MATH 895, Assignment 4, Fall 2021

Instructor: Michael Monagan

Please hand in the assignment by 11:00pm Saturday October 23 rd .
Late Penalty -20% off for up to 36 hours late, zero after than.
For Maple problems, please submit a printout of a Maple worksheet containing your Maple code and Maple output. Use any tools from the Maple library, e.g. content (...), Content(...) mod p, divide(...), Divide(...) mod p, Eval(...) mod p, Interp(...) mod p, chrem(...), Linsolve(A,b) mod p, Roots(f) mod p, etc.

Question 1: Brown's dense modular GCD algorithm

REFERENCE: Section 7.4 of the Geddes text and Brown's original paper: On Euclid's algorithm and the computation of polynomial greatest common divisors. W. S. Brown, Journal of the ACM 18(4), pp. 478-504, 1971. (see course webpage)
(a) (5 marks)

Let $a, b \in \mathbb{Z}[x], g=\operatorname{gcd}(a, b), \bar{a}=a / g$ and $\bar{b}=b / g$. For the modular GCD algorithm in $\mathbb{Z}[x]$ we said a prime p is unlucky if $\operatorname{deg}(\operatorname{gcd}(\bar{a} \bmod p, \bar{b} \bmod p)))>0$ and a prime p is bad if $p \mid \operatorname{lc}(a)$. We apply Lemma 7.3 to identify the unlucky primes.

For $a, b, \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ we need to generalize these definitions for bad prime and unlucky prime and also define bad evaluation points and unlucky evaluation points for evaluating x_{n}. We do this using the lexicographical order monomial ordering. Let $g=\operatorname{gcd}(a, b), a=\bar{a} g$ and $b=\bar{b} g$. Let's use an example in $\mathbb{Z}[x, y, z]$.

$$
g=5 x z+y z-1, \quad \bar{a}=3 x+7\left(z^{2}-1\right) y+1, \quad \bar{b}=3 x+7\left(z^{3}-1\right) y+1
$$

Let $L C, L T, L M$ denote the leading coefficient, leading term and leading monomial respectively in lexicographical order with $x>y>z$. So in our example, $L T(a)=$ $(5 x z)(3 x)=15 x^{2} z$, hence $L C(a)=15$ and $L M(a)=x^{2} z$.

Let p be a prime. We say p is a bad prime if p divides $L C(a)$ and p is an unlucky prime if $\operatorname{deg}\left(\operatorname{gcd}\left(\phi_{p}(\bar{a}), \phi_{p}(\bar{b})\right)>0\right.$ where deg here means total degree. Identify all bad primes and all unlucky primes for the example.

Suppose we have picked $p=11$ and we evaluate at $z=\alpha \in \mathbb{Z}_{11}$. We think of a, b as elements of $\mathbb{Z}_{p}[z][x, y]$ with coefficients in $\mathbb{Z}_{p}[z]$. Define bad and unlucky evaluation points appropriately and identify the bad and unlucky evaluation points for the example.
(b) (5 marks)

Prove the following modified Lemma 7.3 for $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.
Let $a, b \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ with $a \neq 0, b \neq 0$ and $g=\operatorname{gcd}(a, b)$. Let $L C(a)$ and $L M(a)$ denote the leading coefficient and leading monomial of a in lexicographical order with $x_{1}>x_{2}>\ldots>x_{n}$. Let p be a prime let $h=\operatorname{gcd}\left(\phi_{p}(a), \phi_{p}(b)\right) \in \mathbb{Z}_{p}\left[x_{1}, \ldots, x_{n}\right]$. If p does not divide $L C(a)$ then
(i) $L M(h) \geq L M(g)$ and
(ii) if $L M(h)=L M(g)$ then $\phi_{p}(g) \mid h$ and $h \mid \phi_{p}(g)$.
(c) (30 marks)

Implement the modular GCD algorithm of section 7.4 in Maple. Implement two subroutines, subroutine MGCD that computes the GCD modulo a sequence of primes (use 4 digit primes), and subroutine PGCD that computes the GCD at a sequence of evaluation points (use $0,1,2, \ldots$ for the evaluation points). Note, subroutine PGCD is recursive. Test your algorithm on the following example polynomials in $\mathbb{Z}[x, y, z]$. Use x as the main variable. First evaluate out z then y.

```
> c := x^3+y^3+z^3+1; d := x^3-y^3-z^3+1;
> g := x^4-123454321*y*z^2*x^2+1;
> MGCD(c,d,[x,y,z]);
> MGCD(expand(g*c), expand(g*d),[x,y,z]);
> MGCD (expand (g^2*c), expand(g^2*d),[x,y,z]);
> g := z*y*x^3+1; c := (z-1)*x+y+1; d := (z^2-1)*x+y+1;
> MGCD(expand(g*c), expand(g*d),[x,y,z]);
> g := x^4+z^2*y^2*x^2+1; c := x^4+z*y*x^2+1; d := x^4+1;
> MGCD(expand(g*c), expand(g*d),[x,y,z]);
> g := x^4+z^2*y^2*x^2+1; c := z*x^4+z*x^2+y; d := z*x^4+z^2*x^2+y;
> MGCD(expand(g*c), expand(g*d),[x,y,z]);
```

Please make your MGCD procedure print out the sequence of primes it uses using printf(" $\mathrm{p}=\% \mathrm{~d} \backslash \mathrm{n} ", \mathrm{p}$); .

Please make your PGCD procedure print out the sequence of evaluation points α that it uses for each variable u using printf(" $\% \mathrm{a}=\% \mathrm{~d} \backslash \mathrm{n} ", \mathrm{u}, \mathrm{alpha}$);

In PGCD you MUST compute mod p. You may use the Content(...) mod p , Primpart(...) mod p, Interp(...) mod p and Divide(...) mod p commands and $\operatorname{Gcd}(. ..) \bmod \mathrm{p}$ for computing univariate gcds over \mathbb{Z}_{p}.

Note, procedures MGCD and PGCD on pages 307 and 309 in Chapter 7 of the Geddes text do not identify unlucky primes and unlucky evaluation points correctly.

Question 2: Sparse Interpolation Algorithms

(a) (5 marks) Apply Ben-Or/Tiwari sparse interpolation to interpolate

$$
f(w, x, y, u)=101 w^{5} x^{3} y^{2} u+103 w^{3} x y^{3} u^{2}+107 w^{2} x^{5} y^{2}+109 x^{2} y^{3} u^{5}
$$

over \mathbb{Q} using Maple. You will need to compute the integer roots of the $\lambda(z)$ polynomial and solve a linear system over \mathbb{Q}.

Now it is very inefficient to run the algorithm over \mathbb{Q}. Repeat the method modulo a prime p, i.e., interpolate f modulo p. Assume you know that $\operatorname{deg} f<16$. Pick p suitably large so that you can recover all monomials of total degree $d \leq 15$. See the Roots(...) mod p and Linsolve(...) mod p commands.
(b) (5 marks)

REFERENCE (a copy is available on the course web page):
Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation. Proc. STOC '88, ACM press, 301-309, 1988.
The Ben-Or/Tiwari sparse interpolation algorithm interpolates a polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in two main steps. First it determines the monomials then it solves a linear system for the unknown coefficients of the polynomial. Let

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{t} a_{i} M_{i}
$$

where a_{i} are the coefficients and M_{i} are the monomials. Let $a=\left[a_{1}, a_{2}, \ldots, a_{t}\right]$ be the vector of unknown coefficients. Let $v=\left[v_{0}, v_{1}, \ldots, v_{t-1}\right]$ be the vector of values where $v_{j}=f\left(2^{j}, 3^{j}, 5^{j}, \ldots, p_{n}^{j}\right)$. Let $m_{i}=M_{i}\left(2,3,5, \ldots, p_{n}\right)$ be the value of the monomial M_{i}. The linear system to be solved is $V^{T} a=v$ where

$$
V^{T}=\left[\begin{array}{rrrrr}
1 & 1 & 1 & \ldots & 1 \\
m_{1} & m_{2} & m_{3} & \ldots & m_{t} \\
m_{1}^{2} & m_{2}^{2} & m_{3}^{2} & \ldots & m_{t}^{2} \\
\cdots & \cdots & \ldots & \ldots & \ldots \\
m_{1}^{t-1} & m_{1}^{t-1} & m_{1}^{t-1} & \ldots & m_{t}^{t-1}
\end{array}\right]
$$

is a transposed Vandermonde matrix. Solve this linear system for the problem in part (a) using the $O\left(t^{2}\right)$ method.

