MATH 800, Assignment 6, Fall 2023

Instructor: Michael Monagan

Please hand in the assignment by 11 pm Monday November 27 th.
Late Penalty -20% off for up to 24 hours late. Zero after that.
Use Maple as needed for all questions.

Question 1: Minimal polynomials. [14 marks]

(a) Let $\omega=\frac{1}{2}+\frac{\sqrt{3}}{2} i$. Find the minimal polynomial $m(z) \in \mathbb{Q}[z]$ for ω. Calculate ω^{3} via calculating z^{3} in $\mathbb{Q}[z] / m(z)$.
(b) Using linear algebra, find the minimal polynomial $m(z) \in \mathbb{Q}[x]$ for $\alpha=1+\sqrt{2}+\sqrt{3}$. Using the extended Euclidean algorithm compute the inverse of α i.e. $[z]^{-1}$ in $\mathbb{Q}[z] /(m)$.
(c) Let α be an algebraic number and $m(z)$ be a non-zero monic polynomial in $\mathbb{Q}[z]$ of least degree such that $m(\alpha)=0$.
Prove that $m(z)$ is (i) unique and (ii) irreducible over \mathbb{Q}.

Question 2: Algebraic numbers in Maple. [6 marks]

Let ω be a primitive 5th root of unity in \mathbb{C}.
(a) What is the minimal polynomial for ω ?

What is the minimal polynomial for ω^{2} ?
(b) Consider the following linear system

$$
\left\{(\omega+4) x+\omega y=1, \omega^{3} x+\omega^{4} y=-1\right\}
$$

Input ω in Maple using the RootOf representation for algebraic numbers and solve the linear system using the solve command.
(c) Consider the polynomials $a, b \in \mathbb{Q}(\omega)[x]$

$$
a=x^{2}+\left(\omega^{3}+\omega^{2}+2 \omega\right) x-\omega \text { and } b=x^{2}+\left(-\omega^{2}+\omega\right) x+\omega^{2} .
$$

Use Maple to compute their gcd and to factor them over $\mathbb{Q}(\omega)$.

Question 3: Resultants [6 marks]

(a) For $a, b, c \in k[x], k$ a field show that $\operatorname{res}(a, b \cdot c, x)=\operatorname{res}(a, b, x) \cdot \operatorname{res}(a, c, x)$.
(b) For $a=x^{4}+x^{3}+x^{2}+x+1, b=x^{2}-2, c=x^{2}-3$ use Maple's resultant command to verify that $\operatorname{res}(a, b \cdot c, x)=\operatorname{res}(a, b, x) \cdot \operatorname{res}(a, c, x)$.

Question 4: Primitive elements [14 marks]

(a) Let α_{1} have minimal polynomial $z_{1}^{2}-3$ and α_{2} have minimal polynomial $z_{2}^{2}+z_{2}+1$. Use Maple to show that $z_{2}^{2}+z_{2}+1$ is irreducible over $\mathbb{Q}\left(\alpha_{1}\right)$. Hence $\operatorname{dim}\left(\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)\right)=$ $\operatorname{deg}\left(m_{1}, z_{1}\right) \times \operatorname{deg}\left(m_{2}, z_{2}\right)=4$ and $B=\left[1, z_{1}, z_{2}, z_{1} z_{2}\right]$ is the standard basis for the quotient ring $R=\mathbb{Q}\left[z_{1}, z_{2}\right] /\left\langle m_{1}, m_{2}\right\rangle$.
Let $C_{B}: R \rightarrow \mathbb{Q}^{4}$ be the co-ordinate vector operation. E.g. $C_{B}\left(2+3 z_{1}+4 z_{1} z_{2}\right)=$ $[2,3,0,4]^{T}$. Let $\gamma=z_{1}+z_{2}$. Compute the matrix A whose i th column is $C_{B}\left(\gamma^{i-1}\right)$. Now calculate A^{-1} and find the minimal polynomial for γ in $\mathbb{Q}[z]$.
(b) We have R is isomorphic to the quotient ring $S=\mathbb{Q}[z] / m(z)$ and let $B^{\prime}=\left[1, z, z^{2}, z^{3}\right]$ be a basis for S and $C_{B^{\prime}}: S \rightarrow \mathbb{Q}^{4}$ be the co-ordinate vector operation. Let $\phi: R \rightarrow S$ be the isomorphism and ϕ^{-1} it's inverse. We have $\phi(a)=C_{B^{\prime}}^{-1}\left(A^{-1} C_{B}(a)\right)$. Code ϕ and ϕ^{-1} in Maple as procedures phi and phiinv. Compute $\phi\left(z_{1}\right)$ and $\phi\left(z_{2}\right)$. Verify your code by checking that $\phi^{-1}\left(\phi\left(z_{1}\right)\right)=z_{1}$ and $\phi^{-1}\left(\phi\left(z_{2}\right)\right)=z_{2}$. Now use the isomorphism between R and S to compute $g=\operatorname{gcd}(a, b)$ in $R[x]$ for

$$
\begin{aligned}
a & =x^{4}+2 x^{3} z_{1}+\left(-z_{1} z_{2}+3 z_{2}+1\right) x^{2}+\left(2 z_{1}-6 z_{2}\right) x+3 z_{1} z_{2}+3 z_{1}+3 z_{2} \\
b & =x^{4} z_{1}-2 x^{3} z_{2}+\left(z_{1}-3 z_{2}-3\right) x^{2}+\left(-2 z_{1} z_{2}-2 z_{1}-2 z_{2}\right) x+3 z_{1} z_{2}-3
\end{aligned}
$$

You should get $g=x^{2}-z_{1} z_{2}+1$. Do this two ways. First do the gcd comptuation in $R[x]$. Use Maple to do this by using RootOfs for α_{1} and α_{2}. For the second way apply the isomorphism to do the gcd computation in $S[x]$. then invert the isomorphism to recover the gcd in $R[x]$. Use Maple for the gcd computation in $S[x]$ using a RootOf for γ. To apply ϕ to the coefficients of a in $R[x]$ use
> collect(a, $\mathrm{x}, \mathrm{phi})$; \# maps a in $\mathrm{R}[\mathrm{x}]$ to a in $\mathrm{S}[\mathrm{x}]$

Question 5: Trager's factorization algorithm. [10 marks]

(a) Let ω be a primitive 4^{\prime} th root of unity. Using Trager's algorithm, factor $f(x)=$ $x^{4}+x^{2}+2 x+1$ and $f(x)=x^{4}+2 \omega x^{3}-x^{2}+1$ over $\mathbb{Q}(\omega)$. Use Maple's RootOf notation for representing elements of $\mathbb{Q}(\omega)$ and Maple's $\operatorname{gcd}(\ldots)$ command to compute gcds in $\mathbb{Q}(\omega)[x]$.
(b) To factor $f(x)$ over $\mathbb{Q}(\alpha)$, Trager's algorithm chooses $s \in \mathbb{Q}$ such that the norm $N(f(x-$ $s \alpha)$) is square-free. Theorem 8.18 states that only finitely many s do not satisfy this requirement. You are given that a polynomial $n(x) \in k[x]$ for any field k is square-free iff $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=1$ iff $\operatorname{res}\left(f(x), f^{\prime}(x), x\right) \neq 0$. Using this, find all $s \in \mathbb{Q}$ such that if $N(f(x-s \alpha))$ is NOT square-free for the two polynomials $f(x)$ in part (a).

