Let $f \in R\left[x_{1}, \ldots, x_{n}\right], R$ a ring.
Let $f=\sum_{i=1}^{t} a_{i} \cdot M_{i}\left(x_{1}, \cdots, x_{1}\right)$ monomials.
If $\operatorname{deg}\left(f, x_{i}\right)=d_{i}$ then f may have upto $t=\prod_{i=1}^{n}\left(d_{i+1}\right)$ tereus. E.g. $n=2, d_{1}=3, d_{2}=2 . \quad t \leq(3+1)(2+1)=12$.

We say f is sparse if

$$
\begin{aligned}
& t=\# f \ll \prod_{i=1}^{n}\left(d_{i+1}\right) . \\
& ? \quad t \leq \sqrt{\prod_{i=1}^{n}\left(d_{i}+1\right)} .
\end{aligned}
$$

E.g. $f=3 x_{1}+2 x_{1} x_{2}+5 x_{i}-x_{1}^{2}$

Alternatively if $\operatorname{deg}(f)=d$ Rem f may have upto $\binom{n+d}{d}$ terms.
E.g. $d=3, n=2 \quad\binom{n+\alpha}{d}=\binom{2+3}{3}=\frac{5!}{2!3!}=\frac{5 \cdot 4}{2!}=10$ terms.

We say f is sparse if

$$
t \ll\binom{u+d}{d} .
$$

I use $t \leqslant \sqrt{\binom{n+d}{d}}=\sqrt{10}$ So $f=1-x^{3}-y^{3}$ is sparse.

$$
T_{3}=\left[\begin{array}{ccc}
u & v & w \\
v & u & v \\
w & v & u
\end{array}\right] \quad \begin{aligned}
\operatorname{det}\left(T_{3}\right) & =u^{3}-2 u v^{2}-u w^{2}+2 v^{2} w . \quad t=4 . \\
\binom{n+d}{d} & =\binom{6}{3}=20 . \quad \text { sparse. }
\end{aligned}
$$

In ctice most polynomials with $0 \geqslant 3$ ane spare.

Sparse Polynomial Interpolation.
Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$ wee $k i s$ afield.
Suppose f is given by a blach-box $B: k^{n} \rightarrow k$.
Suppose $f=\sum_{i=1}^{t} a_{i} M_{i}\left(x_{1}, \ldots, x_{n}\right)$.
How many points in k^{n} do we need to interpolate f ?
Ire. to recover the $a_{i} \in k$ and te monomials M_{i}.
Let $d_{i}=\operatorname{deg}\left(f, x_{i}\right)$.
Since \#f $\leq \prod_{i=1}^{n}\left(d_{i}+1\right)=D$ we may need D values of f.
E.g. $\quad f\left(x_{1}, x_{2}\right)=\sum_{j=0}^{d_{1}}\left(\sum_{i=0}^{d_{2}} a_{i j} x_{2}^{i}\right) \cdot x_{1}^{j}$

Pick $\beta_{0}, \beta_{1}, \ldots, \beta_{d_{2}} \in k$.
Interpolate $\quad \begin{aligned} & f\left(x_{1}, \beta_{0}\right)=0 \\ & f\left(x_{1}, \beta_{1}\right)\end{aligned}=0+0 x_{1}+\cdots+\rho x_{1} d_{1} \quad$ using $d_{1}+1$ points for x_{1}

$f\left(x_{1}, \beta_{d_{2}}\right)=0+0 \cdot x_{1}+\cdots+\cdot x_{1} \quad x_{1} d_{1}$ ing $d+1$ points.

$$
\begin{aligned}
& f\left(x_{1}, b_{d}\right)=00+\left(x_{1}+\cdots+f_{1} x_{1}\right. \\
\Rightarrow & f\left(x_{1}, x_{2}\right)=f_{0}\left(x_{2}\right)+f_{1}\left(x_{2}\right) \cdot x_{1}+\cdots+f_{1}\left(x_{2}\right) \cdot x_{1} \quad \overline{S_{0}\left(d_{2}+1\right)(d+1)} \text { points }
\end{aligned}
$$

Suppose $f i s$ sparse. Can we improve on this?

$$
\text { \# values of } \quad f=1 \cdot x_{1}^{d}+1 \cdot x_{2}^{d}+\cdots+1 \cdot x_{n}^{d}
$$

Dense method. $\prod_{i=1}^{n}\left(d_{i+1}\right)=(1+d)^{n} \leftarrow$ is exponential

$$
\left.Z_{i p p e}\right|^{\text {phD }} 1979 \leqslant\left(t \sum_{i=1}^{n} d_{i}\right)+1=t n d+1
$$

Ben-orfinari $19882 T$ whee $T \geqslant t \quad 2 T$

