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Abstract

Let F be a field, f, g ∈ F [x] with m = deg f > deg g ≥ 0. Our problem is to find

a rational function n/d ∈ F (x) where n/d ≡ g mod f , gcd(f, d) = gcd(n, d) = 1 and

deg n + deg d < m. If degree bounds N ≥ deg n and D ≥ deg d satisfying N + D < m are

known, then the problem is solved by the Extended Euclidean Algorithm in F [x]. If degree

bounds are not known it is still possible to find n/d with high probability. One way is to

use maximal quotient rational function reconstruction. We have implemented the algorithm

for F [x] = Zp[x], with p a prime. To speed up the algorithm, our implementation uses

Karatsuba’s algorithm for multiplication in Zp[x] and a Fast Extended Euclidean Algorithm.

As an application, we have modified Brown’s modular GCD algorithm to use the maximal

quotient algorithm. The modification reduces the number of evaluation points needed by

the algorithm.
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Chapter 1

Introduction

Rational reconstruction has become an important tool with many applications in computer

algebra. It enables the algorithms to recover rational numbers from their images modulo a

large integer (a prime, a prime power or product of several primes) or to recover rational

functions from their images modulo a given polynomial.

Let F be a field. Given a rational function n/d ∈ F (x) and a polynomial m ∈ F [x]

where deg m > 0 and gcd(m, d) = gcd(n, d) = 1, we can easily compute u ∈ F [x] such that

u ≡ n/d mod m. The rational function reconstruction algorithm presents a solution for

the reverse problem. That is, for given polynomials m, u ∈ F [x] where 0 ≤ deg u < deg m it

outputs a rational function n/d ∈ F (x) where n/d ≡ u mod m and gcd(d, m) = gcd(n, d) =

1.

The rational function reconstruction problem does not necessarily have a unique solution.

The Extended Euclidean Algorithm finds all solutions satisfying deg n + deg d < deg m.

However, it is not hard to see that there is only one solution when degree bounds N ≥ deg n

and D ≥ deg d satisfying N + D < deg m are given.

Example 1.1. Let F = Z7. We are given

f(1) = 5, f(2) = 2, f(3) = 1,

where f ∈ Z7[x]. We want to find a rational function n/d ∈ Z7(x) such that

n(α)

d(α)
= f(α), d(α) 6= 0, α ∈ {1, 2, 3}.

Using polynomial interpolation we can easily compute u = x2+x+3 satisfying u(α) = f(α),

and rewrite the above problem in the form of the following rational function reconstruction

1



CHAPTER 1. INTRODUCTION 2

problem:

Given m, u ∈ Z7[x] with m = (x − 1)(x − 2)(x − 3) and u = x2 + x + 3, find a rational

function n/d ∈ Z7(x) such that

n/d ≡ u mod m, gcd(m, d) = 1.

Let N = 1 and D = 1 be respectively degree bounds for the numerator and the de-

nominator of the solution. Using the Extended Euclidean Algorithm we get the following

solutions
n1

d1
=

x2 + x + 3

1
,

n2

d2
=

6x + 6

x
,

n3

d3
=

3

x2 + 1
.

Among these 3 solutions only n2/d2 satisfies the degree bound requirement, that is, deg n2 ≤

1 and deg d2 ≤ 1.

In case degree bounds N, D are not available we can use either Wang’s algorithm (Algo-

rithm 3.1) or the maximal quotient rational reconstruction algorithm (Algorithm 3.3). Both

of these algorithms require an external mechanism that enables us to check whether or not

the output of the algorithm is the one we were expecting. In this example we assume that

this mechanism gives us u(αi) with αi ∈ Z7 a new evaluation point.

The output of Wang’s algorithm with inputs m = (x − 1)(x − 2)(x − 3), u = x2 + x + 3

would be (6x + 6)/x. Assuming u(4) = 5 we have m = (x − 1)(x − 2)(x − 3)(x − 4) and

u = 4x3 + 5x2 + 3x. This time Wang’s algorithm returns (x2 + 2)/(x + 1). Adding another

point (5, 1) or u(5) = 1 and calling Wang’s algorithm with inputs m = (x − 1)(x − 2)(x −

3)(x−4)(x−5) and u = 4x4 +6x3 +5x2 +6x+5 we get the same solution. At this point we

require an external mechanism to check whether (x2 + 1)/(x + 1) is the expected solution

or not.

Background

In 1981, Wang [1] presented a new algorithm for the partial fraction decomposition of

rational functions in Q(x). To get a more efficient algorithm he suggested that one first

solve the problem modulo a suitably selected prime and then lift the problem p-adically

to get the desired solution over Q(x). When devising this algorithm he encountered the

rational number reconstruction problem and developed an algorithm that enabled him to

reconstruct rational coefficients of a polynomial in Q[x] from their images modulo m = pk,
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a prime power. The algorithm gets m, u ∈ Z as input and outputs a rational number n/d

satisfying n/d ≡ u mod m if a solution exists.

Wang showed, by adding the requirement 0 ≤ |n|, d <
√

m/2, or equivalently m >

2(max(|n|, d))2, that the algorithm uniquely determines the solution if it exists. In fact,

Wang’s algorithm is the Extended Euclidean Algorithm equipped with a different stopping

condition. Wang did not provide any proof as to the correctness of his algorithm in the

original paper, however in [2] Wang, Guy and Davenport proved that if there is a solution,

it will be found by his algorithm.

Since then, Wang’s algorithm has been used in many contexts including polynomial

factorization (see [3] and [4]), Gröbner basis computations over Q (see [5] and [6]), poly-

nomial interpolation (see [7]), solving linear systems over Q (see [8]) and polynomial GCD

computation (see [9] and [10]).

Monagan in [11] presented a more efficient solution for the rational reconstruction prob-

lem, which he called Maximal Quotient Rational Reconstruction. His algorithm also runs

the Extended Euclidean algorithm on inputs m, u and outputs the rational number ri/ti

where i represents the index of the maximal quotient qi appearing in the Euclidean algo-

rithm. He introduced input T to the algorithm and claimed that if we determine a good

value for T such that m > |n|dT then with high probability the algorithm outputs n/d for

q the maximal quotient. He also stated that his algorithm can be applied to the rational

function reconstruction problem over a finite field with p elements.

Wang’s algorithm can be easily modified to solve the problem of rational function re-

construction as well. Von zur Gathen and Gerhard in [12, sec. 5.7] show how to use the

Extended Euclidean Algorithm to solve the rational function reconstruction problem. The

algorithm in addition to polynomials m and u, gets a third input k ∈ {0, . . . ,deg m} and

outputs n, d such that deg n < k and deg d ≤ deg m−k. The problem with this algorithm is

that it needs the degree bound k for the numerator and hence, deg m−k for the denominator

which is not always available in advance.

In this thesis we present a fast algorithm for the rational function reconstruction problem

which is based on Monagan’s maximal quotient algorithm. We show that if deg m > deg n+

deg d + 1, then with high probability the algorithm outputs n/d. The advantage of this

algorithm is that it requires no degree bounds as in [12] and it requires approximately one

more point than the minimum necessary i.e. deg n + deg d + 1 to reconstruct n/d.

Let mj =
∏j

i=1(x − αi) where αi ∈ F and deg mj = deg n + deg d + 1. To interpolate
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n/d we need at least j points, hence, mj is the smallest polynomial in terms of degree for

which the rational function reconstruction can succeed in recovering n/d. Our algorithm

has the following properties:

• for mk with k > j our algorithm outputs n/d with high probability, such that we need

approximately one more evaluation point than the minimum necessary,

• if deg mk > 2(deg n + deg d) then our algorithm outputs n/d with probability 1, and

• if k ≤ j the algorithm fails with high probability.

Similar to any rational reconstruction algorithm, our algorithm is based on the Extended

Euclidean Algorithm. In order to be more efficient it uses the Fast Extended Euclidean

Algorithm which has time complexity O(M(n) log n), where M(n) denotes the number of field

operations required to multiply two polynomials of degree less than n. For fast polynomial

multiplication, we have implemented Karatsuba’s algorithm which runs in O(nlog2 3).

To show one of the applications of our algorithm we have implemented an algorithm for

computing the GCD of two multivariate polynomials. We have modified Brown’s modular

GCD algorithm to use the maximal quotient algorithm. This not only solves the leading

coefficient problem in this algorithm but also reduces the number of trial division attempts

to 1 with high probability. Moreover, the number of evaluation points required to recover

the coefficients of the GCD is reduced.

Outline

In Chapter 2 we will explain three fast polynomial arithmetic operations, namely fast poly-

nomial multiplication, the Fast Extended Euclidean Algorithm (FEEA) and fast polynomial

interpolation. In order for the FEEA to be fast, one must implement the fast multiplication

algorithm carefully. In Section 2.1 we discuss Karatsuba’s multiplication algorithm and how

it can be implemented so that it only uses a linear amount of memory with respect to the

size of input polynomials. In Section 2.2 we explain the Extended Euclidean Algorithm and

a fast version of it which is going to be the main part of the Rational Function Reconstruc-

tion algorithm. “Modern Computer Algebra” [12] is the main reference for the material

discussed in this chapter.

In Chapter 3 we will explore the rational function reconstruction problem. First we
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describe the problem and then we present Wang’s algorithm. Next our algorithm is in-

troduced. For a fast solution, we show how to modify the FEEA to do maximal quotient

rational reconstruction.

Brown’s modular algorithm for multivariate GCD computation is described in Chapter 4.

We show how we can use rational function reconstruction presented in Chapter 3 to make

Brown’s algorithm work more efficiently. We show this modification reduces the number of

evaluation points needed by the algorithm.

In the last chapter, we give a summary of what we have done in this thesis.



Chapter 2

Fast Polynomial Arithmetic

In this chapter we will mainly explore the Fast Extended Euclidean Algorithm. We refer to

a polynomial’s degree plus one as the size of the polynomial. For univariate polynomials of

size at most n over a field, this algorithm finds all of the quotients and a single remainder

r (which is the GCD) together with corresponding values of s and t, satisfying as + bt = r,

using O(M(n) log n) field operations. M(n) denotes the number of field operations required

to multiply two univariate polynomials of size n.

In the first section of this chapter we will introduce Karatsuba’s algorithm as a fast

multiplication algorithm. In the second section we will present the Fast Extended Euclidean

Algorithm and its application for solving the polynomial interpolation problem fast.

2.1 Fast Polynomial Multiplication

The polynomial multiplication algorithms which are asymptotically faster than the classical

O(n2) method are considered to be fast polynomial multiplication algorithms. There are

two well-known fast multiplication algorithms, namely Karatsuba’s [13] algorithm and an

FFT∗-based multiplication algorithm. In the case of univariate polynomials of size n, the

classical method uses O(n2) steps to compute the product, while Karatsuba’s algorithm has

a time complexity of O(n1.58) and the FFT-based algorithm costs O(n log n). The FFT-

based algorithm is asymptotically the fastest known algorithm for multiplication but it is

more complicated to implement. Also Karatsuba’s algorithm is faster than the FFT up to a

∗Fast Fourier Transform

6
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certain size, e.g. in Magma, Karatsuba’s algorithm for integer multiplication is faster than

the FFT for integers of size up to 50,000 bits.

2.1.1 Karatsuba’s Multiplication Algorithm

Let R be a ring and a, b ∈ R[x] of size n. The classical multiplication method uses n2

multiplications and (n − 1)2 additions in R to compute ab. Yet, we can compute the

product faster if we use Karatsuba’s multiplication algorithm.

For simplicity assume that n = 2k for some k ∈ N. Split a and b into two polynomials

of size n/2:

a = a2x
n/2 + a1 (a1, a2 ∈ R[x]) (2.1)

b = b2x
n/2 + b1 (b1, b2 ∈ R[x]). (2.2)

Then the product ab can be written as

ab = a2b2x
n + (a1b2 + a2b1)x

n/2 + a1b1

= a2b2x
n + ((a1 + a2)(b1 + b2) − a1b1 − a2b2)x

n/2 + a1b1. (2.3)

Relation (2.3) can be used for computing a1b1, a2b2 and (a1 + a2)(b1 + b2) recursively. This

results in Algorithm 2.1.

Figure 2.1 illustrates Karatsuba’s algorithm step by step. As shown in this figure,

computing the product ab requires three multiplications and two additions on polynomials

of size n/2, two subtractions on polynomials of size n − 1 and one addition of size n − 2.

Remark 2.1. Note that there is a “gap” between c1 and c3x
n.

Let T (n) denote the cost of multiplying two polynomials of size n. The following table

shows the cost of each step of Algorithm 2.1 as illustrated in Figure 2.1.

Step 1 2 3 4 5

Cost − − 3T (n/2) + n 2(n − 1) n − 2
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Algorithm 2.1: Karatsuba’s Algorithm for input polynomials of size n = 2k

Input: Polynomials a, b ∈ R[x] of size n = 2k, where R is a ring and deg a = deg b =
n − 1.

Output: Polynomial c = ab ∈ R[x].

1. if n = 1 then return a · b ∈ R

2. let a = a2x
n/2 + a1 and b = b2x

n/2 + b1 where a1, a2, b1, b2 ∈ R[x] are of size n/2

3. compute c1 = a1b1, c′ = (a1 + a2)(b1 + b2) and c3 = a2b2 by recursively applying
the algorithm

4. compute c2 = c′ − c1 − c3

5. return c = c3x
n + c2x

n/2 + c1

Assuming T (1) = 1 we have the following recurrence relation:

T (n) = 3T (n/2) + 4n − 4

= 32T (n/22) + 3(4(n/2) − 4) + 4n − 4

...

= 3kT (n/2k) + 4
k−1
∑

i=0

((3/2)in − 3i)

= 3kT (1) + 8n((3/2)k − 1) − 2(3k − 1)

= 7nlog2 3 − 8n + 2.

Hence

T (n) ∈ O(nlog2 3) = O(n1.585).
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02n − 2

n2n − 2

n/23n/2 − 2

0n − 2

0n − 2

0n − 2

0n − 2

0n/2 − 1

0n/2 − 1

0

n − 1

0

n − 1

5)

4)

3)

2)

Step

c3x
n + c2x

n/2 + c1

c3x
n

c2x
n/2

c2 = c′ − c1 − c3

c3 = a2b2

c1 = a1b1

c′ = a′b′

b′ = b1 + b2

a′ = a1 + a2

b = b2x
n/2 + b1

a = a2x
n/2 + a1

Operation

n − 2

-

-

2(n − 1)

T (n/2)

T (n/2)

T (n/2)

n/2

n/2

-

-

Cost

· · · · · ·

· · · · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · · · · · · · · · · ·

a2

a1

n/2 − 1

n/2

b2

b1

n/2 − 1

n/2

3n/2 − 2

n n − 2

n/2

c1c3x
n

c2x
n/2

Figure 2.1: Steps of Karatsuba’s multiplication algorithm
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In case n is not a power of 2 but a and b are still of equal size, we can assume that they

are both of size 2⌈log2 n⌉ with some top coefficients equal to zero. However, this may not be

efficient if n is only slightly larger than a power of 2. Alternately, a and b can be divided

into sub-polynomials of size n1 = ⌈n/2⌉ and n2 = ⌊n/2⌋. It is obvious that if n is even then

n1 = n2 = n/2 and otherwise n1 = n2 +1. Assuming we split the polynomials in a way that

the lower half is of size n1 and the upper half is of size n2, we will have

a = a2x
n1 + a1 (a1, a2 ∈ R[x])

b = b2x
n1 + b1 (b1, b2 ∈ R[x])

and

ab = a2b2x
2n1 + (a1b2 + a2b1)x

n1 + a1b1

= a2b2x
2n1 + ((a1 + a2)(b1 + b2) − a1b1 − a2b2)x

n1 + a1b1. (2.4)

Algorithm 2.1 can easily be modified to compute the product of two input polynomials of

the same size, not necessarily a power of 2, without affecting the asymptotic complexity.

We next consider the case where input polynomials are not of the same size. Algo-

rithm 2.2 describes Karatsuba’s multiplication algorithm in this case.

Algorithm 2.2: Karatsuba’s Algorithm for polynomials of different sizes

Input: Polynomials a, b ∈ R[x] where R is a ring, m = deg b + 1, n = deg a + 1 = qm + r
(r < m) and n ≥ m

Output: Polynomial c = ab ∈ R[x].

1. let a = aqx
mq + aq−1x

m(q−1) + . . . + a1x
m + a0, where all ai’s are in R[x] and of

size m except aq which is of size r

2. compute ci = aib for 0 ≤ i < q using Algorithm 2.1 (after a small modification),
and cq = aqb by recursively calling Algorithm 2.2.

3. return c = cqx
mq + cq−1x

m(q−1) + . . . + c1x
m + c0

Let a and b be two polynomials of size n and m respectively. Without loss of generality

assume n ≥ m. Let q and r be respectively the quotient and the remainder of dividing n by
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m, i.e. n = qm + r (r < m). In the first step of Algorithm 2.2 polynomial a is divided into

chunks of size at most m namely ais as follows

a = aqx
mq + aq−1x

m(q−1) + . . . + a1x
m + a0,

so we will have

ab = (aqb)x
mq + (aq−1b)x

m(q−1) + . . . + (a1b)x
m + (a0b).

Polynomial b and all ai’s except aq are of size m. Thus, Algorithm 2.1 can be applied for

computing ci = aib (0 ≤ i < q). But aq and b are of different sizes so to compute cq = aqb

we recursively use Algorithm 2.2 with b and aq as inputs. In the last step of Algorithm 2.2

we perform q additions and obtain the product

c = cqx
mq + cq−1x

m(q−1) + . . . + c1x
m + c0.

In practice for small input polynomials the classical method performs better than Karat-

suba’s algorithm. Therefore, a hybrid implementation which makes use of both algorithms

is the best choice. We find a cutoff degree above which we use Karatsuba’s algorithm and

below that the classical method is applied. The cutoff degree can be computed by running

both algorithms on random input polynomials of increasing size. We can easily incorporate

this change in Algorithms 2.1 and 2.2.

Figure 2.2 shows the timings of Karatsuba’s algorithm (hybrid implementation) on two

random polynomials of degree 1500 with the cutoff degree changing from 10 to 100. As

illustrated, the best cutoff degree is 55.

n Karatsuba Classical

128 0.34 0.38
256 0.98 1.40
512 2.93 5.40

1024 8.93 21.62
2048 26.48 84.43
4096 79.78 345.67
8192 245.04 1375.42

Table 2.1: The classical and Karatsuba’s multiplication algorithm timings (in ms)

The data in Table 2.1 includes the timings, in milliseconds, we gathered for our imple-

mentation of Karatsuba’s algorithm and the classical multiplication method (in Java) over
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Figure 2.2: Timings (in ms) of Karatsuba’s algorithm for different cutoff degrees

Zp[x], where n denotes the polynomial degree and p is a 15 bit prime. The timings for

Karatsuba’s algorithm increase by a factor close to 3 as the degree doubles which confirms

that our implementation of Karatsuba’s algorithm is of time complexity O(nlog2 3).

2.1.2 Memory Requirements of Karatsuba’s Algorithm

A naive implementation of Karatsuba’s algorithm makes use of some extra storage in each

recursive call to the algorithm. Let M(n) denote the total amount of memory required

to multiply polynomials a and b of size n using Karatsuba’s algorithm, where n = 2k for

some k ∈ N. The following table displays the amount of memory used in each step of

Algorithm 2.1.

Step 1 2 3 4 5

Memory − 2n 3M(n/2) + n n − 1 2n − 1

Note that M(n) does not include the memory required to store a and b which is itself 2n

(step 2). Assuming M(1) = 1 we will have

M(n) = n/2 + n/2 + 3M(n/2) + n − 1 + 2n − 1

= 8nlog2 3 − 8n + 1 ∈ O(nlog2 3).
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a′b′ a1b1

a′b′ a1b1

b2 b1b :

n2 n1

a2 a1a :

n2 n1

Split a and b into subpolynomials of

size n1 = ⌈n/2⌉ and n2 = ⌊n/2⌋.
(1)

M(n)
Allocate M(n) units of storage for

computing ab.
(2)

a′b′a′b′

M(n1)

n1n12n1 − 1
Compute a′ = a1 + a2 and b′ = b1 + b2.

Compute a′b′ recursively.
(3)

M(n1)

2n1 − 1 Move a′b′ to the end of the allocated
memory and then compute a1b1

recursively.

(4)

M(n2) 2n12n1 − 1

2n2 − 1

Compute a2b2 recursively.(5) 0a2b2

0a2b2c a1b1 Compute c = a′b′ − a1b1 − a2b2(6)

ab

M(n)

2n − 1
Obtain ab by computing a2b2x

2n1+
cxn1 + a1b1

(7)

Figure 2.3: Memory requirements of Karatsuba’s algorithm in our implementation

Therefore, the total amount of memory required to compute ab using Karatsuba’s algorithm

is of order O(nlog2 3). In 1993 Maeder in [14] suggested an “in place” implementation for

Karatsuba’s integer multiplication algorithm. He gave upper and lower bounds for the

amount of auxiliary storage required.

We used the same method in our implementation of Karatsuba’s algorithm for polyno-

mial multiplication. In our implementation the total amount of memory required for mul-

tiplying the input polynomials—taking into account the memory required for performing

intermediate calculations—is computed and allocated in advance, and passed as a parameter

to the method implementing the multiplication algorithm.

Let a and b be two polynomials of the same size which is not necessarily a power of 2.

Figure 2.3 illustrates the order in which the computations must be done so that the number
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of necessary copies is minimized and the results are put in their final location. We show

below that by implementing the algorithm “in place” only 4n words of memory are required

which is linear in the size of the input polynomials.

In Figure 2.3 the total amount of memory required for any multiplication is marked by

dashed lines and arrows, while the required amount of memory to keep the result only, is

marked by solid lines. Row (5) shows that it is sufficient to allocate totally 2n1 + M(n2) +

2n1 − 1 memory cells for computing ab, in other words

M(n) =















M(⌊n/2⌋) + 4⌈n/2⌉ − 1, n ≥ 3;

3, n = 2;

1, n = 1.

(2.5)

We claim 4n is an upper bound for M(n) and prove our claim by strong induction. So

we must show that the following inequality holds for all integer values of n:

M(n) < 4n. (2.6)

The basis is to verify that M(1) = 1 < 4 and M(2) = 3 < 8. Now we must prove that if

(2.6) holds for all k ≤ n − 1, it also holds for k = n,

M(n) = M(n2) + 4n1 − 1 < 4n2 + 4n1 − 1 = 4n − 1 < 4n.

2.2 The Euclidean Algorithm

The Euclidean algorithm finds the greatest common divisor of two integers or two polyno-

mials. However, it has a number of nice properties and applications which go far beyond

that of just computing greatest common divisors.

In Section 2.2.1 we describe how the Classical and the Extended Euclidean Algorithms

work and investigate some properties of the latter algorithm. Then in Section 2.2.2 we will

explore the Fast Extended Euclidean Algorithm, also called Half-GCD. Given two polynomi-

als of size n with coefficients from a field F , the Extended Euclidean Algorithm uses O(n2)

field operations to compute their greatest common divisor. However, the fast Euclidean

algorithm computes the same GCD in O(M(n) log n) field operations, where M(n) denotes

the number of field operations required to multiply two univariate polynomials of size n.

Hence using Karatsuba’s multiplication the GCD can be computed using O(nlog2 3 log n)

field operations.
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2.2.1 The Extended Euclidean Algorithm

In Chapter 3 we will introduce an algorithm for reconstructing a rational function from

its image modulo a univariate polynomial, the basic component of which is the Extended

Euclidean Algorithm. The Euclidean Algorithm is an effective algorithm for computing the

GCD in any Euclidean domain.

Definition 2.2. An integral domain† R with a valuation function v : R \ {0} → N ∪ {0} is

a Euclidean Domain if

1. for all a, b ∈ R\{0} we have v(ab) > v(a),

2. for all a, b ∈ R with b 6= 0, we can divide a by b to obtain elements q, r ∈ R such that

a = bq + r where either r = 0 or v(r) < v(b).

Polynomials q and r are called the quotient and the remainder, respectively, and the

valuation function v is a Euclidean norm function on R. For example, if F is a field then

F [x], the ring of univariate polynomials over F , is a Euclidean domain with v(a) = deg a.

Definition 2.3. Let R be a ring and a, b, g ∈ R. g is a greatest common divisor or a GCD

of a and b if

(i) g|a and g|b.

(ii) if c|a and c|b then c|g, for all c ∈ R.

In general the GCD of a and b is not unique, but all their GCDs are associates‡. Al-

gorithm 2.3 describes how the classical Euclidean algorithm computes the GCD of two

elements in a Euclidean domain. It can easily be proved that the output of this algorithm

is a GCD of the inputs. Thus, the GCD is simply the last nonzero element of the remainder

sequence generated by Algorithm 2.3.

†An Integral Domain is a commutative ring which satisfies the Cancelation Law.
‡The elements a and b are associate if a = ub for u ∈ R and u has a multiplicative inverse in R.
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Algorithm 2.3: Classical Euclidean Algorithm (EA)

Input: a, b ∈ R, where R is a Euclidean domain.
Output: Greatest common divisor of a and b.

1. r0 = a, r1 = b

2. i = 1
while ri 6= 0 do

qi = ri−1 quo ri /∗ qi is the quotient of dividing ri−1 by ri. ∗/
ri+1 = ri−1 − riqi

i = i + 1

3. return ri−1.

The classical Euclidean algorithm can be readily extended so that it computes not only

g = gcd(a, b), but also the elements s and t satisfying sa+ tb = g. Algorithm 2.4, also called

the monic Extended Euclidean Algorithm, presents the Extended Euclidean Algorithm for

the Euclidean domain F [x], with F a field. This algorithm makes all remainders in the

remainder sequence monic, that is, to have 1 as the leading coefficient. This results in

outputting a monic form of the GCD which is unique.

Algorithm 2.4: Extended Euclidean Algorithm (EEA)

Input: f, g ∈ F [x], where F is a field and deg f ≥ deg g.
Output: l ∈ N, ri, si, ti ∈ F [x], ρi ∈ F , for 0 ≤ i ≤ l + 1, and qi ∈ F [x] for 1 ≤ i ≤ l.

1. ρ0 = lc(f), r0 = f/ρ0, s0 = 1/ρ0, t0 = 0
ρ1 = lc(g), r1 = g/ρ1, s1 = 0, t1 = 1/ρ1

2. i = 1
while ri 6= 0 do
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qi = ri−1 quo ri

ρi+1 = lc(ri−1 − qiri) /∗ for consistency we let lc(0) = 1. ∗/
ri+1 = (ri−1 − qiri)/ρi+1

si+1 = (si−1 − qisi)/ρi+1

ti+1 = (ti−1 − qiti)/ρi+1

i = i + 1

3. l = i − 1
return l, ri, si, ti, ρi for 0 ≤ i ≤ l + 1, and qi for 1 ≤ i ≤ l.

The elements ri, si and ti, with 0 ≤ i ≤ l + 1, are called the ith row of the Extended

Euclidean Algorithm. For a better understanding of the algorithm consider the matrices

R0 =

(

s0 t0

s1 t1

)

, Qi =

(

0 1

1/ρi+1 −qi/ρi+1

)

in F [x]2×2 and Ri = Qi . . . Q1R0 for 1 ≤ i ≤ l. From the algorithm we have

Qi

(

si−1 ti−1

si ti

)

=

(

si ti

si+1 ti+1

)

,

Qi

(

ri−1

ri

)

=

(

ri

ri+1

)

,

for 1 ≤ i ≤ l. The following lemma presents some known properties of the Extended

Euclidean Algorithm which are in the scope of this thesis.

Lemma 2.4. Let ni = deg ri in the EEA for inputs f and g. We let r0 = f/ lc(f), r1 =

g/ lc(g) and rl+1 = 0. Then for 0 ≤ i ≤ l we have

(i) ni > ni+1 where i 6= 0,

(ii) gcd(f, g) = gcd(ri, ri+1) = rl,

(iii) Ri =

(

si ti

si+1 ti+1

)

,

(iv) Ri

(

f

g

)

=

(

ri

ri+1

)

,
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(v) siti+1 − si+1ti =
(−1)i

ρ0 . . . ρi+1
,

(vi) sif + tig = ri; in particular, slf + tlg = gcd(f, g),

(vii) gcd(si, ti) = 1,

(viii) gcd(ri, ti) = gcd(f, ti),

(ix) deg si+1 = n1 − ni, deg ti+1 = n0 − ni where i 6= 0.

Proof. (i) and (ii) are easy to show. (iii), (iv) and (v) are easily proved by induction on i.

(vi) follows from (iii) and (iv). (vii) follows directly from (v).

To prove (viii), we let g1 = gcd(f, ti). Thus g1|(sif + tig = ri) or g1| gcd(ri, ti). On the

other hand, if we let g2 = gcd(ri, ti), then g2|ri − tig = sif . But according to (vii) we have

gcd(si, ti) = 1 and thus g2|f or g2| gcd(f, ti). This proves (viii).

By induction we can easily show that deg si > deg si−1 for i > 1, which implies that

deg si+1 = deg(si−1 − qisi) = deg qi + deg si =
i
∑

j=2

deg qj =
i
∑

j=2

(nj−1 − nj) = n1 − ni.

Proof is the same for deg ti.

Cost Analysis of the EEA

Let f, g ∈ F [x], with F a field and deg f = n > deg g = m ≥ 0. We let ni = deg ri for

0 ≤ i ≤ l + 1, with rl+1 = 0, where ri’s are monic remainders generated by Algorithm 2.4

for inputs f and g.

To compute the quotient and the remainder of a monic polynomial of degree ni−1 di-

vided by another monic polynomial of degree ni < ni−1, we use at most ni(ni−1 − ni)

multiplications and ni(ni−1 − ni + 1) subtractions in F . Then to obtain a monic remainder

we take one inversion plus ni+1 multiplications in F . So the cost of computing all quotients

and monic remainders in the EEA is

l
∑

i=1

(2ni(ni−1 − ni) + ni) +
l−1
∑

i=1

ni+1 (2.7)

subtractions and multiplications plus l− 1 inversions in F . It is obvious that the number of

division steps l is bounded by m + 1. To evaluate (2.7), we consider the worst case where
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the degree drops by 1 at each step, so that ni = m − i + 1 for 1 ≤ i ≤ l = m + 1. This

simplifies (2.7) to

2m(n − m) + m + 4
l
∑

i=2

ni = 2mn − m.

It remains to analyze the cost for computing si+1 and ti+1. We can multiply the monic

polynomial qi by ti using only 2 deg ti · deg qi + deg qi operations in F . Subtracting the

product from ti−1 and multiplying the result by ρ−1
i+1 takes another 2(deg ti+1 +1) additions

and multiplications. Thus the total number of additions and multiplications for computing

all ti+1’s (1 ≤ i ≤ l) is

l
∑

i=1

(deg qi(2 deg ti + 1) + 2(deg ti+1 + 1))

=
l
∑

i=1

((ni−1 − ni)(2(n − ni−1) + 1) + 2(n − ni + 1))

which simplifies to

3(n − m) + 2 +
l
∑

i=2

(4(n − m) + 4i − 3)) = 4nm − 2m2 + 3n + 2.

Using a similar argument as the one used for ti the cost of computing all si’s is obtained

to be 2m2 + 2m + n + 2. Normalizing f and g in step 1 of Algorithm 2.4 also takes two

inversions and n + m multiplications. Thus the total cost of the EEA is at most m + 2

inversions and 6mn + O(n) additions and multiplications in F .

2.2.2 The Fast Extended Euclidean Algorithm

For the first time in 1971 Schönhage in [15] presented a fast integer GCD algorithm with

time complexity O(n log2 n log log n). Assuming a multiplication algorithm of time com-

plexity O(n loga n) is available for polynomials in F [x], Moenck in [16] adapted Shon̈hage’s

algorithm into an O(n loga+1 n) algorithm for polynomial GCD computation in F [x]. How-

ever, its correctness was restricted to input polynomials of the form “normal remainder

sequences”. Montgomery in his PhD thesis [17] presented a fast extended Euclidean algo-

rithm for polynomials in Zp[x] which is of O(M(n) log n). Maple, Mathematica and Magma

have fast integer multiplication and division. Only Magma has fast integer GCD.

As a part of this thesis, we have implemented the Fast Extended Euclidean Algorithm

presented in [12, Ch. 11] for polynomials in F [x] = Zp[x], with p a prime. However, the
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algorithm presented in the book needs some corrections. We have made some modifications

to this algorithm by removing some unnecessary outputs (Algorithm 2.5) and adding some

parts for computing the quotient with maximal degree (Algorithm 3.2).

Let f = fnxn + fn−1x
n−1 + . . . + f0 ∈ F [x] and fn 6= 0. Following [12], we define the

truncated polynomial

f ↾ k = f quo xn−k = fnxk + fn−1x
k−1 + . . . + fn−k,

for k ∈ Z. We set fi = 0 if i < 0 and f ↾ k = 0 if k < 0. The polynomial f ↾ k is of degree

k for k ≥ 0 and its coefficients are the k + 1 highest coefficients of f .

Definition 2.5. The pairs (f, g) and (f∗, g∗) coincide up to k if

f ↾ k = f∗ ↾ k,

g ↾ (k − (deg f − deg g)) = g∗ ↾ (k − (deg f∗ − deg g∗), (2.8)

where f, g, f∗, g∗ ∈ F [x]\{0}, deg f > deg g, deg f∗ > deg g∗ and k ∈ Z. If k ≥ deg f−deg g,

then deg f − deg g = deg f∗ − deg g∗.

Example 2.6. Consider f = 2x8 + x7 + 4x5 + 3x2 + 1, g = x7 + 5x5 + 3x4 + x2 + 6 and

f∗ = 2x7 + x6 + 4x4 + 3x + 5, g∗ = x6 + 5x4 + 3x3 + x. Then (f, g) and (f∗, g∗) coincide up

to 6 because

f ↾ 6 = f∗ ↾ 6 = 2x6 + x5 + 4x3 + 3

g ↾ 5 = g∗ ↾ 5 = x5 + 5x3 + 3x2 + 1

Lemma 2.7. [12, Lemma 11.1] Let k ∈ Z, f, g, f∗, g∗ ∈ F [x]\{0}. If (f, g) and (f∗, g∗)

coincide up to 2k and k ≥ deg f − deg g then

1. q = q∗ and

2. if r 6= 0 and k−deg q ≥ deg g−deg r then (g, r) and (g∗, r∗) coincide up to 2(k−deg q),

where q, r, q∗, r∗ ∈ F [x] are defined by

f = qg + r, (deg r < deg g),

f∗ = q∗g∗ + r∗, (deg r∗ < deg g∗).
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Lemma 2.7 gives the requirements necessary for the quotients to be equal. Refer to [12,

Lemma 11.1] for the proof.

Let ni = deg ri for 0 ≤ i ≤ l + 1 and rl+1 = 0, where ri’s are monic polynomials in the

remainder sequence generated by the Euclidean Algorithm for monic polynomials r0 and r1.

We let mi = deg qi = ni−1 − ni for 1 ≤ i ≤ l, where qi is the ith quotient in the Euclidean

Algorithm. Then we have

n0 − nj =

j
∑

i=1

mi. (2.9)

For any k ∈ N and f, g ∈ F [x], define the positive integer number ηf,g(k) by

ηf,g(k) = max
0≤j≤l

{j :

j
∑

i=1

mi ≤ k}. (2.10)

The following inequality is derived from (2.9) and (2.10),

ηf,g(k)
∑

i=1

mi = n0 − nηf,g(k) ≤k < n0 − nηf,g(k)+1 =

ηf,g(k)+1
∑

i=1

mi. (2.11)

Lemma 2.8. [12, Lemma 11.3] Let k ∈ N, h = ηr0,r1
(k) and h∗ = ηr∗

0
,r∗

1
(k), with r0, r1, r

∗
0, r

∗
1

monic polynomials in F [x]. If (r0, r1) and (r∗0, r
∗
1) coincide up to 2k and k ≥ deg r0 −deg r1,

then

1. h = h∗,

2. qi = q∗i for 1 ≤ i ≤ h,

3. ρi = ρ∗i for 2 ≤ i ≤ h,

where qi, q
∗
i ∈ F [x] and ρi, ρ

∗
i ∈ F are defined by

ri−1 = qiri + ρi+1ri+1 (1 ≤ i ≤ l), rl+1 = 0,

r∗i−1 = q∗i r
∗
i + ρ∗i+1r

∗
i+1 (1 ≤ i ≤ l∗), r∗l∗+1 = 0.

Remark 2.9. Note that the original lemma in [12] states that ρh+1 = ρ∗h+1 which is not

correct and we have excluded h + 1 in Lemma 2.8.

The proof for Lemma 2.8 follows directly from Lemma 2.7. Refer to [12, Lemma 11.3] for

a detailed proof of this lemma. To improve the efficiency of the EEA, a divide-and-conquer
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algorithm is designed based on Lemma 2.8. This algorithm is called the Fast Extended

Euclidean Algorithm and is presented as Algorithm 2.5.

Algorithm 2.5 works by dividing the sequence of the quotients into two parts such that

the sum of the degrees in both parts is almost the same. Let l be the number of division

steps in the Euclidean algorithm. Then in the case of a normal degree sequence, in which the

quotient degree drops exactly by 1 at each step, the problem is divided into two subproblems

of size l/2.

To obtain the quotient of the division of a large monic polynomial r0 by another large

monic polynomial r1, one can divide two smaller polynomials r∗0 and r∗1, provided that

(r0, r1) and (r∗0, r
∗
1) coincide up to 2k, where k ≥ deg r0 − deg r1. This can even be ex-

tended to applying the Euclidean Algorithm on r∗0, r
∗
1 instead of r0, r1 and get the same first

ηr0,r1
(k) quotients, and the same first ηr0,r1

(k)− 1 leading coefficients of the remainders, by

Lemma 2.8.

Algorithm 2.5 gets two monic polynomials r0, r1 and a positive integer k as input, with

n0/2 ≤ k ≤ n0. Input k helps us divide the problem into two subproblems of almost the

same size (k/2). The FEEA is then recursively applied to solve each problem. The sum

of degrees of the quotients computed in each call to the FEEA is less than or equal to k.

That is, if we let mi = deg qi then it should return whenever
∑h+1

i=1 mi > k. According to

(2.10) h = ηr0,r1
(k). If the algorithm is called with a value of k which satisfies the condition

n0/2 ≤ k ≤ n0, then in any further call to the FEEA we will have k = n0/2. We will explore

the special cases where 0 < k < n0/2, or inputs r0 and r1 are not monic or deg r0 = deg r1

later.

The following four items describe the four outputs of Algorithm 2.5:

• h = ηr0,r1
(k) specifies the total number of steps of the Extended Euclidean Algorithm

performed in one call to Algorithm 2.5. Note that the FEEA computes all the elements

of the EEA except the remainders.

• ρh+1 is the leading coefficient of the (h + 1)th remainder in the Extended Euclidean

Algorithm, that is ρh+1rh+1 = rh−1 − rhqh where rh−1, rh and rh+1 are all monic

polynomials.

• Rh =

(

sh th

sh+1 th+1

)

is a matrix that helps us compute the monic remainders rh and

rh+1 from r0 and r1, in addition to holding the values of sh, th, sh+1, th+1.
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Algorithm 2.5: Fast Extended Euclidean Algorithm (FEEA)

Input: r0, r1 two monic polynomials in F [x] with n0 = deg r0 > n1 = deg r1 ≥ 0 and
k ∈ N with n0/2 ≤ k ≤ n0. /∗ n0 is strictly greater than n1. ∗/

Output: h = ηr0,r1
(k) ∈ N, ρh+1 ∈ F , Rh =

(

sh th
sh+1 th+1

)

and

(

rh

rh+1

)

= Rh

(

r0

r1

)

.

1. if r1 = 0 or k < n0 − n1 then

return 0, 1,

(

1 0
0 1

)

and

(

r0

r1

)

else if n0 < cutoff then /∗ cutoff degree of the FEEA ∗/
return EEA(r0, r1, k)

2. k1 = ⌊k/2⌋

3. r∗0 = r0 ↾ 2k1, r∗1 = r1 ↾ (2k1 − (n0 − n1))
call the algorithm recursively by writing FEEA(r∗0, r∗1,k1), to obtain

j − 1 = ηr∗
0
,r∗

1
(k1), ρ∗j , R∗

j−1 = Q∗
j−1Qj−2 . . . Q1 where Q∗

j−1 =





0 1
1

ρ∗j

−qj−1

ρ∗j



,

and

(

r∗j−1

r∗j

)

= R∗
j−1

(

r∗0
r∗1

)

4. /∗ in this step we want to determine ρj , rj−1, rj and Rj−1. ∗/
(

rj−1

r̃j

)

= R∗
j−1

(

r0

r1

)

Rj−1 =

(

1 0
0 1/ lc(r̃j)

)

R∗
j−1

ρj = ρ∗j lc(r̃j), rj = r̃j/ lc(r̃j)

5.

(

nj−1

nj

)

=

(

deg rj−1

deg rj

)

if rj = 0 or k < n0 − nj then

return j − 1, ρj , Rj−1,

(

rj−1

rj

)

6. qj = rj−1 quo rj

ρj+1 = lc(rj−1 − qjrj) /∗ for consistency we let lc(0) = 1. ∗/
rj+1 = (rj−1 − qjrj)/ρj+1
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nj+1 = deg rj+1

Rj =

(

0 1
1/ρj+1 −qj/ρj+1

)

Rj−1

7. k2 = k − (n0 − nj) /∗ up to now we have computed j quotients. ∗/

8. r∗j = rj ↾ 2k2, r∗j+1 = rj+1 ↾ (2k2 − (nj − nj+1))

call the algorithm recursively by writing FEEA(r∗j , r
∗
j+1, k2), to obtain

h − j = ηr∗j ,r∗j+1
(k2), ρ∗h+1, S̃ = Q∗

hQh−1 . . . Qj+1 where Q∗
h =





0 1
1

ρ∗h+1

−qh

ρ∗h+1



,

and

(

r∗h
r∗h+1

)

= S̃

(

r∗j
r∗j+1

)

9.

(

rh

r̃h+1

)

= S̃

(

rj

rj+1

)

S =

(

1 0
0 1/ lc(r̃h+1)

)

S̃

ρh+1 = ρ∗h+1 lc(r̃h+1), rh+1 = r̃h+1/ lc(r̃h+1)

10. return h, ρh+1, SRj ,

(

rh

rh+1

)

•

(

rh

rh+1

)

= Rh

(

r0

r1

)

is a vector containing the hth and the (h+1)th monic remainders

in the Extended Euclidean Algorithm. If h is equal to the total number of steps of the

Extended Euclidean Algorithm on r0 and r1 i.e. l, then rh = gcd(r0, r1) and rh+1 = 0.

In step 3 of Algorithm 2.5, a recursive call is made with k1 = ⌊k/2⌋ as the integer input, so

that when completed ηr∗
0
,r∗

1
(k1) = j−1 quotients have been computed. This is almost half of

the quotients in the case of a normal degree sequence. The pairs (r0, r1) and (r∗0, r
∗
1) coincide

up to 2k1 and n0 − n1 ≤ k, thus according to Lemma 2.8 ηr0,r1
(k1) = ηr∗

0
,r∗

1
(k1) = j − 1,

qi = q∗i for 1 ≤ i ≤ j − 1 and ρi = ρ∗i for 2 ≤ i ≤ j − 1. Note that ρj is not necessarily

equal to ρ∗j . In step 6 we compute the next quotient qj , and then in step 8 another recursive

call is made with k2 = k − (n0 − nj) = k −
∑j

i=1 deg qi. This will perform the rest of the

divisions and when completed all the expected quotients have been computed.
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In step 4 we obtain the values of ρj , rj−1, rj and Rj−1. We have

R∗
j−1 = Q∗

j−1Rj−2 =







0 1
1

ρ∗j

−qj−1

ρ∗j







(

sj−2 tj−2

sj−1 tj−1

)

=





sj−1 tj−1
ρj

ρ∗j
sj

ρj

ρ∗j
tj



 , (2.12)

hence

R∗
j−1

(

r0

r1

)

=





rj−1
ρj

ρ∗j
rj



 .

Let r̃j =
ρj

ρ∗j
rj . Since rj is monic we get

ρj = ρ∗j lc(r̃j) =⇒ rj = r̃j/ lc(r̃j),

Rj−1 =

(

1 0

0 1/ lc(r̃j)

)

R∗
j−1 = Qj−1 . . . Q1.

As stated before ηr0,r1
(k1) = j − 1, thus according to (2.11) we have

n0 − nj−1 ≤ k1 < n0 − nj .

If now k < n0 − nj in step 5, then ηr0,r1
(k) = j − 1 and the algorithm returns the correct

result; otherwise, ηr0,r1
(k) ≥ j and the execution is continued with computing the next

quotient qj in step 6.

In step 8 after the recursive call we have S̃ = Q∗
hQh−1 . . . Qj+1, and by Lemma 2.4 (iv)

we obtain

S̃

(

rj

rj+1

)

= S̃.Rj

(

r0

r1

)

= Q∗
hRh−1

(

r0

r1

)

= Q∗
h

(

rh−1

rh

)

=







0 1
1

ρ∗h+1

−qh

ρ∗h+1







(

rh−1

rh

)

=





rh
ρh+1

ρ∗h+1

rh+1



 .

Let r̃h+1 =
ρh+1

ρ∗h+1

rh+1. By analogous reasoning as for step 4 we get

ρh+1 = ρ∗h+1 lc(r̃h+1) =⇒ rh+1 = r̃h+1/ lc(r̃h+1),

S =

(

1 0

0 1/ lc(r̃h+1)

)

S̃ = Qh . . . Qj+1.
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As stated before, the inputs of the FEEA are expected to be two monic polynomials

r0, r1 and a positive integer k, where deg r0 > deg r1 and n0/2 ≤ k ≤ n0. Let f, g ∈ F [x] be

two arbitrary polynomials and k ∈ N. We now explain how to handle the special cases that

might occur.

1. f and g are monic, but deg f = deg g:

Let ρ2 = lc(f − g). If f = g then we let ρ2 = lc(0) = 1. We can call the FEEA with

r0 = g, r1 = (f − g)/ρ2 and then instead of Rh =

(

sh th

sh+1 th+1

)

return the following

matrix

Rh

(

0 1

1/ρ2 −1/ρ2

)

=

(

th/ρ2 sh − th/ρ2

th+1/ρ2 sh+1 − th+1/ρ2

)

.

The subtraction, normalization and the corresponding corrections of Rh cost only O(n)

field operations and hence do not affect the asymptotic running time of the algorithm.

2. deg f > deg g, but f and g are not monic:

We run the algorithm on r0 = f/ lc(f), r1 = g/ lc(g) and divide the first and the

second column of the result Rh by lc(f) and lc(g), respectively. This takes only O(n)

additional field operations.

3. 0 < k < n0/2:

It suffices to call the algorithm with input r0 ↾ 2k, r1 ↾ (2k − (deg r0 − deg r1)) and

k, and make the same corrections on ρh+1, rh+1 and Rh as we did in step 4 of the

algorithm.

Now one question is, what value should we choose for input k, when we want to compute

gcd(r0, r1) using the FEEA? The output h = ηr0,r1
(k) denotes the number of steps of the

EEA performed, or equivalently, the number of quotients computed in the FEEA with inputs

r0, r1 and k. Let l denote the total number of steps of the EEA. We have

l
∑

i=1

deg qi ≤ deg r0.

If we set k = deg r0, then h = ηr0,r1
(deg r0) = l which results in computing all the quotients

or gcd(r0, r1) as well.
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Cost Analysis of the FEEA

Let T (k) denote the number of additions and multiplications that Algorithm 2.5 performs in

F with input k. Step 3 of the algorithm performs T (k1) = T (⌊k/2⌋) operations for solving

a subproblem of the same kind. Definition of k2 and inequality (2.11) imply that

k2 = k − (n0 − nj) < k − k1 = ⌈k/2⌉

or k2 ≤ ⌊k/2⌋. Thus step 8 takes T (k2) or at most T (⌊k/2⌋) operations in F .

To make the algorithm work more efficiently, in step 4 instead of multiplying R∗
j−1 by

(r0, r1)
T whose entries are at most of degree 2k, we multiply it by a vector with entries of

degree at most n0 − 2k1 − 1 ≤ k as follows

R∗
j−1

(

r0

r1

)

= R∗
j−1

(

r0

r1

)

−

(

R∗
j−1

(

r∗0

r∗1

)

−

(

r∗j−1

r∗j

))

xn0−2k1

= R∗
j−1

(

r0 − r∗0x
n0−2k1

r1 − r∗1x
n0−2k1

)

+

(

r∗j−1x
n0−2k1

r∗j x
n0−2k1

)

.

The entries of R∗
j−1 =

(

sj−1 tj−1

ρj/ρ∗jsj ρj/ρ∗j tj

)

are of degrees n1−nj−2, n0−nj−2, n1−nj−1 and

n0−nj−1, by (2.12) and Lemma 2.4 (ix). All four values are at most n0−nj−1 ≤ k1 = ⌊k/2⌋.

Thus we have four multiplications of polynomials of degree at most ⌊k/2⌋ by polynomials of

degree less than or equal to k, plus some multiplications by constants and some additions.

Thus the cost for step 4 is 4M(k) + O(k).

In step 9 instead of multiplying S̃ by (rj , rj+1)
T we do the same computations as we

did in step 4 to get the result more efficiently. The entries of S̃ are of degrees nj+1 − nh−1,

nj −nh−1, nj+1−nh and nj −nh which are at most nj −nh ≤ k2 ≤ ⌊k/2⌋. The polynomials

in the vector to which S̃ is applied are of degree nj − 2k2 − 1 = n0 − k − k2 − 1 < k. Thus

as step 4, the cost for step 9 is bounded by 4M(k) + O(k).

In step 6 we divide rj−1 by rj and compute the quotient qj and the remainder rj+1 of this

division. Polynomial rj is of degree nj < n0 ≤ 2k and the quotient qj is of degree nj−1−nj ≤

n0 − (n0 − k) = k. Fast division as explained in [12, Algorithm 9.5] takes 4M(k) + O(k)

operations in F for computing the quotient and at most 2M(k) + O(k) operations in F for

computing the remainder on inputs rj−1 and rj . So the cost of performing the division

would be 6M(k) + O(k).
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Remark 2.10. We did not implement Fast Division in our implementation of the FEEA.

The Fast Division Algorithm is needed when the degree of the quotient is not small, but in

the normal case where the degree drops by a small amount at each step of the FEEA there

is no need to use this algorithm.

Another computation performed in step 6 is to compute Rj , the first row of which

is exactly the same as the second row of Rj−1. Thus, we only want to compute sj+1 =

(sj−1 − sjqj)/ρj+1 and tj+1 = (tj−1 − tjqj)/ρj+1 as the elements of the second row of Rj .

As stated before sj and tj are at most of degree ⌊k/2⌋ and qj is at most of degree k,

which implies computing the elements of the second row of Rj takes at most 2M(k) + O(k)

operations in F .

The entries in the first row of Rj =

(

sj tj

sj+1 tj+1

)

are of degree ⌊k/2⌋ and the entries

in the second row are at most of degree n0 − nj ≤ k. Also as shown before, the degrees

of the entries of S are at most ⌊k/2⌋. Thus computation of S.Rj in step 10, takes at most

6M(k) + O(k) operations in F .

The only inversions that take place in Algorithm 2.5 are 1/ lc(r̃j), 1/ρj+1 and 1/ lc(r̃h+1).

They all can be computed only once. Therefore the total number of inversions during the

recursive process is at most 3k. The following table illustrates the cost of each step of the

FEEA.

Step Cost

3 T (⌊k/2⌋)

4 4M(k) + O(k)

6 8M(k) + O(k)

8 T (⌊k/2⌋)

9 4M(k) + O(k)

10 6M(k) + O(k)

Total 2T (⌊k/2⌋) + 22M(k) + O(k)

Table 2.2: The number of multiplications and additions of steps of Algorithm 2.5

T satisfies the following recursive inequalities

T (0) = 0, T (k) ≤ 2T (⌊k/2⌋) + 22M(k) + ck,

for some constant c ∈ R.
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Hence

T (k) ≤ (22M(k) + O(k)) log k ∈ O(M(k) log k).

We used Karatsuba’s multiplication algorithm in our implementation of the Fast Ex-

tended Euclidean Algorithm. In this case M(k) ∈ O(klog2 3) and thus the implemented

FEEA is of time complexity O(klog2 3 log k). The EEA performs better than the FEEA for

polynomials of low degrees. Thus we have computed a cutoff degree for the dividend r0

below which we use the EEA in Algorithm 2.5. Our implementation of the EEA (in Java)

accepts 3 inputs and returns the same number of outputs as the FEEA, so that it can be

used in step 1 of the FEEA.

Figure 2.4: Timings (in ms) of the FEEA for different cutoff degree

Figure 2.4 illustrates the timings (in ms) of the FEEA on two random polynomials of

degree 10000. We can choose 150 as the cutoff degree, but it seems that any value in the

range 100 to 300 can be chosen as the cutoff degree.

Table 2.3 illustrates some timings for the EEA and the FEEA using cutoff degree 150.

The first column (n) specifies the degree of the two randomly chosen polynomials. The

second and the third columns show the time it takes to run the EEA and the FEEA,

respectively, on input polynomials of degree n. We have divided the timings presented in

the third column by nlog2 3 log n for each value of n and obtained a constant factor in the

fourth column, which confirms that our implementation of the FEEA is of O(nlog2 3 log n).
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n EEA(ms) FEEA(ms) FEEA/(nlog2 3 log n) EEA/FEEA

1000 373.80 295.63 0.00052 1.26
2000 1427.18 942.83 0.00050 1.51
4000 5602.18 2972.08 0.00049 1.88
8000 22295.47 9588.76 0.00048 2.33
16000 88766.90 31278.50 0.00049 2.84
32000 354085.71 99273.77 0.00048 3.54

Table 2.3: Timings (in ms) of the FEEA compared to the EEA

All our computations were performed modulo a 15 bit prime.

2.2.3 Fast Polynomial Interpolation (Application)

To complete this chapter we show how the FEEA can be applied to solve the polynomial

interpolation problem fast by using a more or less obvious divide and conquer algorithm.

Let F be a field and α1, . . . , αn ∈ F be pairwise distinct. Given arbitrary β1, . . . , βn ∈ F ,

we want to find f ∈ F [x] of degree less than n such that f(αi) = βi for i = 1 . . . n. It is well

known that if αi’s are distinct a solution exists and is unique. The solution can be found by

solving a system of linear equations. Let f(x) = an−1x
n−1 + . . . + a1x + a0. Then we have

f(αi) = βi = an−1α
n−1
i + . . . + a1αi + a0, i = 1 . . . n.

The system can be solved in O(n3) operations in F . It is also well known that the problem

can be solved in O(n2) operations in F using either Lagrange or Newton Interpolation.

Here we show how to use the FEEA to generate a divide-and-conquer algorithm for fast

polynomial interpolation. Description of the algorithm follows:

1. Find f1 the polynomial interpolating α1, . . . , αn/2 by recursively calling the algorithm.

Let m1(x) =
∏n/2

i=1(x − αi). Then f1(x) and m1(x) satisfy f(x) ≡ f1(x) mod m1(x).

2. Find f2 the polynomial interpolating αn/2+1, . . . , αn by recursively calling the al-

gorithm. Let m2(x) =
∏n

i=n/2+1(x − αi). Then f2(x) and m2(x) satisfy f(x) ≡

f2(x) mod m2(x).

3. Find f using the Chinese Remainder Algorithm. Let

f(x) = v1(x) + v2(x)m1(x),
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where 0 ≤ deg vi < deg mi. Thus we have

f1(x) ≡ v1(x) mod m1(x),

f2(x) ≡ v1(x) + v2(x)m1(x) mod m2(x).

If we choose v1(x) = f1(x), then we can compute

v2(x) = (f2(x) − f1(x))/m1(x) mod m2(x)

by solving sm1 + tm2 = 1 for s, to find the inverse of m1(x) mod m2(x), using the

FEEA.

All f1, f2, m1 and m2 are at most of degree n/2, thus computing v2 needs one application

of the FEEA to compute 1/m1(x) mod m2(x) which takes O(M(n/2) log(n/2)) field oper-

ations and one multiplication of O(M(n/2)) field operations. Let T (n) denote the cost of

computing f(x), the polynomial interpolating n distinct points using the fast interpolation

algorithm explained above. Then we have

T (n) = 2T (n/2) + 2M(n/2) + O(M(n/2) log(n/2)).

Hence

T (n) ∈ O(M(n) log2 n).

Remark 2.11. Fast Polynomial Interpolation can be even done in O(M(n) log n) using the

algorithm described in [12, Sec. 10.2].

In the following chapter we will describe the application of polynomial interpolation in

Rational Function Reconstruction.



Chapter 3

Rational Function Reconstruction

The general problem of rational reconstruction consists of rational number reconstruction

and rational function reconstruction problems. The former problem reconstructs a rational

number (in Q) which is congruent to some integer modulo another integer, while the lat-

ter reconstructs a rational function that is congruent to some polynomial modulo another

polynomial. We will address the second problem in this chapter.

In Section 3.1 we describe the rational function interpolation problem and in Section 3.2

we introduce two solutions for the rational function reconstruction problem: Wang’s algo-

rithm and a fast maximal quotient algorithm.

3.1 Rational Function Interpolation (Cauchy Interpolation)

Rational Function Interpolation, also called Cauchy Interpolation, is the most general form

of polynomial interpolation. Let F be a field and α1, . . . , αm ∈ F be pairwise distinct.

Given arbitrary β1, . . . , βm ∈ F , we are looking for a rational function f = n/d ∈ F (x),

with n, d ∈ F [x], such that

d(αi) 6= 0, f(αi) =
n(αi)

d(αi)
= βi 1 ≤ i ≤ m.

We want the rational function f to be in canonical form, that is, d to be monic and

gcd(n, d) = 1. Yet, f is not unique since n and d should only satisfy deg n + deg d < m.

Solving a system of equations and Wang’s algorithm are the two solutions we describe in

this section for the Rational Function Interpolation problem.

32
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The System of Equations

Let αi and βi be defined as above and f = n/d be the rational function we want to find. To

have a unique solution for f we let the denominator to be of the given degree 0 ≤ k < m.

Then the numerator would be at most of degree m − k − 1. Thus we let

n(x) = am−k−1x
m−k−1 + . . . + a1x + a0,

d(x) = xk + bk−1x
k−1 + . . . + b1x + b0.

The rational function f = n/d is obtained by solving the following system of equations

n(αi) = d(αi)βi d(αi) 6= 0 i = 1 . . .m,

for the coefficients of n and d. Using Gaussian elimination it takes O(m3) operations in F .

Using Wang’s Algorithm

In the second solution, we first find the unique interpolating polynomial g ∈ F [x] of degree

less than m such that g(αi) = βi for i = 1 . . .m. Thus we will have

f(x) =
n(x)

d(x)
≡ g(x) mod (x − αi), d(αi) 6= 0 for i = 1 . . .m. (3.1)

Let M(x) =
∏m

i=1(x − αi). Then (3.1) is equivalent to

f(x) =
n(x)

d(x)
≡ g(x) mod M(x), gcd(M, d) = 1. (3.2)

Now the problem is, given polynomial M(x) of degree m and polynomial g of degree less

than m, find the rational function f = n/d satisfying (3.2). This problem is called the

rational function reconstruction problem. We describe the solutions to this problem in

Section 3.2. Computing g using Newton interpolation takes O(m2) operations in F . The

cost of computing M is O(M(m) log m). If we use Wang’s algorithm to reconstruct the

rational function f = n/d which uses the Extended Euclidean Algorithm, then the cost of

computing f would be of O(m2) operations in F . Thus the total cost would be of O(m2)

operations in F .

Remark 3.1. In Section 3.2.1 we briefly describe how the FEEA can be modified so that

it can be used by Wang’s algorithm for recovering a rational function. Also we can use the

fast polynomial interpolation algorithm described in [12] to compute g. This will result in

an algorithm taking O(M(m) log m) operations in F .
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3.2 Rational Function Reconstruction (RFR)

Let F = Z11. We want to compute a rational function n/d ∈ F (x) where n/d ≡ g mod f ,

with f =
∏7

i=1(x − i) and g = x6 + 3x5 + 8x4 + 4x3 + 6x2 + x + 9. If we run the Extended

Euclidean Algorithm with input f and g, then according to Lemma 2.4 (vi) we have fsi +

gti = ri or, equivalently, ri ≡ gti mod f . Now if gcd(f, ti) = 1 then we have ri/ti ≡

g mod f . This implies that (n, d) can be equal to any pair of (ri, ti), generated by the

EEA, provided that gcd(f, ti) = 1. The following table illustrates the values of ri, ti and

qi in each iteration of the Extended Euclidean Algorithm for given inputs f and g defined

above.

i ri qi ti

0 x7 + 5x6 + 3x5 + 9x4 + 4x3 + 2x2 + 9 − 0

1 x6 + 3x5 + 8x4 + 4x3 + 6x2 + x + 9 x + 2 1

2 x3 + 2 x3 + 3x2 + 8x + 2 10x + 9

3 7x + 5 8x2 + 10x + 7 x4 + 5x3 + 3x2 + 7x + 5

From row 1, 2 and 3 we get the following solutions

r1

t1
=

x6 + 3x5 + 8x4 + 4x3 + 6x2 + x + 9

1
,

r2

t2
=

x3 + 2

10x + 9
=

10x3 + 9

x + 2
,

r3

t3
=

7x + 5

x4 + 5x3 + 3x2 + 7x + 5
.

We seek a way to choose one rational function among all possible solutions. It is not

hard to see that if we want to recover a rational function with deg n ≤ N and deg d ≤ D,

then we must have N + D < deg f .

Let M = deg f . Wang in [1] gave a solution to the rational number reconstruction

problem. His algorithm can be readily extended for the rational functions as well, by setting

N = ⌊M/2⌋ and D = M −N − 1. We will describe Wang’s algorithm for rational functions

in Section 3.2.1. Thus if we use Wang’s algorithm the solution to the above example would

be r2/t2 = (10x3 + 9)/(x + 2). In Section 3.2.2 we introduce a fast algorithm for solving

the rational function reconstruction problem. This algorithm outputs the rational function

with the smallest total degree (deg n+deg d) provided that deg n+deg d < deg f − 1. Thus

the output of this algorithm for the example presented above is the same as Wang’s output.

The following lemma gives us some hint on the general solutions to the RFR problem.
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Lemma 3.2. (Uniqueness of the EEA entries) [12, Lemma 5.15] Let F be a field, f, g, r, s, t ∈

F [x] with r = sf + tg, t 6= 0, deg f > 0, and

deg r + deg t < deg f. (3.3)

Moreover, let ri, si, ti for 0 ≤ i ≤ l + 1 be the elements of the ith row in the Extended

Euclidean Algorithm for f and g. There exists a nonzero element α ∈ F [x] such that

r = αrj , s = αsj , t = αtj ,

where deg rj ≤ deg r < deg rj−1.

Proof. By (3.3) we have deg r < deg f = deg r0, so there exists a row namely j in the

Extended Euclidean Algorithm for inputs f and g, where deg rj ≤ deg r < deg rj−1. We

have rj = sjf + tjg by Lemma 2.4 (vi), thus we obtain

trj − tjr = (tsj − tjs)f. (3.4)

Assume tsj 6= tjs then the degree of the right hand side of (3.4) is at least deg f , while

deg(trj − tjr) ≤ max{deg t + deg rj , deg tj + deg r}

≤ max{deg t + deg r, deg f − deg rj−1 + deg r}

< deg f,

hence we have a contradiction which implies that tsj = tjs or sj |s, by Lemma 2.4 (vii). We

write s = αsj where α ∈ F [x]\{0}, then t = αtj and r = sf + tg = αrj .

The above lemma implies that any linear combination r = sf + tg of f and g, with r

and t having small degrees, is a multiple of a row in the Extended Euclidean Algorithm

for inputs f an g. In the RFR problem, we are looking for a rational function n/d where

n/d ≡ g mod f and deg n + deg d < deg f . Thus according to Lemma 3.2 any solution for

n and d is a multiple of some row in the EEA for inputs f and g.

3.2.1 Wang’s Algorithm

Let F be a field, in the rational reconstruction problem we are looking for a rational function

n/d ∈ F [x] where n/d ≡ g mod f , with f, g ∈ F [x] and deg f > deg g ≥ 0. A solution to

the rational number reconstruction problem was first introduced by Wang in [1], however he
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gave no proof for his algorithm. Afterwards in [2], Wang, Guy & Davenport showed that if

a solution exists to the rational reconstruction problem, this solution is produced by Wang’s

algorithm. Moreover, they claimed that if the pair n, d is output by the algorithm then n/d is

the expected solution. While there were some cases with no solution but Wang’s Algorithm

did not FAIL on them. This problem occurred because of not checking whether the condition

gcd(d, f) = 1 is met or not. Wang rectified this problem later in [3]. Algorithm 3.1 is an

extension of Wang’s algorithm for F [x].

Algorithm 3.1: Wang’s Rational Function Reconstruction Algorithm

Input: f, g ∈ F [x] with F a field and M = deg f > deg g ≥ 0.
Output: Either n, d ∈ F [x] with deg n + deg d < deg f , lc(d) = 1, gcd(n, d) = 1,

gcd(f, d) = 1 and n/d ≡ g mod f , or FAIL implying no such n/d exists.

1. N = ⌊M/2⌋, D = M − N − 1
r0 = f, t0 = 0
r1 = g, t1 = 1

2. while deg r1 > N do
q = r0 quo r1

(r0, r1) = (r1, r0 − qr1)
(t0, t1) = (t1, t0 − qt1)

3. if gcd(r1, t1) 6= 1 then return FAIL. /∗ gcd(r1, t1) = gcd(f, t1) ∗/
return (r1/ lc(t1), t1/ lc(t1)) /∗ deg t1 = M − deg r0 < M − N = D + 1 ∗/

Wang’s algorithm outputs the rational function n/d if deg n ≤ ⌊deg f/2⌋ and deg d ≤

⌈deg f/2⌉ − 1, i.e. deg f ≥ 2 max(deg n, deg d). In step 3 of Algorithm 3.1 we have

r1 = s1f + t1g ≡ t1g mod f,

and deg t1 = deg f − deg r0 < M − N = D + 1 or deg t1 ≤ D. Thus if gcd(f, t1) = 1

then (r1/ lc(t1))/(t1/ lc(t1)) is a canonical form solution to the RFR problem. Collins and

Encarnation in [18] point out that it is more efficient to make the test gcd(n, d) = 1 instead

of gcd(f, d) = 1. By Lemma 2.4 (viii) we have gcd(n, d) = gcd(d, f), thus instead of checking

the invertibility of the denominator, we can check the coprimality of the numerator and the
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denominator. This costs less since the size of n is strictly smaller than the size of f .

Cost Analysis of Wang’s Algorithm

In Section 2.2.1 we showed that the cost of the EEA on inputs of size n is O(n2). Therefore,

step 2 of Algorithm 3.1 costs O(M2). In step 3 we have one inversion and O(M) multipli-

cations in F . Computing gcd(r1, t1) takes another O(M2), thus the total cost of Wang’s

Algorithm is O(M2).

Remark 3.3. Given degree bound N , the FEEA can be used for returning rj , a remainder

in the remainder sequence of the EEA for monic inputs r0 and r1, satisfying deg rj ≤ N <

deg rj−1. Let h = ηr0,r1
(k), then in the FEEA with inputs r0, r1 and k we have

deg rh+1 = deg r0 −

h+1
∑

i=1

deg qi < deg r0 − k ≤ deg r0 −

h
∑

i=1

deg qi = deg rh,

according to (2.11), or equivalently,

deg rh+1 ≤ deg r0 − k − 1 < deg rh.

Therefore rj is returned if we call the FEEA with inputs r0, r1 and (deg r0 − N − 1).

Thus if we use the FEEA in steps 2 and 3 of Algorithm 3.1 then the total cost of Wang’s

algorithm would be of O(M(M) log M) operations in F .

3.2.2 Maximal Quotient Rational Function Reconstruction

Wang’s algorithm works well when the numerator and the denominator are both of almost

the same degree, but in practice the degrees of the numerator and the denominator of

the rational functions are not necessarily the same. For example if we want to recover

the rational function x/(x5 + 1), Wang’s algorithm needs the modulus f to be at least

of degree 11, however the minimum number of points necessary for recovering the same

rational function is 7. Since the degrees of the numerator and the denominator of the

rational function are not always known, we do not know the best choice for N and D in

advance. One approach could be to choose the rational function with the minimum total

degree (numerator degree plus denominator degree).

Example 3.4. Let F = Z17, f =
∏12

i=1(x− i), g = 6x11 + 13x10 + 7x9 + 11x8 + x7 + 10x6 +

15x5 + x4 + 13x3 + 6x2 + 3. The Extended Euclidean Algorithm for f and g yields the

following table.
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i deg qi deg ri deg ti deg ri + deg ti

1 1 11 0 11

2 4 7 1 8

3 1 6 5 11

4 1 5 6 11

5 1 4 7 11

6 1 3 8 11

7 1 2 9 11

8 1 1 10 11

As illustrated in the table, r2/t2 has the minimum total degree of 8. Note that r2/t2 also

corresponds to the quotient of maximal degree q2. The reason for this is easily explained

by the following lemma.

Lemma 3.5. Let F be a field and f, g ∈ F [x]. In the EEA for f and g we have

deg ri + deg ti + deg qi = deg f

for 1 ≤ i ≤ l (l is the total number of steps of the EEA).

Proof. According to Lemma 2.4 (vii) we have deg ti = m − deg ri−1, thus

deg ri + deg ti + deg qi = deg ri + (m − deg ri−1) + deg ri−1 − deg ri = m.

In [11], Monagan suggests a new method called Maximal Quotient Rational Reconstruc-

tion for reconstructing a rational number from its integer image modulo another integer

number. Our algorithm for recovering rational functions is based on his method and is

called Maximal Quotient Rational Function Reconstruction (MQRFR).

Let F be a field, f, g ∈ F [x] with deg f > deg g ≥ 0. We want to find a rational function

n/d ∈ F (x), where

n/d ≡ g mod f, gcd(f, d) = 1, gcd(n, d) = 1, lc(d) = 1.

Let l denote the total number of steps of the EEA for f and g. The maximal quotient

algorithm outputs a rational function n/d = ri/ti with deg ri +deg ti minimal for i = 1 . . . l.
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To speed up the algorithm we prefer to use the FEEA instead of the EEA. But as explained

in previous chapter, the FEEA does not compute the intermediate remainders (ri’s). Thus

we can not determine which pair of (ri, ti) we should choose. Lemma 3.5 resolves this

problem.

Although the FEEA does not compute the intermediate remainders, it does compute

all qi’s!! Also si and ti are available as the entries of the first row of Ri. So according

to Lemma 3.5 instead of finding the minimal deg ri + deg ti we can find qi, the quotient

with maximal degree, using the FEEA. ri is then obtained from si and ti using two long

multiplications (ri = sif + tig).

The modified FEEA is called MQFEEA and is presented by Algorithm 3.2. In addi-

tion to the outputs returned by Algorithm 2.5, this algorithm returns three other values

qmax, smax, tmax. The value of qmax is the quotient with maximal degree and smax, tmax

represent the corresponding values of s and t that are in the same row with qmax.

In step 3, after returning from the recursive call, qmax holds the quotient with maximal

degree, between the first j − 1 computed quotients. We have

Rj =

(

sj tj

sj+1 tj+1

)

,

thus in step 6, if deg qj > deg qmax we can easily update smax and tmax by the entries of the

first row of Rj . In step 8 qmax is updated by q∗max, if deg q∗max > deg qmax. Let l represent

the index of q∗max in the EEA for r0 and r1. We need to compute sl and tl. We have

(

sl tl

sl+1 tl+1

)

= Rl = QlQl−1 . . . Qj+1Rj =

(

s∗max t∗max

M21 M22

)

Rj ,

where M21, M22 ∈ F [x], hence

(

sl tl

)

=
(

s∗max t∗max

)

Rj .

So to update the values of smax and tmax by sl, respectively, and tl, we multiply the vector
(

s∗max t∗max

)

by matrix Rj .

Remark 3.6. In Algorithm 3.2, we are just using the degree of the maximal quotient, thus

instead of returning qmax we could return deg qmax.
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Algorithm 3.2: Modified FEEA to return the maximal quotient(MQFEEA)

/∗ underlined parts illustrate modifications made to Algorithm 2.5 (FEEA). ∗/
Input: r0, r1 two monic polynomials in F [x] with n0 = deg r0 > n1 = deg r1 ≥ 0 and

k ∈ N with n0/2 ≤ k ≤ n0. /∗ n0 is strictly greater than n1. ∗/

Output: h = ηr0,r1
(k) ∈ N, ρh+1 ∈ F , Rh =

(

sh th
sh+1 th+1

)

and

(

rh

rh+1

)

= Rh

(

r0

r1

)

,

qmax, smax, tmax.

1. if r1 = 0 or k < n0 − n1 then

return 0, 1,

(

1 0
0 1

)

,

(

r0

r1

)

, 1, 1, 0

else if n0 < cutoff then /∗ cutoff degree of the FEEA ∗/
return EEA(r0, r1, k) /∗ EEA is modified to return qmax, smax, tmax ∗/

2. k1 = ⌊k/2⌋

3. r∗0 = r0 ↾ 2k1, r∗1 = r1 ↾ (2k1 − (n0 − n1))
call the algorithm recursively by writing MQFEEA(r∗0, r∗1,k1), to obtain

j − 1 = ηr∗
0
,r∗

1
(k1), ρ∗j , R∗

j−1 = Q∗
j−1Qj−2 . . . Q1 where Q∗

j−1 =





0 1
1

ρ∗j

−qj−1

ρ∗j



,

(

r∗j−1

r∗j

)

= R∗
j−1

(

r∗0
r∗1

)

and qmax, smax, tmax

4. /∗ in this step we want to determine ρj , rj−1, rj and Rj−1. ∗/
(

rj−1

r̃j

)

= R∗
j−1

(

r0

r1

)

Rj−1 =

(

1 0
0 1/ lc(r̃j)

)

R∗
j−1

ρj = ρ∗j lc(r̃j), rj = r̃j/ lc(r̃j)

5.

(

nj−1

nj

)

=

(

deg rj−1

deg rj

)

if rj = 0 or k < n0 − nj then

return j − 1, ρj , Rj−1,

(

rj−1

rj

)

, qmax, smax, tmax
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6. qj = rj−1 quo rj

ρj+1 = lc(rj−1 − qjrj) /∗ for consistency we let lc(0) = 1. ∗/
rj+1 = (rj−1 − qjrj)/ρj+1

nj+1 = deg rj+1

Rj =

(

0 1
1/ρj+1 −qj/ρj+1

)

Rj−1

if deg qj > deg qmax then

qmax, smax, tmax=qj , Rj [1, 1], Rj [1, 2]

7. k2 = k − (n0 − nj)

8. r∗j = rj ↾ 2k2, r∗j+1 = rj+1 ↾ (2k2 − (nj − nj+1))

call the algorithm recursively by writing MQFEEA(r∗j , r
∗
j+1, k2), to obtain

h − j = ηr∗j ,r∗j+1
(k2), ρ∗h+1, S̃ = Q∗

hQh−1 . . . Qj+1 where Q∗
h =





0 1
1

ρ∗h+1

−qh

ρ∗h+1



,

(

r∗h
r∗h+1

)

= S̃

(

r∗j
r∗j+1

)

, q∗max, s∗max, t∗max

if deg q∗max > deg qmax then

qmax = q∗max
(

smax tmax

)

=
(

s∗max t∗max

)

Rj

9.

(

rh

r̃h+1

)

= S̃

(

rj

rj+1

)

S =

(

1 0
0 1/ lc(r̃h+1)

)

S̃

ρh+1 = ρ∗h+1 lc(r̃h+1), rh+1 = r̃h+1/ lc(r̃h+1)

10. return h, ρh+1, SRj ,

(

rh

rh+1

)

, qmax, smax, tmax.
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Let F = Zp, p a prime, f, g ∈ F [x] and deg f > deg g ≥ 0. We want to recover n/d ∈ F [x]

using the maximal quotient algorithm where n/d ≡ g mod f , gcd(n, d) = 1 and gcd(f, d) =

1. According to Lemma 3.2 the solution to this problem is the pair (rj , tj), where rj and tj

are the elements of the jth row in the EEA for inputs f and g. If deg f > 2(deg n + deg d),

then we have deg qj > deg f/2 and thus qj is the unique maximal quotient. This implies

that by imposing deg f > 2(deg n + deg d), the expected rational function is returned with

probability 1.

The following conjecture implies that if we impose deg f > deg n + deg d + 1 or, equiv-

alently, we require deg qj > 1, then the probability of getting a correct result is still high,

provided that p is not small compared to deg f .

Conjecture 3.7. Let F = Zp, where p is prime. Let f, g ∈ F [x] where f =
∏n

i=1(x − αi)

and n = deg f > deg g ≥ 0. Let q be a quotient in the EEA for inputs f, g and k ∈ N\{1}.

If αi ∈ F is chosen uniformally at random and g is a random polynomial, then

Prob(deg q ≥ k) ≃
n

pk−1
.

We run the EEA with inputs f and a randomly chosen polynomial g. Our conjecture is

that the number of polynomials g for which there is a quotient of degree at least k in the

EEA is bounded by (n− k + 1)pn−k+1. The total number of possible choices of g is pn − 1.

Thus

Prob(deg q ≥ k) =
(n − k + 1)pn−k+1

pn − 1
≃

n − k + 1

pk−1
.

The maximal quotient algorithm is presented by Algorithm 3.3. It is supposed to return

the rational function n/d = ri/ti where qi is the quotient with the maximal degree. Let r, t

and qmax be the elements of the same row of the EEA with f and g as input. In step 3 we

have

r

t
=

s̃

lc(f)
f +

t̃

lc(g)
g

t̃

lc(g)

=
lc(g)(s̃r0 + t̃r1)

t̃
= lc(g)

r̃

t̃
,

and thus gcd(r, t) = gcd(r̃, t̃). Therefore if gcd(r̃, t̃) 6= 1, then in step 4 n = lc(g)/ lc(t̃)r̃ and

d = t̃/ lc(t̃) is returned as the canonical solution.
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Algorithm 3.3: Maximal Quotient Rational Function Reconstruction (MQRFR)

Input: f, g ∈ Zp[x], where p is prime and m = deg f > deg g ≥ 0.
Output: Either n, d ∈ Zp[x] satisfying deg n + deg d + 1 < deg f, n/d ≡ g mod f,

gcd(n, d) = gcd(f, d) = 1, lc(d) = 1 or FAIL implying there is no such solution.

1. r0 = f/ lc(f), r1 = g/ lc(g)

2. h, ρh+1, Rh,

(

rh

rh+1

)

, qmax, s̃, t̃ = MQFEEA(r0, r1, m)

if deg qmax ≤ 1 then
return FAIL

3. r̃ = s̃r0 + t̃r1

if gcd(r̃, t̃) 6= 1 then
return FAIL

4. n = lc(g)/ lc(t̃).r̃
d = t̃/ lc(t̃)
return (n, d).

Cost Analysis of the MQRFR

As mentioned before, Algorithm 3.2 is a modification of Algorithm 2.5. Among all the

modifications made only the multiplication in step 8 might affect the asymptotic cost of

the algorithm which originally was O(M(k) log k) for input k. The entries of matrix Rj are

at most of degree n0 − nj ≤ k, moreover by Lemma 2.4 (ix), deg s∗max < nj+1 < 2k and

deg t∗max < nj < 2k. Thus multiplying
(

s∗max t∗max

)

by Rj at most takes 8M(k) + O(k)

operations in F and does not change the asymptotic cost of the algorithm.

Step 1 of Algorithm 3.3 consists of two inversions in Zp and two multiplications of O(m)

in Zp. Step 2 costs O(M(m) log m). We have deg s < deg g < m and deg t < deg f = m.

Thus to compute r in step 3, we perform two multiplications on polynomials of size at most m

and one addition that costs O(2m). The total cost for computing r is thus 2M(m) + O(m).

r is a remainder in the remainder sequence generated by the Euclidean Algorithm for f

and g, thus we have deg r < deg f = m. Checking the coprimality of r and t, using the
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FEEA, takes O(M(m) log m) operations in F . In step 4 we have one inversion and at

most 2m multiplications in Zp that costs O(m). Thus the total cost of Algorithm 3.3 is

O(M(m) log m) operations in Zp.



Chapter 4

Polynomial GCD Computation

In this chapter we will explain the application of Rational Function Reconstruction in com-

puting the GCD of multivariate polynomials. We have modified Brown’s algorithm to use

the maximal quotient algorithm. Our modification reduces the number of evaluation points

needed by the algorithm.

4.1 Multivariate GCD Computation (Brown’s Algorithm)

Definition 4.1. Let R1 and R2 be two rings. The mapping φ : R1 → R2 is a ring morphism

or a homomorphism if

(i) φ(a + b) = φ(a) + φ(b) for all a, b ∈ R1,

(ii) φ(ab) = φ(a)φ(b) for all a, b ∈ R1,

(iii) φ(1) = 1.

Brown’s algorithm applies the following homomorphisms:

• The modular homomorphism φm : Z[x1, . . . , xk] → Zm[x1, . . . , xk] that replaces all the

integer coefficients of a polynomial f ∈ Z[x1, . . . , xk] by their modulo m representation.

• The evaluation homomorphism φxi−α : D[x1, . . . , xk] → D[x1, . . . , xi−1, xi+1, . . . , xk]

that substitutes the value of α ∈ D for the indeterminate xi in the polynomial f ∈

D[x1, . . . , xk].

45
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Let f ∈ Z[x1, . . . , xk]. For each term in f , we define a vector of size k whose ith element

is the power of xi in that term. Degree of f with respect to x1, . . . , xk (or simply degree of

f), which is denoted by deg[x1,...,xk] f , is defined to be the maximum of these vectors when

compared lexicographically.

The leading coefficient of a multivariate polynomial f ∈ Z[x1, . . . , xk] with respect to

x1, . . . , xi (i ≤ k) or lc[x1,...,xi](f) is defined to be the coefficient of the term with the highest

degree with respect to x1, . . . , xi.

Definition 4.2. Let f, g ∈ Z[x1, . . . , xk], h = gcd(f, g) and p be a prime.

• If lc[x1,...,xk](h) disappears mod p then we call p a bad prime.

• Let fp = f mod p, gp = g mod p and hp be the output of the Euclidean Algorithm

mod p on fp and gp. If deg[x1,...,xk] hp is higher than deg[x1,...,xk] h, then p is called an

unlucky prime.

Example 4.3. Let f = (x + 7y)(5xy + 1) and g = x(5xy + 1). Then h = 5xy + 1,

gcd(f5, g5) = 1 and gcd(f7, g7) = 5x2y + x, and thus p = 5 is a bad prime and p = 7 is an

unlucky prime.

Definition 4.4. Let f, g ∈ Zp[x1, . . . , xk], h = gcd(f, g) mod p and α ∈ Zp, where p is a

prime.

• If the leading coefficient of h disappears mod xk − α, then we call α a bad evaluation

point.

• Let fxk−α = f mod (xk − α), gxk−α = g mod (xk − α) and hxk−α be the output of

the Euclidean Algorithm mod p on fxk−α and gxk−α. If deg[x1,...,xk−1] hxk−α is higher

than deg[x1,...,xk−1]
h, then α is called an unlucky evaluation point.

Example 4.5. Let f = ((y − 1)x + 1)(x − 2) and g = ((y − 1)x + 1)(x − y). Then

h = (y − 1)x + 1, gcd(fy−1, gy−1) = 1 and gcd(fy−2, gy−2) = (x + 1)(x − 2), and thus y = 1

is a bad evaluation point and y = 2 is an unlucky evaluation point.

Assume f and g are two multivariate polynomials as defined above and h = gcd(f, g).

Let φ be a modular or an evaluation homomorphism. It is obvious that lc(h)| lc(f) and

lc(h)| lc(g), which implies that lc(h)| gcd(lc(f), lc(g)). Thus

φ(gcd(lc(f), lc(g))) 6= 0 =⇒ φ(lc(h)) 6= 0. (4.1)



CHAPTER 4. POLYNOMIAL GCD COMPUTATION 47

Relation (4.1) can be useful for avoiding bad primes and bad evaluation points when com-

puting the GCD of two multivariate polynomials. The following lemma helps us to detect

and discard unlucky primes and evaluation points.

Lemma 4.6. Let φ : R → R′ be a homomorphism of rings, f, g ∈ R[x1, . . . , xk] and

h = gcd(f, g). Let f = f̄h and g = ḡh. Assume φ(lc(h)) 6= 0 and at least one of φ(f̄) and

φ(ḡ) is nonzero. Then

deg gcd(φ(f), φ(g)) ≥ deg gcd(f, g).

Proof. By Definition 4.1 (ii) we have

φ(f) = φ(f̄)φ(h), φ(g) = φ(ḡ)φ(h),

and thus we obtain

deg gcd(φ(f), φ(g)) ≥ deg φ(h) = deg gcd(f, g),

since we assumed φ(lc(h)) 6= 0.

Example 4.7. Let f and g be defined as in Example 4.5. We have h = gcd(f, g) =

(y − 1)x + 1. If y = 2 is chosen to be an evaluation point then we have hy−2 = x + 1 and

gcd(fy−2, gy−2) = (x + 1)(x − 2), that is, deg gcd(fy−2, gy−2) > deg hy−2. Thus y = 2 is an

unlucky evaluation point and should be discarded.

Assume for homomorphism φ we have gcd(φ(f), φ(g)) = 1 and φ(lc(gcd(f, g))) 6= 0.

Then according to Lemma 4.6 we have

deg gcd(φ(f), φ(g)) = 0 ≥ deg gcd(f, g),

which implies that f, g are relatively prime. Thus another use of Lemma 4.6 is to help us

detect the coprimality of input polynomials.

Originally Collins in [19] developed an algorithm for computing the GCD of univariate

polynomials using homomorphic reductions. Then Brown in [20] extended the algorithm

to compute the GCD in the multivariate case using homomorphisms. Brown’s original

algorithm did not use trial divisions. However, in [21] the algorithm was modified to use trial

division and less evaluation points. In this thesis whenever we refer to Brown’s algorithm we
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refer to the modified one. Brown’s algorithm is a composition of modular homomorphisms

(MGCD algorithm) and evaluation homomorphisms (PGCD algorithm).

To avoid the problem of coefficient growth, MGCD gets two multivariate polynomials

f, g ∈ Z[x1, . . . , xk] and applies the modular homomorphism φp : Z → Zp on the coefficients

of f and g, with p a random machine prime, e.g. a 32 bit prime on a 32 bit machine. At

the end of the algorithm the modular homomorphism is inverted by applying the Chinese

Remainder Algorithm on homomorphic images.

The PGCD algorithm, presented by Algorithm 4.1, gets polynomials f, g ∈ Zp[x1, . . . , xk]

and outputs h = gcd(f, g) ∈ Zp[x1, . . . , xk]. It recursively makes use of evaluation homo-

morphism φxk−α : Zp[x1, . . . , xk] → Zp[x1, . . . , xk−1] to ultimately get to the Euclidean

domain Zp[x1] where the ordinary Euclidean algorithm can be used. In order to be able to

recover the solution in the original domain we need more than one projection. The evalu-

ation homomorphism is inverted by interpolating homomorphic images. Since MGCD and

PGCD algorithms are very similar, and in the next section we are going to modify PGCD

so that it uses Rational Function Reconstruction, we have chosen to present only the PGCD

algorithm.

As presented in Algorithm 4.1, to compute gcd(f, g) PGCD computes the contents∗ and

the primitive parts† of f and g, and then computes the GCD using

gcd(f, g) = gcd(cont(f), cont(g)) gcd(pp(f), pp(g)).

PGCD always returns a monic GCD, thus vxk−α is always monic, although gcd(f, g) is not

necessarily monic. To recover the correct GCD, in Algorithm 4.1, vxk−α is multiplied by

γ(α) (leading coefficient correction).

One way of determining whether we should stop constructing images or not is to test

whether h = pp(u) divides f and g or not. But these divisions are expensive and it is better

to avoid them as much as possible. One simple way to avoid attempting the divisions is to

check whether lc(u) is equal to γ or not and if it is then do the divisions. A better solution

is to divide h into f and g only when the result of interpolation does not change in two

consecutive iterations.

∗The content of a nonzero polynomial is the unit normal GCD of its coefficients.
†The primitive part pp(f) of f is defined by f = cont(f) · pp(f).
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Algorithm 4.1: Brown’s multivariate reduction algorithm (PGCD)

Input: f, g ∈ Zp[x1, . . . , xk]
Output: gcd(f, g) ∈ Zp[x1, . . . , xk]

1. if k = 1 then return gcd(f, g). /∗ use FEEA to compute gcd(f, g) ∈ Zp[x1] ∗/

2. cf = cont[x1,...,xk−1](f), cg = cont[x1,...,xk−1](g) /∗ cf , cg ∈ Zp[xk] ∗/

f = f/cf , g = g/cg /∗ f, g are now primitive ∗/
lf = lc[x1,...,xk−1](f), lg = lc[x1,...,xk−1](g) /∗ lf , lg ∈ Zp[xk] ∗/

df = deg[x1,...,xk−1]
f , dg = deg[x1,...,xk−1]

g /∗ df ,dg are vector degrees ∗/

3. ch = gcd(cf , cg) /∗ ch ∈ Zp[xk] and holds the content of the output ∗/
γ = gcd(lf , lg) /∗ γ ∈ Zp[xk] ∗/
n = min(df ,dg) /∗ n is a vector holding the minimum of df and dg ∗/
(m, u) = (1, 1)

4. while true do
α = a new random element of Zp, such that γ(α) 6= 0
fxk−α = f mod (xk − α)
gxk−α = g mod (xk − α) /∗ fxk−α, gxk−α ∈ Zp[x1, . . . , xk−1] ∗/
vxk−α = PGCD(fxk−α, gxk−α, p) /∗ vxk−α ∈ Zp[x1, . . . , xk−1] ∗/
if vxk−α = 1 then return ch

uxk−α= γ(α)vxk−α /∗ solve the leading coefficient problem ∗/ (i)

d = deg[x1,...,xk−1]
uxk−α /∗ d is a vector degree ∗/

if d > n then /∗ skip this (unlucky) evaluation point ∗/
else if d < n then /∗ previous points were unlucky ∗/

(m, u) = (xk − α, uxk−α)
n = d

else
(m, u) = ((xk − α)m, Interp(m, u, α, uxk−α)) /∗ u ∈ Zp[x1, . . . , xk] ∗/

if lc[x1,...,xk−1](u) = γ then (ii)

h = pp[x1,...,xk−1]
(u) (iii)

if h|f and h|g then return chh (iv)



CHAPTER 4. POLYNOMIAL GCD COMPUTATION 50

The following example shows how the GCD of two bivariate polynomials is computed

using the PGCD algorithm.

Example 4.8. Let f = (yx2 + yx + 1)((y2 + 1)x + 1), g = (yx2 + yx + 1)((y2 + 1)x + 2))

and p = 7. We have γ = y3 + y. Let us assume α is initialized by 1 and is increased by 1 in

each iteration. The following table shows the value of uxk−α and u in each iteration.

α γ(α) uxk−α u

1 2 2x2 + 2x + 2 2x2 + 2x + 2

2 3 3x2 + 3x + 5 (y + 1)x2 + (y + 1)x + 3y + 6

3 2 2x2 + 2x + 3 (6y2 + 4y + 6)x2 + (6y2 + 4y + 6)x + y2 + 1

4 5 5x2 + 5x + 3 (y3 + y)x2 + (y3 + y)x + y2 + 1

At the end of the fourth iteration lcy(u) = γ. Thus h = pp(u) = yx2 + yx + 1 is returned

after making sure that it divides both f and g.

4.2 Application of RFR to Brown’s Algorithm

As mentioned earlier, to solve the leading coefficient problem, in Brown’s PGCD algorithm

the homomorphic images are multiplied by the GCD of the leading coefficients of input

polynomials. Another solution to the leading coefficient problem is to use the Rational

Function Reconstruction algorithm. Originally Encarnación in [9] used Wang’s rational

number reconstruction algorithm for computing the GCD of univariate polynomials over

algebraic number fields.

We have marked two rows of PGCD which should be modified for this purpose. Row (i)

should be deleted, vxk−α should be replaced by uxk−α and rows (ii), (iii) and (iv) should be

replaced by the following code

ĥ = LCR(m, u)

if ĥ 6= FAIL then

let h represent the result of clearing denominators of ĥ

if h|f and h|g then return chh
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Algorithm 4.2 displays the body of LCR. This algorithm gets a univariate polynomial m

in Zp[xk] and a multivariate polynomial u in Zp[x1, . . . , xk] as input, and for each coefficient

of u in Zp[xk] attempts to reconstruct a rational function in Zp(xk), resulting a polynomial

in Zp(xk)[x1, . . . , xk−1].

Algorithm 4.2: Retrieval of the leading coefficient (LCR)

Input: m ∈ Zp[xk], u ∈ Zp[x1, . . . , xk],
Output: h ∈ Zp[x1, . . . , xk] where h ≡ u mod m.

1. if deg m = 1 then return FAIL /∗ deg q < 2 and thus MQRFR fails ∗/

2. while true do
r = MQRFR(m, nextcoeff(u) ∈ Zp[xk])
if r = FAIL then

return FAIL
else /∗ r is a rational function in Zp[xk] ∗/
replace current coefficient of u by r

if MQRFR did not fail on any of the coefficients then return u.

Example 4.9. Let f , g and p be defined as in Example 4.8. If we use LCR in the PGCD

algorithm then we will have

α uxk−α u ĥ

1 x2 + x + 1 x2 + x + 1 FAIL

2 x2 + x + 4 x2 + x + 3y + 5 FAIL

3 x2 + x + 5 x2 + x + 6y2 + 6y + 3 x2 + x + 1/y

As illustrated in the above table, we need only 3 points, while in Example 4.8, 4 points were

required. After clearing the denominators we get h = yx2 + yx + 1 which is the same result

as what we had obtained before.

In practice if MQRFR does not fail on one coefficient of u in one call, with high proba-

bility it will not fail on the same coefficient in subsequent calls either. Thus we can reduce

the total number of times MQRFR is called by using a global variable to keep track of the

index of the last coefficient of u on which MQRFR failed.
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Example 4.10. Let u = x3+(y+1)x2+(4y3+2y+6)x+(2y3+y+6), m = y(y+1)(y+2)(y+3)

and p = 7. The following table illustrates the intermediate values of u when LCR is called

with m, u as inputs. At the end of the fourth iteration denominators of u are cleared and

u = (y + 6)x3 + (y2 + 6)x2 + (y + 1)x + 1 is returned.

nextcoeff(u) r u

1 1 x3 + (y + 1)x2 + (4y3 + 2y + 6)x + (2y3 + y + 6)

y + 1 y + 1 x3 + (y + 1)x2 + (4y3 + 2y + 6)x + (2y3 + y + 6)

4y3 + 2y + 6
y + 1

y + 6
x3 + (y + 1)x2 + (

y + 1

y + 6
)x + (2y3 + y + 6)

2y3 + y + 6
1

y + 6
x3 + (y + 1)x2 + (

y + 1

y + 6
)x + (

1

y + 6
)

Now want to obtain an upper bound for the number of evaluation points required for

computing the primitive GCD of two multivariate polynomials using the modified PGCD

algorithm. Let f, g, H ∈ Zp[x1, . . . , xk], where H is the primitive GCD of f and g in xk. H

can be expressed in the following form

H = cn(xk)tn(x) + cn−1(xk)tn−1(x) + . . . + c0(xk)t0(x),

where x = x1, . . . , xk−1, ci(xk) is a univariate polynomial in Zp[xk] and ti(x) is a monomial

in indeterminants x1, . . . , xk−1. We assume lc[x1,...,xk−1](H) = cn(xk). Let d represent the

minimum number of points required for recovering H using polynomial interpolation for xk,

that is

d = degxk
H + 1 = max

0≤i≤n
{deg ci(xk)} + 1.

Before the last trial division in modified PGCD, which results in outputting the GCD,

LCR is called on u and m where u is a monic multivariate polynomial in Zp[x1, . . . , xk] and

m = (xk − α1) . . . (xk − αl) is a univariate polynomial in Zp[xk]. Thus the last value of

ĥ =LCR(m, u) before returning H is

ĥ = tn(x) +
an−1(xk)

bn−1(xk)
tn−1(x) + . . . +

a0(xk)

b0(xk)
t0(x)

= tn(x) +
cn−1(xk)

cn(xk)
tn−1(x) + . . . +

c0(xk)

cn(xk)
t0(x),

where

cn(xk) = lcm(bn−1(xk), . . . , b0(xk)).
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We have

ai(xk)|ci(xk), deg ci(xk) < d =⇒ deg ai(xk) < d,

bi(xk)|cn(xk), deg cn(xk) < d =⇒ deg bi(xk) < d,

for 0 ≤ i ≤ n − 1. As shown before, if

deg m > 2( max
0≤i≤n−1

{deg ai(xk) + deg bi(xk)}),

then with probability 1, the modified PGCD algorithm returns chH. Thus in the worst case

4d evaluation points are required. But even if we have

deg m ≥ max
0≤i≤n−1

{deg ai(xk) + deg bi(xk)} + 2,

then with high probability chH is resulted. Therefore in the normal case 2d evaluation

points are required.

On the other hand, in Algorithm 4.1 we first compute γ(xk)
cn(xk)H and then take the primitive

part by removing the common factor. Therefore the total number of evaluation points

required to obtain H in Algorithm 4.1 is at least (deg γ(xk)− deg cn(xk) + d). This number

may be much greater than d when γ(xk) is of a large degree and deg cn(xk) = 1.

In the square-free factorization algorithm for a polynomial f we need to compute gcd(f, f ′).

The following example shows the difference between the minimum number of evaluation

points required in the original and modified PGCD algorithm when computing gcd(f, f ′).

Example 4.11. Let f = (xy+1)2(y100x+1) and g = f ′
x = (xy+1)(3xy100+y99+2)y. Then

H, the primitive gcd(f, g) in y, is xy + 1. In this example d = degy H + 1 = 2, deg γ = 102

and degy lcx(H) = 1. Thus the original PGCD algorithm requires at least 103 evaluation

points while the modified one requires only 3 evaluation points to compute gcd(f, f ′).

As stated before we also try to minimize the number of times the trial divisions are

attempted. Rational Function Reconstruction not only solves the leading coefficient prob-

lem but also helps us with reducing the number of trial division tests, so that with high

probability the divisions are performed only on the true GCD. The point is that when LCR

fails on a coefficient, it returns to PGCD and PGCD goes back to the beginning of the while

loop without performing a division.

Let n be the number of coefficients of u with respect to [x1, . . . , xk−1] and l be the

number of evaluation points required for computing the GCD. Then the expected number

of times MQRFR is called is of O(l+n). Note that as soon as m gets large enough MQRFR

will not fail on any coefficient and exactly n more calls to MQRFR are made.



Chapter 5

Summary

We have designed and implemented a Fast Rational Function Reconstruction algorithm

based on Monagan’s Maximal Quotient Rational Number Reconstruction algorithm [11].

In contrast to Wang’s algorithm, the maximal quotient algorithm does not require any

degree bounds for the numerator and the denominator. Moreover, with high probability

it requires only one more point than the minimum necessary to reconstruct the expected

rational function.

The maximal quotient rational function reconstruction algorithm is based on the Ex-

tended Euclidean Algorithm. We have implemented the maximal quotient algorithm for

polynomials in Zp[x] where p is a machine prime. To speed up the reconstruction algorithm

we have implemented Karatsuba’s algorithm for polynomial multiplication over Zp[x] and

Schönhage’s Fast Extended Euclidean Algorithm for Zp[x]. We followed the presentation of

Schönhage’s algorithm in [12]. The most difficult and time consuming part of the thesis was

understanding the details of the FEEA.

To show one of the applications of this algorithm, we have modified Brown’s modular

GCD algorithm to use the maximal quotient algorithm. The modification reduces the

number of evaluation points required by the algorithm. Also it reduces the number of times

the trial divisions are attempted. The rational function reconstruction algorithm can be

used to solve the leading coefficient problem when computing the GCD of two multivariate

polynomials using Brown’s algorithm.
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