G1 into H ; {Insert all terms that
are sleeping into H}

34: end for

35: else

36: R|R|+1 ← t; {Now R|R|+1 is a forced term.}
37: end if

38: if |Q| = N then

39: Associate the heap H with Q.

40: return QN ;
41: end if

42: end while

43: Associate the (empty) heap H with Q;
44: return 0;

Theorem 2. To force every term of Q and R (that is to
completely determine q and r such that f = g × q + r) in
Algorithm 3 requires O((#f + #q#g) log #g) many mono-
mial comparisons, space for a heap with O(#g) terms, and
space for O(#q + #r) terms of the solution.

Proof. The size of the heap H , denoted |H | is unaffected
by lines 20 and 22 since these lines only replace terms coming
out of the heap. Line 24 merely increments s and does not
increase |H |. The only place where H can grow is line 27 in
which a new term of g is added to the heap, this is clearly
bounded by #g. It is clear that we require O(#q + #r)
space to store the quotient and remainder.

All terms of f and q×g are added to the heap, which is #f +
#q#g terms. Passing this many terms through a heap of size
#g requires O((#f +#q#g) log #g) monomial comparisons
[8].

3. FORGETFUL ARITHMETIC
There is a variant to delayed polynomial arithmetic that has
some useful properties. Consider that the operations from
the previous section can be compounded to form polynomial
expressions. That is, we could use delayed arithmetic to cal-
culate the n-th term of say, A×B−C×D. When we do this
we store the intermediate calculations (namely the products
A×B and C×D) to provide quick re-access to terms. But,
if re-access was not required we could ‘forget’ these terms
instead. A ‘forgetful’ operation is like a delayed operation
but intermediate terms won’t be stored. For this reason,
forgetful operations are potentially useful when expanding
compounded polynomial expressions with large intermediate
subexpressions.

We can make some straightforward modifications to our de-
layed algorithms to accomplish this forgetful environment.
Essentially all that is required is the removal of lines that
save terms to the solution polynomial (i.e. lines that look
like Xi ← �) and eliminating any references to previous
terms (or even multiple references to a current term). To
emphasize this change we will limit our access to a polyno-
mial by way of a next command.

Definition 2. For some delayed polynomial F and mono-
mial order �, the next command returns the �-next un-
calculated term of a polynomial (eventually returning only
zeros) and satisfies next (F) + next (F) + next (F) + . . . =
F∞ and next (F) ≻ next (F) ≻ . . . ≻ next (F) = 0 =
next (F) =

Definition 3. A forgetful polynomial is a delayed polyno-
mial that is accessed solely via the next command. That
is, intermediate terms of F are not stored and can only be
accessed once. If the functionality to re-access terms is re-
stored in any way (i.e. by caching the intermediate results in

memory), F is no longer considered to be a forgetful polyno-
mial. Thus, for a forgetful polynomial F , calculating Fn+1

forfeits access to the terms F1 through Fn, even if these
terms have never been accessed.

Although it would be ideal to have all of our forgetful rou-
tines take forgetful polynomials as input and return forgetful
polynomials as output, this is not possible without caching
previous results. Multiplication for instance can not accept
forgetful polynomials as input (it will be able to return a for-
getful polynomial). This is because regardless of the scheme
used to calculate f×g, it is necessary to multiply every term
of f with g. Since we are limited to single time access to
terms this task is impossible. If we calculate f1g2 we can
not calculate f2g1 and vice versa.

For the same reason our division algorithm can not accept
a forgetful divisor as it must be repeatedly multiplied by
terms of the quotient (thus the quotient can not be forget-
ful either). However, we will see that the dividend can be
forgetful which is a highly desirable feature (see Section 4).
The only ‘fully’ forgetful (forgetful input and output) arith-
metic operation we can have is addition (although polyno-
mial differentiation and scalar multiplication can also fully
forgetful).

The variant of multiplication that takes as input delayed
polynomials, returning a forgetful polynomial, is a trivial
change to Algorithm 2. In this case all that must be done is
to remove the ‘if’ statement on line 28 so that the �-next,
instead of the N-th, term is returned. As this is not a signif-
icant change, we will not present and algorithm for forgetful
multiplication. Division will be given as a special purpose
algorithm that will be useful in some specific applications.
Division will take as input a forgetful dividend and lazy di-
visor returning a fully forced quotient and remainder. Aside
from enabling division to accept a forgetful dividend, there
are no other improvements.

Theorem 3. When multiplying f by g the worst case stor-
age complexity for forgetful multiplication is O(max(#f,#g))
(the storage required for the heap).

Proof. A quick inspection of Algorithm 2 will show that
the only time a previous term of the product is used is on
line 3 and line 30. In both cases the term is merely being
re-accessed and is not used to compute a new term of the
product. Since we do not store nor re-access terms of a
forgetful polynomial, we can eliminate the storage needed
to do this requiring only space for a heap with max(#f, #g)
terms.

Algorithm 4 - Forgetful Addition

Input: Forgetful polynomials F and G so that F∞ = f
and G∞ = g and the forgetful polynomial X so that
X∞ = f + g.

Output: The ≻-next delayed term of X.
1: if |X|=0 then

2: {X has no information.}
3: (tF , tG)← (next (F) , next (G));
4: else

5: Set tF and tG to the values associated with X;
6: end if

7: while tF 6= 0 or tG 6= 0 do

8: if tF and tG are like terms then

9: ans← tF + tG;
10: (tF , tG)← (next (F) , next (G))
11: else if tF 6= 0 and tF ≻ tG then

12: ans← tF ;
13: tF ← next (F)
14: else if tG 6= 0 then

15: ans← tG

16: tG ← next (G)
17: end if

18: if ans 6= 0 then

19: Associate tF and tG with X;
20: return ans;
21: end if

22: end while

23: Associate tF and tG with X;
24: return 0;

Theorem 4. When adding f and g with the forgetful ad-
dition, the worst case storage complexity for the algorithm
is O(1).

Proof. At any given time the Algorithm 3 will only have
to remember three values : ans, tF and tG.

Algorithm 5 - Forgetful Division

Input: A forgetful polynomial F and delayed polynomial G
so that F∞ = f and G∞ = g.

Output: The delayed polynomials Q and R so that f =
g ×Q∞ + R∞.

1: tF ← next (F);
2: if tF = 0 then

3: Set Q and R to zero.
4: return Q and R.
5: end if

6: Initialize a new heap H and insert tF into H ;
7: s← 2;
8: while H is not empty do

9: t← 0;
10: repeat

11: Extract x ← Hmax from the heap and assign t ←
t + x;

12: if x = tF then

13: tF = next (F)
14: if tF 6= 0 then

15: Insert tF into H ;
16: end if

17: else if x = GiQj and Qj+1 is forced then

18: Insert −GiQj+1 into H ;
19: else if x = GiQj and Qj+1 is delayed then

20: s ← s + 1; {Sleep −GiQj+1}
21: end if

22: if x = GiQ1 and Gi+1 6= 0 then

23: Insert −Gi+1Q1 into H ;
24: end if

25: until (H is empty) or (t and Hmax are not like terms)
26: if t 6= 0 and g1|t then

27: Q|Q|+1 ← t/G1; {Now Q|Q|+1 is a forced term.}

28: for k from 2 to s do

29: Insert −Gk · t/G1 into H ; {Insert all terms that
are sleeping into H}

30: end for

31: else

32: R|R|+1 ← t; {Now R|R|+1 is a forced term.}
33: end if

34: end while

35: return Q and R;

In its current form Algorithm 5 returns a fully forced quo-
tient Q and reaminder R. It is straightforward to modify
this algorithm to return a forgetful remainder instead. We
simply have line 32 return t instead of saving a term to the
remainder and change line 35 to return 0 (for when terms
of R have been exhausted). In the interest of space we will
assume this modification has been done as:

Algorithm 6 - Forgetful Division (with forgetful
remainder)

Input: The forgetful polynomial F and delayed polynomial
G so that F∞ = f and G∞ = g.

Output: The delayed polynomial Q and forgetful polyno-
mial R so that f = g ×Q∞ + R∞.

Theorem 5. In algorithm 6, when calculating f ÷ g the
space required (including space for the input) to force every
term of the forgetful remainder R is:

1. Space for a heap with #g terms.

2. Space for #q terms of the quotient.

3. Space for #g terms of the divisor.

4. Space for one term of the dividend f .

Proof. .

1. As there has been no change to the division algorithm,
Theorem 2 implies the heap has #g many terms.

2. To fully force every term of a delayed polynomial Q
requires storage for #q many terms.

3. As G is a delayed polynomial that will be fully forced
during the execution we require space to store #g
many terms for the divisor.

4. As F is a forgetful polynomial we are restricted to
only accessing one term from F at a time (where no
previously calculated terms are cached). Therefore we
only require space to store one term of f .

4. APPLICATIONS
We give two applications of forgetful polynomial arithmetic:
the Bareiss algorithm and the Subresultant algorithm. These
algorithms both have a deficiency in that intermediate cal-
culations can become quite large with respect to the algo-
rithms output. By using forgetful operations we can bypass
the need to explicitly store intermediate polynomials and
thus reduce the operating space of the each algorithm sig-
nificantly.

4.1 The Bareiss Algorithm
The Bareiss algorithm is ‘fraction free’ approach for calcu-
lating determinants due to Bareiss [3] who noted that the
method was first known to Jordan. The algorithm does ex-
act divisions over any integral domain to avoid fractions.

The Bareiss algorithm is given below. In the case where
Mk,k = 0 (which prevents us from dividing by Mk,k in
the next step) it would be straightforward to add code (be-
tween lines 2 and 3) to find a non-zero pivot. That is, if
Mk−1,k−1 = 0 and there is some Mk−1,i 6= 0 for i = k, . . . , n
then we can exchange the i-th column with the (k − 1)-th
column. For the purpose of this exposition we assume no
pivoting is required.

Algorithm 6 - Bareiss Algorithm

Input: M an n-square matrix with entries over an integral
domain D.

Output: The determinant of M.
1: M0,0 ← 1;
2: for k = 1 to n− 1 do

3: for i = k + 1 to n do

4: for j = k + 1 to n do

5: Mi,j ←
Mk,kMi,j−Mi,kMk,j

Mk−1,k−1

{Exact division.}

6: end for

7: end for

8: end for

9: return Mn,n

The problem is the exact division in line 5. In the final di-
vision where the determinant Mn,n is obtained by dividing
by Mn−1,n−1 the dividend must be larger than the determi-
nant. It is quite possible (in fact typical) that this calcu-
lation (of the form A×B−C×D

E
) produces a dividend that is

much larger than the corresponding quotient and denomi-
nator. This final division can be the bottleneck of the entire
algorithm.

Example 1. Consider the so-called symmetric Toeplitz ma-
trix with entries from the polynomial ring Z[x1, x2, . . . , x9]
generated by [x1, . . . , x9],

2

6

6

6

6

6

4

x1 x2 x3 · · · x9

x2 x1 x2 · · · x8

x3 x2 x1 · · · x7

...
. . .

. . .
. . .

...
x9 · · · x3 x2 x1

3

7

7

7

7

7

5

.

When calculating the determinant of this matrix using Bareiss’
algorithm the last division (in line 5 of Algorithm 6) will
have a dividend of 128,530 terms, whereas the divisor and
quotient will only have 427 and 6,090 terms respectively.

To overcome this problem recall that we use forgetful arith-
metic to construct the quotient of A×B−C×D

E
without having

to store A×B −C ×D in its entirety (in fact the forgetful
algorithms were designed to do precisely this calculation).

Theorem 6. Calculating Q = A×B−C×D
E

(an exact divi-
sion) with forgetful operations requires space for at most

log(max(#A,#B)+max(#C,#D)+#E+#Q)
2 3 4 5 6

lo
g(

m
ax

im
um

 m
em

or
y

us
ag

e)

6

7

8

9

Figure 1: Maximum memory usage for line 5 of

the Bareiss Algorithm given the symmetric Toeplitz

matrix generated by [x1, . . . , x7] when using forgetful

polynomials.

O(max(#A,#B) + max(#C, #D) + 1 + #E + #Q) terms
at any one time.

Proof. We have from Theorem 3 that the products A×B
and C×D require at most max(#A,#B) and max(#C, #D)
space, where the difference of these products requires O(1)
space by Theorem 4. Since there is no remainder because the
division is exact, the division algorithm will use O(#E+#Q)
storage by Theorem 2. Summing these complexities gives
the desired result.

We have implemented a package of lazy and forgetful algo-
rithms for polynomial arithmetic in C. The implications of
this theorem and can be observed in our implementation of
the Bareiss Algorithm with forgetful polynomials. In figure
1 we have measured the amount of memory used by the ex-
act division on line 5. The figure shows a linear relationship
with the size of the input polynomials A,B, C, D and E.

4.2 The Extended Subresultant Algorithm
Given a UFD D and non-constant polynomial m ∈ D[x],
we can form the quotient ring D[x]/ 〈m〉. When m is an
irreducible element of D[x] (that is, there is no non-constant
t ∈ D[x] such that t 6= m and t divides m), this quotient ring
will be a field. Of course, when working in fields it is natural
to ask if there is a systematic way of finding inverses. The
extended subresultant algorithm will be able to do this by
finding s, t ∈ D[x] such that s·u+t·m = Res(u, m, x). In this
case degx(s) < degx(m) and the inverse of u ∈ D[x]/ 〈m〉 is
s/Res(u, m,x).

Our interest is finding subresultants (and inverses) in D[x]
when D = Z or D = Z[y, z, . . .]. The Subresultant algorithm
uses pseudo-division instead of ordinary division (which the
Euclidean algorithm uses) to avoid computing with fractions
in the quotient field D/D. We recall the definition of pseudo-
remainder and pseudo-quotient.

Definition 4. Let D be an integral domain and f, g ∈ D[x]

with f 6= 0, g 6= 0. Let α = lcoeffx (g)δ+1 where δ =
degx(f) − degx(g). Then the pseudo-remainder r̃ of f di-
vided by g is defined as the remainder of αf divided by g.
The pseudo-quotient q̃ is similarly defined as the quotient
of the same division. Thus αf = gq̃ + r̃ with r̃ = 0 or
degx(r̃) < degx(g) (the division algorithm ensures this is
the case).

One can show (e.g. see Ch. 2. of Geddes et. al. [5]) that
pseudo-quotient q̃ and pseudo-remainder r̃ are elements of
D[x] and are unique.

The extended Subresultant algorithm [7] is given by Algo-
rithm 7. The operations degx, prem, pquo, and lcoeffx,
stand for the degree in x, pseudo-remainder, pseudo-quotient
and leading coefficient in x (respectively).

Algorithm 7 - Extended Subresultant Algorithm

Input: The polynomials u, v ∈ D[x] where degx(u) ≥ degx(v)
and v 6= 0.

Output: The resultant r = Res(u, v, x) ∈ D and s, t ∈ D[x]
satisfying s · u + t · v = r.

1: (g, h)← (1,−1);
2: (s0, s1, t0, t1)← (1, 0, 0, 1);
3: while degx(v) 6= 0 do

4: d← degx(u)− degx(v);
5: r̃ ← prem(u, v, x);
6: q̃ ← pquo(u, v, x); {r̃ and q̃ are computed simultane-

ously.}
7: u← v;
8: α← lcoeffx (v)d+1;
9: s← α · s0 − s1 · q̃;

10: t← α · t0 − t1 · q̃;
11: (s0, t0)← (s1, t1);
12: v ← r̃ ÷ (−g · hd);
13: s1 ← s÷ (−g · hd)
14: t1 ← t÷ (−g · hd)
15: g ← lcoeffx (u);
16: h← (−g)d ÷ hd−1;
17: end while

18: (r, s, t)← (v, s1, t1);
19: return r, s, t;

The problematic calculation occurs when finding the pseudo-
remainder on line 5. It can be easily demonstrated, espe-
cially when u and v are sparse polynomials in many vari-
ables, that r̃ is very large relative to the dividend and quo-
tient given by the division on line 12. In fact r̃ can be much
larger than the resultant Res(u, v, x).

Example 2. Consider the two polynomials f =
P9

i=1
xi +

P9

i=1
x3

i and g =
P9

i=1
x2

i in Z[x1, . . . , x9]. When we apply
the extended subresultant algorithm to these polynomials
we find that in the last iteration, the pseudo-remainder r̃
has 426, 252 terms but the quotient v has only 15, 085 (v is
the resultant in this case).

To resolve this we will let the pseudo-remainder be a for-
getful polynomial so that the numerator on line 12 will not

have to be explicitly stored. This is can be accomplished by
using the Algorithm 6 since (when f and g regarded as uni-
variate polynomials in x) calculating prem(f, g, x) is equiva-
lent to calculating divide(αδ+1f, g) where α = lcoeffx (g)
and δ = degx(f) − degx(g). Note, in order to implement
pseudo-division, the monomial ordering used must satisfy
Y xn ≻ Zxn−1 for all monomials Y and Z.

5. IMPLEMENTATION
We have implemented a C-library for doing lazy (and for-
getful) arithmetic for polynomials with coefficients that are
machine integers. In our implementation we are represent-
ing monomials as single machine integers (which allows us
to compare and multiply monomials in one machine instruc-
tion). This representation, analyzed by Monagan and Pearce
[8], is based on Bachmann and Schönemann’s scheme [2].

We found that there was no significant loss in efficiency when
computing with this package. That is, to force every term
of a lazy (or forgetful) product, quotient, or remainder was
never slower than doing the same calculation with Maple (in
fact we were two to three times faster). The C-structure we
are using to represent a lazy polynomial is given bellow.

Listing 1: The delayed polynomial structure.

1 struct poly {
2 int N;
3 TermType ∗ terms ;
4 struct poly ∗F1 ;
5 struct poly ∗F2 ;
6

7 TermType (∗Method)
8 (int n , struct poly ∗F,
9 struct poly ∗G, struct poly ∗H) ;

10

11 int s t a t e [6] ;
12 HeapType ∗Heap ;
13 } ;
14

15 typedef struct poly PolyType ;

The variable N is the number of forced terms, and F1 and
F2 are two other lazy polynomials which the procedure
Method (among ADD, MULT and DIVIDE) is applied to. As
previously discussed Method requires three inputs, two lazy
polynomials to operate on, and a third lazy polynomial where
the solution is stroed (and where the current heap can be
found). The array state[6] is a place to put local variables
that get erased but need to be maintained, and Heap is the
heap which the procedure Method uses.

It is useful to define a procedure Term which produces the
n-th term of the delayed polynomial F , calculating it if nec-
essary. This procedure enables us to follow the pseudo-code
given more directly as Term(i,F) = Fi.

Listing 2: Term.

1 TermType Term (int n , PolyType ∗F) {
2 i f (n>F−>N) {
3 return F−>Method(n ,F−>F1 ,F−>F2 ,F) ;
4 }
5 return F−>terms [n] ;
6 } ;

Many details about the implementation have been omitted
but it is this structure and procedure that are the two most
important building blocks for development.

6. FUTURE WORK
Our original motivation for considering lazy algorithms for
polynomials was an intermediate calculation in Buchberger’s
algorithm. Buchberger’s algorithm transforms a set of gener-
ators for a polynomial ideal into a Gröbner basis [4]. At each
iteration the algorithm generates many ‘S-Polynomials’, namely
the value

S(f, g) =
L

LT (f)
· f −

L

LT (g)
· g

where L = lcm (LM(f) , LM(g)). This calculation appears
to be wasteful as it is known that S(f, g) reduces to zero
when gcd (LT (f,) , LT (g)) = 1. Why completely determine
f and g in this case when only the leading terms are needed?

An environment where one could determine LT (f) with-
out calculating f in its entirety could theoretically speed up
Buchberger’s algorithm significantly.

7. REFERENCES
[1] W. H. Burge and S. M. Watt. Infinite Structures in

Scratchpad II. Proc. EUROCAL ’87, Springer-Verlad
LNCS 378, 1989.

[2] Olaf Bachman and Hans Schönemann. Monomial
representations for Gröbner bases computations. In
Proceedings of ISSAC, pages 309–316. ACM Press,
1998.

[3] E. F. Bareiss. Sylvester’s identity and multisptep
integer-preserving Gaussian elimination. J. Math.
Comp., 103:565–578, 1968.

[4] David Cox, John Little, and Donald O’Shea. Ideals,
Varieties, and Algorithms. Springer, third edition,
2007.

[5] Keith O. Geddes, Stephen R. Czapor, and George
Labahn. Algorithms for Computer Algebra. Kluwer
Academic Publishers, 1992.

[6] Stephen C. Johnson. Sparse polynomial arithemetic.
ACM SIGSAM Bulletin, 8(3):63–71, 1974.

[7] Marc Moreno Maza and Renaud Rioboo. Polynomial
gcd computations over towers of algebraic extensions.
In Gérard D. Cohen, Marc Giusti, and Teo Mora,
editors, AAECC, volume 948 of Lecture Notes in
Computer Science, pages 365–382. Springer, 1995.

[8] Michael Monagan and Roman Pearce. Polynomial
Division using Dynamic Arrays, Heaps, and Packed
Exponent Vectors, volume 4770 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2007.

[9] Michael Monagan and Roman Pearce. Sparse
polynomial arithmetic using a heap. Journal of
Symbolic Computation - Special Issue on Milestones
In Computer Algebra, 2008. Submitted.

[10] Joris van der Hoeven. Relax, but don’t be too lazy. J.
Symbolic Computation, 11(1-000), 2002.

[11] S. M. Watt. A fixed point method for power series
computation. In International Symposium on Symbolic
and Algebraic Computation (ISSAC), volume 358 of
Lecture Notes in Computer Science. Spinger Verlag,
July 1989.

