Let $f \in k\left[x_{1}, \cdots, x_{n}\right]$ e.g. $k=\mathbb{Z}_{p}, p$ large. $p=2^{31}-1$.
Assume we know $d_{i}=\operatorname{deg}\left(f, x_{i}\right)$.
If $n=1$ use ordinary interpolation (Newton ar Lagrange) which need $d_{1}+1$ points.
Suppose $n=3$ and

$$
f=3 x_{1}^{2} x_{2}+7 x_{1}^{2} x_{3}^{2}+2 x_{2}^{2} x_{3}+7 x_{2} . \quad d_{1}=\operatorname{deg}\left(f_{1} x_{1}\right)=2
$$

(1) Let δ be a large finite subset of k.

If $k=\mathbb{Z}_{p}$ ten $S=\mathbb{Z}$.
Pick $\beta_{0} \in S$ at random. Say $\beta_{0}=1$.
Interpolate $f\left(\hat{\beta_{0},}, x_{2}, x_{3}\right)=3 x_{2}+7 x_{3}^{2}+2 x_{2}^{2} x_{3}+7 x_{2}$

$$
=7 x_{3}^{2}+2 x_{2}^{2} x_{3}+10 x_{2} \text {. recursively. }
$$

Since $\operatorname{deg}\left(f_{1} x_{1}\right)=2$ we need to pick $\beta_{1}, \beta_{2} \in R$ s.t. $\beta_{1} \neq \beta_{2} \neq \beta_{0}$.
Compute $f\left(\beta_{1}, x_{2}, x_{3}\right)$ and $f\left(\beta_{2}, x_{2}, x_{3}\right)$ then miterpolate x_{1} in f using dense interpolation.
How can we do this efficiently?
Zippel's spare assumption is

$$
f\left(\beta_{i}, x_{2}, x_{3}\right)=a_{1} \cdot x_{1}^{3}+a_{2} x_{2}^{2} x_{3}+a_{3} \cdot x_{2}
$$

for $a_{11}, a_{2}, a_{3} \in k$, i.e., we aid not lose any monomials in x_{2} and x_{3} using $x_{1}=\beta$.
Writing $f=x_{3}^{2}\left(7 x_{1}^{2}\right)+x_{2}^{2} x_{3}(2)+x_{2}\left(3 x_{1}^{2}+7\right)$.
So $\beta_{0}=0$, and $3 \beta_{0}^{2}+7=0$ cause missing terms.
Let $f=\sum_{i=1}^{s} a_{i}\left(x_{1}\right) \cdot M_{i}\left(x_{2}, x_{3}\right)$ whee $s^{\prime \prime} s t^{\prime \prime 4}$.
Let $h\left(x_{1}\right)=\prod_{i=1}^{S} a_{i}\left(x_{1}\right)-\in k\left[x_{1}\right]$.
Zippel assumes $a_{i}\left(\beta_{0}\right) \neq 0$. for $1 \leqslant i \leqslant s$.

$$
\operatorname{Pr}\left[a \operatorname{missing}_{\text {occurs }} \operatorname{term}\right]=\operatorname{Pr}\left[h\left(\beta_{0}\right)=0\right] \leqslant \frac{\operatorname{deg}_{g}(h)}{|s|} \leqslant \frac{s \cdot d_{1}}{|S|} \leqslant \frac{t d_{1}}{|S|} .
$$

(2)

$$
\begin{aligned}
& f=\left(3 x_{2}^{1}+7 x_{3}^{2}\right) x_{1}^{2}+\left(2 x_{2}^{2} x_{3}+7 x_{2}\right) . \\
& f(2,1,3)=(3+63) \cdot 4+(6+7)=264+13=277 .
\end{aligned}
$$

Assumed form $f=a_{1} x_{3}^{2}+a_{2} x_{2}^{2} x_{3}+a_{3} x_{2}$.
Pick $\beta_{1}=2$. We need 3 values of $f\left(\beta_{1}, x_{2}, x_{3}\right)$ to determine a_{1}, a_{2}, a_{3}.

$$
\begin{array}{ll}
& f\left(x_{1}, x_{2}, x_{3}\right) \\
x_{1}=2, x_{2}=1, x_{3}=3 & \left.277=a_{1} \cdot 9+a_{2} \cdot 3+a_{3} \cdot 1 .\right\} \begin{array}{l}
a_{2}=2 \\
x_{1}=2, x_{2}=2, x_{3}=1
\end{array} \quad 74=a_{1}+4 a_{2}+2 a_{3} \\
a_{1}=28 . \\
x_{1}=2, x_{2}=3, x_{3}=0 & 57=3 a_{3} \Rightarrow a_{3}=19 \\
\Rightarrow f\left(\beta_{1}=2, x_{2}, x_{3}\right)=28 x_{3}^{2}+2 x_{2}^{2} x_{3}+19 x_{2}
\end{array}
$$

We needed 3 points instead of $(2+1)(2+1)=9$ points.
Pick $\beta_{2}=3$. Using 3 points again we get

$$
\Rightarrow \quad f\left(x_{1}, x_{2}, x_{3}\right)=7 x_{1}^{2} x_{3}^{2}+2 x_{2}^{2} x_{3}+3 x_{1}^{2} x_{2}+7 x_{2} .
$$

We needed $\begin{gathered}\beta_{1}, \beta_{2} \\ 2 \cdot 3^{\prime \prime} \\ 11\end{gathered}$ recursive call instead of $(z+1)(z+1)(z+1)=27$.

$$
\begin{aligned}
& d_{1}^{\prime \prime} \\
\leqslant & d_{1} \cdot t+d_{2} \cdot t+\underset{x_{2}}{d_{3}+1}{ }_{x_{3}}^{\text {dense. }} \\
\leqslant & t \sum_{i=1}^{n} d_{i}+1 \quad \in O\left(t \sum d_{i}\right)
\end{aligned}
$$

If missing terms occur in Zippel's algorithm, it will output Some $g \neq f$. How can we check if $g \neq f$ it we hive a blach-box $B: k^{n} \rightarrow h$ oo f ?

Pick $\alpha \in \mathbb{Z}_{p}^{n}$ at random.
If $g \neq f$ then probably $B^{*}(\alpha)=f(\alpha) \neq g^{(}(\alpha)$.
But $B(\alpha)=g(\alpha)$ is possible. E.g.

$$
\begin{aligned}
& f=2 x_{1} x_{2}+\left(\underline{\left.x_{1}-\alpha_{1}\right) x_{2}^{2}}\right. \\
& g=2 x_{1} x_{2}
\end{aligned}
$$

Let $h=f-g$.
Suppose $f \neq g$.

$$
\begin{aligned}
& \text { Suppose } f \neq g \text {. } \\
& \operatorname{Pr}[B(\alpha)=g(\alpha)]=\operatorname{Pr}[h(\alpha)=0] \leq \frac{\operatorname{deg}(h)}{p} \text { by Schwartz }- \text { Zipped. }
\end{aligned}
$$

