
An Interpolation Algorithm for computing Dixon
Resultants

Ayoola Jinadu and Michael Monagan

Department of Mathematics, Simon Fraser University
Burnaby, British Columbia, V5A 1S6, Canada

ajinadu@sfu.ca and mmonagan@sfu.ca

Abstract. Given a system of polynomial equations with parameters,
we present a new algorithm for computing its Dixon resultant R. Our
algorithm interpolates the monic square-free factors of R one at a time
from monic univariate polynomial images of R using sparse rational func-
tion interpolation. In this work, we use a modified version of the sparse
multivariate rational function interpolation algorithm of Cuyt and Lee.
We have implemented our new Dixon resultant algorithm in Maple with
some subroutines coded in C for efficiency. We present timing results
comparing our new Dixon resultant algorithm with Zippel’s algorithm
for interpolating R and a Maple implementation of the Gentleman &
Johnson minor expansion algorithm for computing R.

Keywords: Dixon Resultant, Parametric Polynomial Systems, Resul-
tant, Sparse Rational Function Interpolation, Kronecker Substitution

1 Introduction

Let X = {x1, x2, · · · , xn} denote the set of variables and let Y = {y1, y2, · · · , ym}
be the set of parameters with n ≥ 2 and m ≥ 0. Let F = {f1, f2, · · · , fn} ⊂
Q[X,Y] be a parametric polynomial system where fi is a polynomial in variables
X with coefficients in Q[Y]. Let I = 〈f1, f2, · · · , fn〉 be the ideal generated by
F . The Dixon resultant [5,6] of F in x1 is the determinant of the Dixon matrix
(See Section 2) and it is a polynomial in the elimination ideal I ∩Q[Y][x1]. It is
used to eliminate n− 1 variables from a polynomial system in n variables.

Let R =
∑d
k=0 rk(y1, · · · , ym)xk1 ∈ Q[Y][x1] be the Dixon resultant of F in x1

where d = deg(R, x1) > 0. Let C = gcd(r0, · · · , rd) be the polynomial content of
R. In this paper we will compute the monic square-free factors of R. The monic
square-free factorization of R is a factorization of the form r̂

∏l
j=1R

j
j such that

1. r̂ = C/L for some L ∈ Q[Y],
2. each Rj is monic and square-free in Q(Y)[x1], i.e., gcd(Rj , R

′

j) = 1, and
3. gcd(Ri, Rj) = 1 for i 6= j.

This monic square-free factorization exists and it is unique [8, Section 14.6].
Note, the factors Rj are not necessarily irreducible over Q. The monic square-
free part S of R is the product of the monic square-free factors Rj , that is,
S =

∏l
j=1Rj .

2 Ayoola Jinadu and Michael Monagan

In this paper we present a new Dixon resultant algorithm that interpolates
the monic square-free factors Rj one at a time and does not interpolate R. We
interpolate the Rj ’s because it is cheap to compute a square-free factorization
of a monic image of R and the square-free factorization factors will be consis-
tent from one image to the next with high probability. Interpolating the Rj ’s
instead of R results in a huge gain because all unwanted repeated factors and
the polynomial content are removed. The advantage of our algorithm over other
known polynomial interpolation algorithms [2,23] is that the number of polyno-
mial terms in Rj to be interpolated is much less than in R. Furthermore, the
number of primes used by our algorithm in the sparse interpolation step when we
apply the Chinese remainder theorem is reduced. Thus the number of black box
1probes required to interpolate the monic square-free factors Rj is much fewer
than the number required to interpolate R. We give a real example from [14].

Example 1 [14, robot arms system, page 17] Let

C = −65536
(
al2 + 1

)8
l82
(
al2l22 + 2al2l2l3 + al2l23 + l22 − 2l2l3 + l23

)4︸ ︷︷ ︸
polynomial content

A1 = t21 + 1

A2 = (al2l21 + 2al2l1x− al2l22 − 2al2l2l3 − al2l23 + al2x2 + al2y2 + l21 + 2l1x− l22
+ 2l2l3 − l23 + x2 + y2)t21 +

(
−4al2l1y − 4l1y

)
t1 + al2l21 − 2al2l1x− al2l22

− 2al2l2l3 − al2l23 + al2x2 + al2y2 + l21 − 2l1x− l22 + 2l2l3 − l23 + x2 + y2

A3 = (aa2 + 2aal2)t21 + aa2 − 4aal1 + 2aal2 + 4l21 − 4l1l2

A4 = (aa2 − 2aal2)t21 + aa2 − 4aal1 − 2aal2 + 4l21 + 4l1l2

where X = {t1, t2, b1, b2} are the variables, t1 is the main variable and Y =
{aa, al, l1, l2, l3, x, y} are the parameters. The Dixon resultant R of the robot
arms system in t1 has 6, 924, 715 terms in expanded form and it factors as

CA24
1 A4

2A
2
3A

2
4 .

Our new Dixon resultant algorithm computes R1, R2 and R3 where R1 = A1, R2 =
monic(A2, t1) and R3 = monic(A3A4, t1). The largest coefficient of R1, R2 and
R3 is the leading coefficient of A2 which has only 14 terms! Notice that R1 and
R2 are irreducible over Q but R3 is not.

Our motivation to investigate Dixon resultants stems from sets of parametric
polynomial systems listed in [11,12,14,15]. Lewis tried to solve these polynomial
systems using Gröbner bases and Triangular sets in Maple and Magma, but
they often failed badly; they took a very long time to execute and often ran out
1 A black box is a computer program that takes as input a list of integers together with
a prime and outputs the evaluation of the represented object modulo the prime. Black
box representations are space efficient. The represented object such as a polynomial,
a rational function, and a determinant of a matrix of polynomials is assumed to be
unknown. A function call to the black box is referred to as a black box probe.

An Interpolation Algorithm for computing Dixon Resultants 3

of memory. The failure of these methods is due to the intermediate expression
swell caused by the parameters. This led Lewis to develop the Dixon-EDF (Early
Detection Factor) algorithm [14] which is a variant of the Gaussian elimination.
It is a modified row reduction of the Dixon matrix that factors out the gcd of each
pivot row at each step. The Dixon-EDF method is able to detect factors of the
Dixon resultant early. One can interrupt it part way to switch to another method.
Lewis often switches to the Gentleman & Johnson minor expansion algorithm [7]
to finish the computation. The drawback of the Dixon-EDF method is that it is
not automatic and expression swell may occur when computing in Q[Y, x1].

Our first contribution is a new algorithm that computes the monic square-
free factors Rj of R from monic univariate images in x1 using sparse multivari-
ate rational function interpolation to interpolate the coefficients of Rj in Q(Y)
modulo primes and uses Chinese remaindering and rational number reconstruc-
tion [8,18] to recover the rational coefficients of Rj .We have modified the sparse
rational function interpolation algorithm of Cuyt and Lee [4] for this purpose.
The only interpolation method that has been applied to Dixon resultants that
we are aware of was done by Kapur and Saxena in [12]. They used Zippel’s
sparse interpolation [23] to interpolate R. Zippel’s method does O(mD̂t) black
box probes for the first image modulo a prime, where m is the number of pa-
rameters, D̂ = deg(R, x1)+

∑m
i=1 deg(R, yi) and t = #R. But one has to recover

the integer coefficients of R which may need more primes. Using the support of
the result obtained for the first prime, the integer coefficients can be recovered
using O(t) probes to the black box for each subsequent prime [23].

Our second contribution is a Maple + C implementation of our algorithm.
For our benchmark problem (Heron5d system [22]), the Gentleman & Johnson
algorithm ran out of space (> 64GB), Zippel’s algorithm takes more than 105

seconds and our new algorithm takes 23.12 seconds on 1 core.
We provide an overview of our Dixon resultant algorithm. Let r̂

∏l
j=1R

j
j

be the monic square-free factorization of R. For 1 ≤ j ≤ l, our algorithm will
compute each Rj in the form

Rj = x
dTj

1 +

Tj−1∑
k=0

fjk(y1, y2, · · · , ym)

gjk(y1, y2, · · · , ym)
x
djk
1 ∈ Q(y1, y2, · · · , ym)[x1]

where gcd(fjk, gjk) = 1, fjk, gjk ∈ Q[y1, y2, · · · , ym] and dTj = deg(Rj , x1).
If more primes are needed to recover the Rj ’s, one can set up a system

of linear equations using the support found with the first prime to solve for the
coefficients of fjk and gjk before doing Chinese remaindering. This method costs
O(
∑l
k=1

∑Tj

k=1 d
3
j,k) arithmetic operations in Zp, where p is the prime and dj,k =

#fjk + #gjk is the total number of unknowns in the k-th rational coefficient of
Rj . Instead, we reduce this cost to O(

∑l
j=1

∑Tj

k=1 d
2
j,k) arithmetic operations in

Zp as follows. We pick α and β in Zmp at random, a shift s ∈ [1, p−2] at random
and probe the black box to compute

G(αi, x1, z) := x
dTj

1 +

Tj−1∑
k=0

fjk(zβ1 + αs+i1 , · · · , zβm + αs+im)

gjk(zβ1 + αs+i1 , · · · , zβm + αs+im)
x
djk
1 ∈ Zp(z)[x1]

4 Ayoola Jinadu and Michael Monagan

for 0 ≤ i < N and N = maxlj=1 max
Tj−1
k=0 {#fjk,#gjk}. Then for 1 ≤ j ≤ l,

we collect the #fjk (or #gjk) rational coefficients modulo p from G(αi, x1, 0)
and set up a shifted transposed Vandermonde system [9,23] to solve for the the
coefficients of fjk and gjk for each Rj .

In a preliminary stage of this work, we first designed our algorithm to in-
terpolate the monic square-free part S =

∏l
j=1Rj from the monic univariate

images of R in x1. But we discovered that when l > 1, interpolating the Rj ’s in-
stead of S often reduces the number of black box probes required. These savings
are realized because there is a further reduction in the number of terms in the
largest polynomial coefficient of Rj to be interpolated compared to the monic
product S. Also, the same monic univariate images that yield the first monic
square-free factor R1 can re-used for subsequent monic square-free factors in R.

Table 1 contains the number of black box probes required for interpolating S
versus interpolating the monic square-free factors Rj one at a time for the robot
arms problem [14] and it shows a significant reduction in the number of black
box probes when the main variable is t1, t2 or b2.

Main variable t1 t2 b1 b2
Interpolating square-free part S 222, 301 3, 137, 373 116, 741 5, 531, 491

Interpolating square-free-factors Rj one at a time 19, 241 1, 210, 889 116, 741 1, 335, 853
Savings in # of probes 203, 060 1, 926, 484 0 4, 195, 638

of terms in the largest coefficient of Rj 14 691 85 624
of terms in the largest coefficient of S 106 2, 200 85 2, 388

Table 1: Interpolating S versus interpolating the square-free factors Rj

Notice in column b1 that both methods used the same number of black box
probes. This is because the number of terms in the largest polynomial coefficient
of Rj and S are the same. Thus no savings is realized even though the number
of the monic square-free factors for this case is more than 1.

Paper Outline

In Section 2, we present a Dixon resultant formulation for polynomial systems.
In Section 3, we give an overview of the rational function interpolation algorithm
of Cuyt and Lee [4] and we modify it to use Kronecker substitutions to combat
the large prime and unlucky evaluation point problems that occurs when the
adopted sparse polynomial algorithm in Cuyt and Lee’s method is the Ben-
Or/Tiwari sparse polynomial algorithm [2]. Our algorithms without their failure
probability bounds are presented in Section 4. In Section 5, we explain how we
evaluate the polynomial entries in the Dixon matrix which is the most expensive
part of our algorithm and we compare our new Dixon resultant algorithm with a
Maple implementation of the Gentleman & Johnson minor expansion algorithm
and a Maple+C implementation of Zippel’s algorithm to interpolate R on the
parametric polynomial systems from [14,15].

An Interpolation Algorithm for computing Dixon Resultants 5

2 Dixon Resultants

Let xα = xα1
1 xα2

2 · · ·xαn
n and let {x̄1, x̄2, · · · , x̄n} be a set of new variables. For

each i ∈ {0, 1, 2, · · · , n}, we define πi(xα) = x̄α1
1 x̄α2

2 · · · x̄
αi
i x

αi+1

i+1 x
αi+2

i+2 · · ·xαn
n such

that π0(xα) = xα. Extending the map πi naturally to polynomials, we have

πi(f(x1, x2, · · · , xn)) = f(x̄1, x̄2, · · · , x̄i, xi+1, xi+2 · · · , xn).

There are three major steps involved in computing the Dixon resultant of a
polynomial system. The first step is to construct the cancellation matrix [5, 6].
We refer to the determinant of the cancellation matrix as the Dixon polynomial.
The Dixon polynomial acts as the link between the cancellation matrix and the
Dixon matrix. Although it is important to select the order of the n−1 variables to
eliminate because the order affects the size and degree of the Dixon polynomial,
we do not focus on the optimal order. Further information about the optimal
order can be found in [3, 17].

Definition 2 Given a polynomial system F , let Xe = {x2, · · · , xn} be the set of
variables to be eliminated and let x1 be the main variable to appear in the Dixon
resultant. Let Xe = {x̄2, x̄3 · · · , x̄n} be the set of the new variables corresponding
to Xe. We define the n× n cancellation matrix

C =

π0(f1(Xe)) π0(f2(Xe)) . . . π0(fn(Xe))
π1(f1(Xe)) π1(f2(Xe)) . . . π1(fn(Xe))

...
...

...
πn−1(f1(Xe)) πn−1(f2(Xe)) . . . πn−1(fn(Xe))

 . (1)

Definition 3 Let P =
∏n−1
i=1 (Xei −Xei) and let

∆Xe =
det(C)
P

. (2)

We refer to ∆Xe ∈ Q[Y, x1][Xe, Xe] as the Dixon polynomial of F with respect
to Xe.

The determinant of the cancellation matrix det(C) is a multiple of the Dixon
polynomial ∆Xe

. One must not compute ∆Xe
by expanding det(C) then dividing

by P because det(C) which equals P×∆Xe , is much bigger than ∆Xe , since there
are 2n−1 terms in P when P is expanded. Instead, we follow Lewis [16] and create
a new cancellation matrix Ĉ using the identity

Row (Ĉ1) = Row(C1), Row (Ĉi+1) =
Row (Ci+1)− Row (Ci)

Xei −Xei

(3)

for i = n− 1, n− 2 · · · 1 and then compute the determinant of Ĉ which produces
the Dixon polynomial. The second step in Dixon’s method is to construct the
Dixon matrix from the Dixon polynomial. To do this, one needs to rewrite the
Dixon polynomial as a bilinear form. We give the following definition to formalize
this.

6 Ayoola Jinadu and Michael Monagan

Definition 4 Let V be a monomial column vector in variables Xe when ∆Xe

is viewed as a polynomial in variables Xe and let V be a monomial row vector
in Xe when ∆Xe is viewed as a polynomial in variables Xe. A Dixon polynomial
∆Xe ∈ Q[Y, x1][Xe, Xe] can be written in bilinear form as

∆Xe
= V DV (4)

and matrix D is the Dixon matrix with entries in Q[Y, x1]. The Dixon resultant
R ∈ Q[Y, x1] is the determinant of the Dixon matrix D.

Example 5 Let F = {x22 + x23 − y23 , (x2 − y1)
2

+ x23 − y22 , −x3y1 + 2x1} with
variables X = {x1, x2, x3} and parameters Y = {y1, y2, y3}. Let Xe = {x2, x3}
be the variables to be eliminated and let Xe = {x̄2, x̄3} be the new variables
corresponding to Xe. Using the identity 3, it follows that the cancellation matrix

Ĉ =

x2
2 + x2

3 − y2
3 (x2 − y1)2 + x2

3 − y2
2 −x3y1 + 2x1

x2 + x̄2 x2 − 2y1 + x̄2 0
x3 + x̄3 x3 + x̄3 −y1

and the Dixon polynomial

∆Xe = y1

(
−2x2y1 + y2

1 − y2
2 + y2

3

)
x̄2 + y1

(
x2y

2
1 − x2 y

2
2 + x2 y

2
3 − 2y1 y

2
3 + 4x1x3

)
+ y1 (−2x3y1 + 4x1) x̄3.

The Dixon polynomial ∆Xe
expressed in bilinear form yields

V DV = [x2 x3 1]

[−2y2
1 0 y3

1 − y1y
2
2 + y1y

2
3

0 −2y2
1 4x1y1

y3
1 − y1y

2
2 + y1y

2
3 4x1y1 −2y2

1y
2
3

][
x̄2

x̄3

1

]
.

Finally, the Dixon resultant R = det(D) is

2y41(16x21 + y41 − 2y21y
2
2 − 2y21y

2
3 + y42 − 2y22y

2
3 + y43).

The last step of the Dixon’s method is to compute the determinant of the Dixon
matrix D. Unfortunately, the Dixon matrix obtained may be rectangular thus
eliminating the possibility of computing its determinant or it may be singu-
lar thus providing no information about the solutions of F . Dixon’s method
was originally designed to compute Dixon resultants of n + 1 generic n-degree
polynomials in n variables. However, for geometric problems arising in practice,
the Dixon resultant is almost always zero because these systems do not have a
generic degree shape [11]. These problems were addressed by Kapur, Saxena and
Yang in [11]. They proved that the determinant of any maximal minor M of the
Dixon matrix D is an element of the elimination ideal I ∩Q[Y][x1]. Thus, once
a Dixon matrix D is constructed, we find any minor of D of maximal rank, and
compute its determinant. Hence, the requirement for F to be generic n-degree
in Dixon’s method is no longer necessary.

Our idea to select a maximal minor M of a Dixon matrix D proceeds as
follows. We pick a 62 bit prime p and choose β ∈ Zm+1

p at random. Then we
compute B = D(β) and identify a maximal minor from B in D with high
probability. This requires Gaussian elimination over Zp only and in contrast to
Kapur, Saxena and Yang [11] crucially avoids doing polynomial arithmetic in
Q[Y, x1].

An Interpolation Algorithm for computing Dixon Resultants 7

3 Modified Interpolation using Kronecker substitution

Let f =
∑t
k=1 akMk(x1, · · · , xn) ∈ Z[x1, · · · , xn] with ak 6= 0 be a sparse

polynomial. The Ben-Or/Tiwari algorithm [2] interpolates f using 2T points
{(2j , 3j , · · · , pjn) : 0 ≤ j ≤ 2T − 1} where pn is the n-th prime assuming a
term bound T ≥ t is known. In this work, the Ben-Or/Tiwari algorithm is the
preferred polynomial algorithm for the Cuyt and Lee’s rational function interpo-
lation algorithm [4] because it requires the fewest number of black box probes.

Let mi = Mi(2, 3, · · · , pn) be the monomial evaluations. The Ben-Or/Tiwari
algorithm is done modulo a prime p satisfying p > maxti=1mi ≤ pdn where
d = deg f. However, such a prime p may be too large to use machine arith-
metic. For example, suppose n = 8 and deg(f, xi) = 11. Then the prime p re-
quired by the Ben-Or/Tiwari sparse polynomial algorithm must be larger than
211311 · · · 1911 = 7.2× 1077. This is the primary disadvantage of using the Ben-
Or/Tiwari algorithm. Also, one has to deal with unlucky evaluation points prob-
lem posed by using points (2j , 3j , · · · , pjn) in modular GCD algorithms [9].

We avoid these problems in the Cuyt and Lee sparse multivariate rational
function interpolation algorithm by using Kronecker substitution to map a mul-
tivariate rational function into a univariate rational function and we evaluate at
powers of a generator of Z∗

p instead of powers of prime (2j , 3j , · · · , pjn). To invert
a Kronecker substitution, we need to know the partial degrees of a multivariate
rational function A = f/g for all variables involved.

3.1 Partial Degrees of A = f/g in each variable

Let A = f/g be a rational function in variables y1, · · · , ym. Let dfi ≥ deg(f, yi)
and dgi ≥ deg(g, yi) be partial degree bounds. Let A be viewed as

A = f/g =

∑dfi
k=0 ak(y1, · · · , yi−1, yi+1, yi+2, · · · , ym)yki∑dgi
k=0 bk(y1, · · · , yi−1, yi+1, yi+2, · · · , ym)yki

such that f, g ∈ Z[y1, y2, · · · , yi−1, yi+1, yi+2, · · · , ym][yi]. Let p be a prime and
let z be a new variable. Let α = (α1, · · · , αi−1, αi+1, · · · , αm) ∈ (Zp \ {0})m−1

be selected at random. To obtain partial degree bounds for each dfi and dgi , we
use enough distinct points for z selected at random from Zp \ {0} and compute

Hi(z) := Hfi/Hgi = A(α1, · · · , αi−1, θz + β, αi+1, · · · , αn) ∈ Zp(z)

such that dfi = deg(Hfi , z) and dgi = deg(Hgi , z) where β, θ ∈ Zp are chosen at
random. Observe that if LC(Hfi , z)(α) = 0 or LC(Hgi , z)(α) = 0 then the wrong
partial degrees would be obtained. For example, let A = f/g =

(2−y3)y21y2+y1
y1+y2

and
suppose we want to determine deg(A, y1). Let prime p = 3137 and let z be a new
variable. LetH1(z) := Hf1/Hg1 = A(θz+β, α2, α3) = (2−α3)(θz+β)

2α2+θz+β
θz+β+α2

. Ob-
serve that if α3 = 2 then LC(Hf1 , z)(α2, 2) = 0 for any β, θ, α2 ∈ Zp. The wrong
partial degree bound of f will be returned in this case since H1(z) = A(θz +
β, α2, 2) = θz+β

θz+α2+β
. Thus it is important that we pick prime p � deg f deg g

and α randomly.

8 Ayoola Jinadu and Michael Monagan

3.2 Algorithm by Cuyt and Lee

Let K be a field and let A = f/g ∈ K(y1, · · · , ym) be a sparse multivariate ratio-
nal function with gcd(f, g) = 1. Cuyt and Lee’s rational function algorithm [4]
reduces interpolation of sparse rational functions to sparse polynomials interpo-
lation. The first step in their algorithm is to introduce a homogenizing variable
z to form the auxiliary rational function

A(y1z, · · · , ymz) =
f0 + f1(y1, · · · , ym)z + · · ·+ fdeg f (y1, · · · , ym)zdeg f

g0 + g1(y1, · · · , ym)z + · · ·+ gdeg g(y1, · · · , ym)zdeg g
.

In the case when constant terms g0 and f0 are both zero, one has to pick
β ∈ (K \ {0})m and perform a basis shift to obtain auxiliary rational function
Â(y1, · · · , ym, z) := A(y1z + β1, · · · , ymz + βm) so that

Â(y1, · · · , ym, z) =
f0 + f1(y1, · · · , ym)z + · · ·+ fdeg f (y1, · · · , ym)zdeg f

g0 + g1(y1, · · · , ym)z + · · ·+ gdeg g(y1, · · · , ym)zdeg g
.

The basis shift forces the auxiliary rational function to have non-zero constant
terms f0 and g0. This is important because their method normalizes on f0 or g0.
That is they write

Â(y1, · · · , ym, z) =

f0
g0

+ f1(y1,···,ym)
g0

z + · · ·+ fdeg f (y1,···,ym)
g0

zdeg f

1 + g1(y1,···,ym)
g0

z + · · ·+ gdeg g(y1,···,ym)
g0

zdeg g
∈ K[y1 · · · , ym](z).

Thus for a black box rational function A = f/g, we interpolate Â using univariate
dense auxiliary rational functions

Â(αj , z) =

f0
g0

+ f1(α
j)

g0
z + · · ·+ fdeg f (α)

g0
zdeg f

1 + g1(αj)
g0

z + · · ·+ gdeg g(αj)
g0

zdeg g
∈ K(z)

for j = 0, 1, 2, · · ·. To interpolate Â(αj , z) we use deg f + deg g + 2 black box
probes on z. Since the sparsity of A = f/g is destroyed by the basis shift, Cuyt
and Lee adjust the coefficients of the lower degree terms in the numerator and
denominator of Â(αj , z) by the contributions from the higher degree terms before
the coefficients interpolation step is performed. We will show how to do this in
our Dixon resultant algorithm (See Subroutine Remove-Shift on page 12). Thus
using an appropriate sparse polynomial interpolation algorithm such as [2, 23],
the adjusted coefficients of the auxiliary rational functions produces the desired
rational function A = f/g that was represented by a black box.

3.3 Kronecker Substitution

Using a Kronecker substitution in Cuyt and Lee’s method, we reduce the problem
of interpolating a sparse multivariate rational function into a univariate rational
function interpolation.

An Interpolation Algorithm for computing Dixon Resultants 9

Definition 6 Let K be an integral domain and let A = f/g ∈ K(y1, · · · , ym).
Let r = (r1, r2, · · · , rm−1) ∈ Zm−1 with ri > 0. Let Kr : K(y1, · · · , ym) → K(y)
be the Kronecker substitution

Kr(A) =
f(y, yr1 , yr1r2 , · · · , yr1r2···rm−1)

g(y, yr1 , yr1r2 , · · · , yr1r2···rm−1)
.

Let di = max{(deg f, yi),deg(g, yi)} for 1 ≤ i ≤ m. Provided we choose ri > di
for 1 ≤ i ≤ m− 1 then Kr is invertible, g 6= 0 and Kr(A) = 0 ⇐⇒ f = 0.

Definition 7 Let K be a field and let A = f/g ∈ K(y1, · · · , ym) such that
gcd(f, g) = 1. Let z be the homogenizing variable and let r = (r1, · · · , rm−1)
with ri > di = max{(deg f, yi),deg(g, yi)}. Let Kr be the Kronecker substitution
and let

F (y, z) =
f(zy, zyr1 , · · · , zyr1r2···rm−1)

g(zy, zyr1 , · · · , zyr1r2···rm−1)
∈ K[y](z).

Following the presentation of auxiliary rational functions in [4], we need to guar-
antee the existence of a constant term in the denominator of F (y, z). Thus we
use a basis shift β ∈ (K\{0})m and instead define an auxiliary rational function

F (y, z) :=
f(zy + β1, zy

r1 + β2, · · · , zyr1r2···rm−1 + βm)

g(zy + β1, zyr1 + β2, · · · , zyr1r2···rm−1 + βm)
∈ K[y](z) (5)

with Kronecker substitution Kr.

Although the degree of the mapped rational function Kr(A) is exponential in
y, the degree of the auxiliary functions with Kronecker substitution F (y, z) in
z through which Kr(A) is interpolated remains the same. Consequently, the
number of terms and the number of probes needed to interpolate A = f/g does
not change. To recover the exponents in y we require prime p >

∏m
i=1 ri.

Example 8 Let

A = f/g =
y1 + y2 + y3
y1 + y3

∈ Z3137(y1, y2, y3).

Observe that di = max{deg(f, yi), deg(g, yi)} = 1 for 1 ≤ i ≤ 2. Let r = (2, 2)
where ri > di and let β = (2, 3, 5) be a basis shift. Let Kr(A) = A(y, y2, y4) =
y4+y2+y
y4+y . Then F (y, z) = A(zy+2, zy2+3, zy4+5) = (y4+y2+y)z+10

(y4+y)z+7 ∈ Z3137[y](z)

is an auxiliary rational function with Kronecker substitution Kr.

3.4 Bad Evaluation Points

Definition 9 Let p be prime and let A = f/g ∈ Zp(y1, · · · , ym) with gcd(f, g) =
1. Let α ∈ Zp \ {0} and β ∈ (Zp \ {0})m with A(β) ∈ Zp. Let i ≥ 0 and let

F (yi, z) :=
fi(y, z)

gi(y, z)
=
f(zyi + β1, zy

(r1)i + β2, · · · , zy(r1r2···rm−1)i + βm)

g(zyi + β1, zy(r1)i + β2, · · · , zy(r1r2···rm−1)i + βm)
∈ Zp[y](z)

be the i-th auxiliary rational function with Kronecker substitution Kr. We say
that α ∈ Zp is a bad evaluation point if deg(fi(α, z)) < deg f or deg(gi(α, z)) <
deg g. That is LC(fi, z)(y = α) = 0 or LC(gi, z)(y = α) = 0.

10 Ayoola Jinadu and Michael Monagan

Example 10 Let

A = f/g =
2891y1 + y2 + y3
y22 + y1 + y3

∈ Z3137(y1, y2, y3).

Clearly gcd(f, g) = 1. The rational function A = f/g does not have a constant
term in the numerator or denominator. Let β = (5, 2, 3) ∈ Z3137 serve as the
basis shift for A. Let r = (2, 3) and let Kr(A) = A(y, y2, y6) = y6+y2+2891y

y6+y4+y .
Then an auxiliary rational function F (y, z) with Kronecker substitution Kr is

F (y, z) =
f1(y, z)

g1(y, z)
=

1912 + (y6 + y2 + 2891y)z

12 + y4z2 + (y6 + 4y2 + y)z
∈ Z3137[y](z).

If α = 3 is randomly picked in Z∗
3137, then the auxiliary rational function

F (3, z) =
f1(α, z)

g1(α, z)
=

1108

z2 + 2217z + 1162
∈ Z3137(z).

Thus deg(f1(α, z)) < 1 which implies that α = 3 is a bad evaluation point.

We avoid bad evaluation points with high probability in our Dixon resultant
algorithm by picking any generator α ∈ Z∗

p and a random shift s ∈ [1, p − 2]

where p is prime and instead compute F (αs+j , z) for j = 0, 1, 2, · · · [9].

4 The Dixon Resultant Algorithm

For the purpose of description in this paper, we assume that there is one monic
square-free factor to be interpolated. That is, our algorithms are presented to
interpolate only one square-free factor. The implementation of our algorithm
handles more than one monic square-free factor. Let

S = xdT1 +

T−1∑
k=0

fk(y1, · · · , ym)

gk(y1, · · · , ym)
xdk1 . (6)

Definition 11 Let M be a Dixon matrix of polynomials in Z[x1, y1, · · · , ym].
For our algorithms, a black box BB : Zm+1

p → Zp is a program that takes a
prime p and α ∈ Zm+1

p as inputs and outputs det(M(α)) mod p.

The implication of the black box representation of det(M) is that information
such as number of terms and variable degrees are unknown. The degree bounds
needed are degrees [d0, · · · , dT] as defined in Equation 6, total degree bounds for
the rational function coefficients fk(y1,···,ym)

gk(y1,···,ym) and the maximum partial degrees
max

(
maxT−1

k=0 (deg(fk, yi),deg(gk, yi))
)
of S with respect to each variable yi. For

lack of space, we will not present the algorithms to compute these degree bounds.
We now present our Dixon resultant algorithm labelled as algorithm Dixon-

Res. It calls Algorithms SparseKron, MQRFR and Subroutines PolyInterp, Rat-
Fun, Remove-Shift, VanderSolver, BMStep. The MQRFR algorithm is the Max-
imal Quotient Rational Function Reconstruction algorithm in [13, page 186].

An Interpolation Algorithm for computing Dixon Resultants 11

Algorithm 1: DixonRes

Input: A prime p and a black box BB : Zm+1
p → Zp

Output: A square-free factor S ∈ Q[x1, y1, · · · , ym] of R or FAIL.
1 Compute T and d = [d0, · · · , dT] as defined in 6 and D̂ = deg(detM,x1).
2 Compute ek = deg(fk) + deg(gk) + 2 for 0 ≤ k ≤ T − 1.

3 Let emax = maxT−1
k=0 {ek} and assume that e0 ≥ e1, · · · ≥ eT−1.

4 Compute Dyi = max
(
maxT−1

k=0 (deg(fk, yi),deg(gk, yi))
)
for 1 ≤ i ≤ m− 1.

5 Initialize ri = Dyi + 1 for 1 ≤ i ≤ m. // Prime p >
∏m

j=1 ri.

6 Let Kr : Zp(y1, · · · , ym)[x1]→ Zp(y)[x1] be the Kronecker substitution Kr(S)
where S is as defined in 6 and r = (r1, r2, · · · , rm−1).

7 Pick a random basis shift β ∈ (Zp \ {0})m such that BB(β) ∈ Zp.
8 Pick a random shift s ∈ [1, p− 2] and any generator α for Z∗

p.
9 Let z be the homogenizing variable.

10 Pick θ ∈ Zemax
p and δ ∈ ZD̂+1

p at random.
11 k ← 0
12 for i = 1, 2, · · · while k ≤ T − 1 do
13 Ŷi ← (αs+i−1, α(s+i−1)r1 , · · ·α(s+i−1)(r1r2···rm−1)).
14 Let Zi = [Ŷiθj + β ∈ Zm

p : 1 ≤ j ≤ emax] be the evaluation points.
// Compute the monic univariate images Hi ∈ Zp[x1].

15 Hi ← PolyInterp(BB, Zi, δ, dT , emax) // |Hi|= emax

16 if Hi = FAIL return FAIL end
17 if i ∈ {2, 4, 6, 10, 16, 26, · · ·} then
18 for j = 1, 2, . . . , i do

// Compute auxiliary functions Aj(α
s+j−1, z) = Nj/N̂j ∈ Zp(z)

with Kronecker substitution Kr. Let Aj = Aj(α
s+j−1, z).

19 Aj ← RatFun(Hj , θ, dk, ek, p)

20 if deg(Nj , z) 6= deg(fk) or deg(N̂j , z) 6= deg(gk) then
21 return FAIL // αs+j−1 is a bad evaluation point
22 end
23 end
24 Fk ← BMStep([coeff(Nj , z

deg(fk)) : 1 ≤ j ≤ i], α, s, r).
25 Gk ← BMStep([coeff(N̂j , z

deg(gk)) : 1 ≤ j ≤ i], α, s, r)
26 if Fk 6= FAIL and Gk 6= FAIL then
27 fk ← Remove-Shift(Fk, [Ŷ1, · · · , Ŷi], [N1, · · · , Ni], α, s, β, r)

28 gk ← Remove-Shift(Gk, [Ŷ1, · · · , Ŷi], [N̂1, · · · , N̂i], α, s, β, r)
29 if fk 6= FAIL and gk 6= FAIL then
30 k ← k + 1// We have interpolated the k-th coefficient of S.
31 end
32 end
33 end
34 end
35 Ŝ ← xdT1 +

∑T−1
k=0

fk(y1,···,ym)
gk(y1,···,ym)

x
dk
1 // Ŝ = S mod p where S is as defined in 6

36 L← LCM {gk ∈ Zp[y1, y2, · · · , ym] : 0 ≤ k ≤ T − 1}
37 M ← Ŝ × L ∈ Zp[x1, y1, y2, · · · , ym]. // Clear the denominators
38 Apply rational number reconstruction to the coefficients of M mod p to get S
39 if S 6= FAIL then
40 return S
41 else
42 S ← SparseKron(BB, Ŝ,M, {(deg fk,deg gk) : 0 ≤ k ≤ T − 1}, emax, D̂, dT)

43 if S 6= FAIL then return S else return FAIL end
44 end

12 Ayoola Jinadu and Michael Monagan

Subroutine 2: Remove-Shift : The effect of the basis shift β is corrected

Input: F ∈ Zp[y1, · · · , ym], basis shift β ∈ (Zp \ {0})m, shift s ∈ [1, p− 2] and
r which defines the Kronecker substitution Kr.

Input: [Ŷj ∈ Zm
p : 1 ≤ j ≤ i], [Nj ∈ Zp[z] : 1 ≤ j ≤ i] and a generator α for Z∗

p

Output: fk ∈ Zp[y1, · · · , ym] or FAIL
1 (A, fk)← (F , F)
2 Initialize Γj = 0 for j = 1, 2, · · · , i.
3 for d = deg(F)− 1,deg(F)− 2, · · · , 0 do
4 if A 6= 0 then
5 Pick θ ∈ Zd+2

p at random.
6 for j = 1, 2, · · · , i do
7 Compute polynomial evaluations :

{Zj,t = A(Ŷj,1θt + β1, · · · , Ŷj,mθt + βm) mod p : 1 ≤ t ≤ d+ 2}.
8 Interpolate W j ∈ Zp[z] using points (θt, Zj,t : 1 ≤ t ≤ d+ 2).

9 Γj ← Γj +W j

10 end
11 end
12 if d 6= 0 then
13 Compute P =

[
coeff(Nj , z

d)− coeff(Γj , z
d) mod p : 1 ≤ j ≤ i

]
.

// The Pj ’s are adjusted to correct the effect of the basis shift β.//
14 if [Pj = 0 : 1 ≤ j ≤ i] then
15 A = 0 // There is no monomial of total degree d.
16 else
17 A← BMStep([P1, · · · , Pi], α, s, r). // A ∈ Zp[y1, · · · , ym].

18 if A = FAIL then return FAIL end // More Pj ’s are needed.
19 end
20 else
21 A← coeff(N1, z

0)− coeff(Γ1, z
0) mod p// We get the constant term.

22 end
23 fk ← fk +A.

24 end
25 return fk.

Subroutine 3: BMStep
Input: P = [Pj ∈ Zp : 1 ≤ j ≤ i] , i is even, α ∈ Zp, shift s ∈ [1, p− 2] and r

which defines the Kronecker substitution Kr.
Output: F̄ ∈ Zp[y1, y2, · · · , ym] or FAIL.

1 Run the Berlekamp-Massey algorithm on P to obtain the polynomial λ(z).
2 if deg(λ, z) = i

2
then return FAIL end // More images are needed

3 Compute the roots of λ(z) in Zp[z] to obtain the monomial evaluations m̂i.
4 Let m̂ ⊂ Zp be the set of monomial evaluations m̂i and let t = |m̂|.
5 if t 6= deg(λ, z) then return FAIL end // λ(z) is wrong.
6 Solve αei = m̂i for ei with ei ∈ [0, p− 2] // The exponents are found here.
7 Let M = [yei : i = 1, 2 · · · , t] // These are the monomials
8 F ←VanderSolver (m̂, [P1, · · ·Pt], s,M) // F ∈ Zp[y].
9 F̄ ← K−1

r (F) ∈ Zp[y1, · · · , ym].// Invert the Kronecker map Kr.
10 return F̄

An Interpolation Algorithm for computing Dixon Resultants 13

We use the Berlekamp-Massey algorithm [1] to find the term bounds for the
leading term polynomials in fk(y1, · · · , ym) and gk(y1, · · · , ym) by computing the
corresponding feedback polynomial λ(z) after i = 2, 4, 6, · · · , · · · points and we
wait until deg(λ, z) < i

2 . The condition deg(λ, z) < i
2 ensures that λ(z) is correct

with high probability. This process of determining these term bounds is done by
the two calls to Subroutine BMStep in Lines 24 and 25 of Algorithm DixonRes.
If Subroutine BMStep succeeds in getting the correct term bound with high
probability then the output Fk or Gk is not equal to FAIL. By design it follows
that the polynomials Fk or Gk are the highest degree terms in the numerator
and denominator of fk(y1,···,ym)

gk(y1,···,ym) .
Next, Algorithm DixonRes sends the leading term polynomials Fk and Gk

to Subroutine Remove-Shift in Lines 27 and 28 to interpolate other lower de-
gree polynomial terms in fk(y1, · · · , ym) and gk(y1, · · · , ym). However, the term
bound that was sufficient for interpolating the leading term polynomials might
be too small for other lower degree polynomial terms in fk(y1, · · · , ym) and
gk(y1, · · · , ym). If this happens then Subroutine Remove-Shift will output FAIL.
Thus more univariate images and auxiliary rational functions are computed in
Algorithm DixonRes and a new term bound is found.

We need to solve shifted transposed Vandermonde systems using Subrou-
tine VanderSolver [9] because Algorithms DixonRes and SparseKron randomized
their evaluation points with a shift s ∈ [1, p− 2]. To solve the shifted transposed
Vandermonde system

V a =

m̂s

1 m̂s
2 · · · m̂s

t

m̂s+1
1 m̂s+1

2 · · · m̂s+1
t

...
...

...
...

m̂s+t−1
1 m̂s+t−1

2 · · · m̂s+t−1
t

a1
a2
...
at

 =

v0
v1
...

vt−1

 = B,

where m̂i are the monomial evaluations, we use Zippel’s O(t2) algorithm [23] to
first solve the transposed Vandermonde system

Wc =

1 1 · · · 1
m̂1 m̂2 · · · m̂t

...
...

...
...

m̂t−1
1 m̂t−1

2 · · · m̂t−1
t

c1
c2
...
ct

 =

v0
v1
...

vt−1

 = B,

which yields c = W−1B. Notice that V = WD where D is a t×t diagonal matrix
with entries Dii = m̂s

i . Thus we obtain the unknown coefficients ai using ai =
m̂−s
i ci since V a = B =⇒ (WD)a = B =⇒ (Da) = W−1B = c =⇒ a = D−1c.

Subroutine 4: RatFun : Rational function interpolation using MQRFR [13]

Input: H = [Hj ∈ Zp[x1] : 1 ≤ j ≤ emax], θ ∈ Zemax
p and degrees dk, ek.

Output: A(z) = N(z)

N̂(z)
∈ Zp(z) such that N̂(z) = 1 +

∑deg(N̂,z)
j=1 ajz

j ∈ Zp[z].

1 m(z)←
∏ek

i=1(z − θi) ∈ Zp[z].
2 Interpolate U ∈ Zp[z] using points (θi, coeff(Hi, x

dk
1) : 1 ≤ i ≤ ek).

3 A(z)← MQRFR(m,U, p)
4 return A(z).

14 Ayoola Jinadu and Michael Monagan

Algorithm 5: SparseKron
Comment: If Algorithm DixonRes does not succeed in getting the square

free factor, then SparseKron gets more images using the support
from Algorithm DixonRes with new primes, performs Chinese
remaindering + rational number reconstruction.

Input: Ŝ = xdT1 +
∑T−1

k=0
fk(y1,y2,···,ym)
gk(y1,y2,···,ym)

x
dk
1 ∈ Zp1(y1, · · · , ym)[x1]

Input: M ∈ Zp1 [x1, y1, · · · , ym] where prime p1 is from Algorithm DixonRes
Input: Degree bounds {(deg(fk), deg(gk)) : 0 ≤ k ≤ T − 1} and emax.
Input: D̂ = deg(detM,x1) + 1, and dT = deg(S, x1) as defined in 6.
Input: Black box BB : Zm+1

q → Zq where q 6= p1.
Output: Square-free factor F̄ ∈ Q[x1, y1, · · · , ym] or FAIL.

1 Let N = maxT−1
k=0 {#fk,#gk}.

2 (p, P)← (p1, p1)
3 do
4 Get a new 62 bit prime q > P.

5 Pick β, α ∈ (Zq \ {0})m , δ ∈ ZD̂
q , θ ∈ Zemax

q and s ∈ [1, q − 2] at random.
6 for i = 0, 1, · · · , N − 1 do
7 Set α∗

i = (αs+i
1 , αs+i

2 · · · , αs+i
m).

8 Let Zi = [βθj + α∗
i ∈ Zm

q : 1 ≤ j ≤ emax] be the evaluation points.
9 Hi ← PolyInterp(BB, Zi, δ, dT , emax)

10 if Hi = FAIL then
11 return FAIL
12 end
13 end
14 for k = 0, 1, · · · , T − 1 do
15 m̂← [M̂i(α) : 1 ≤ i ≤ n] where n = #fk and M̂ = supp(fk).
16 m̄← [M̄i(α) : 1 ≤ i ≤ n̄] where n̄ = #gk and M̄ = supp(gk).
17 if the monomial evaluations m̂i or m̄i are not distinct then
18 return FAIL.
19 end
20 for j = 0, 1, 2, · · · , N − 1 do
21 Bj ← RatFun(Hj , dk, θ, ek, q) // Bj = Nj(z)/N̂j(z) ∈ Zq(z).

22 if deg(Nj , z) 6= deg(fk) or deg(N̂j , z) 6= deg(gk) then
23 return FAIL.
24 end
25 Uj(z)← Nj(z)× LC(N̂j , z)

26 Vj(z)← N̂j(z)× LC(N̂j , z)
27 (aj , bj)← (Uj(0), Vj(0)) // aj , bj ∈ Zq

28 Fk ←VanderSolver(m̂, [a1, · · · , an], s, M̂).
29 Gk ←VanderSolver(m̄, [b1, · · · , bn̄], s, M̄).

30 end
31 end
32 Ŝ ← xdT1 +

∑T−1
k=0

Fk(y1,y2,···,ym)
Gk(y1,y2,···,ym)

x
dk
1 ∈ Zq(y1, · · · , ym)[x1]

33 L← LCM {Gk ∈ Zq[y1, y2, · · · , ym] : 0 ≤ k ≤ T − 1}
34 M ← Ŝ × L ∈ Zq[x1, y1, y2, · · · , ym]. // Clear the denominators.
35 Solve F̂ ≡M mod p and F̂ ≡M mod q using the Chinese remainder

algorithm.
36 p← p× q
37 Apply rational number reconstruction to the coefficients of F̂ mod p to get

F
38 if F 6= FAIL then return F end
39 (M,P)← (F̂ , q)

40 end

An Interpolation Algorithm for computing Dixon Resultants 15

Subroutine 6: VanderSolver
Input: Vectors m̂, b ∈ Zt

p, shift s ∈ [1, p− 2] and monomials [M1, · · · ,Mt]
Output: F ∈ Zp[y1, · · · , ym]

1 Let Vij = m̂s+j−1
i for 1 ≤ i, j ≤ t.

2 Solve V a = b for the coefficients ai using Zippel’s O(t2) algorithm [24].
3 return F =

∑t
i=1 aiMi

Subroutine 7: PolyInterp

Input: Black box BB : Zm+1
p → Zp.

Input: Z = [Zj ∈ Zm
p : 1 ≤ j ≤ emax], δ ∈ ZD̂+1

p , degree dT = deg(detS, x1).
Output: H = [monic(Hj) ∈ Zp[x1] : 1 ≤ j ≤ emax] or FAIL.

1 for j = 1, 2, . . . , emax do
2 Compute Gj = (BB(δi, Zj) : 1 ≤ i ≤ D̂ + 1).

3 Interpolate Bj ∈ Zp[x1] using points (δi, Gj,i : 1 ≤ i ≤ D̂ + 1).

4 Compute the square-free part Hj = Bj/gcd(Bj , B
′
j).

5 if deg(Hj , x1) 6= dT then return FAIL end
6 end
7 return [monic(H1), · · · ,monic(Hemax)].

5 Implementation Notes and Benchmarks

We have implemented our new Dixon resultant algorithm in Maple. To im-
prove the overall efficiency, we have implemented in C major subroutines such
as evaluating a Dixon matrix at integer points modulo prime p, computing the
determinant of an integer matrix over Zp and performing dense rational func-
tion interpolation using the MQRFR algorithm modulo a prime [13]. Thus each
probe to the black box is computed using C code. Our C code supports primes
up to 63 bits in length.

5.1 Speeding up evaluation of the Dixon matrix

In our experiments, the most expensive step in our algorithm was, and still is,
evaluating the Dixon matrix M modulo a prime. Let p be a prime and let M
be a t× t matrix of polynomials in Z[z1, ..., zn]. We need to compute det(M(α))
mod p for many α ∈ Znp . Often, over 80% of the time is spent computing M(α)
mod p. The Maple command

> Eval(M,{seq(z[i]=alpha[i]}) mod p;

does what we want, however, because we want our implementation to handle
many variables and fail with low probability, we want to use the largest primes
the hardware can support which are 63 bit primes if we use signed 64 bit in-
tegers. Unfortunately, Eval uses hardware arithmetic for p < 231, otherwise, it
uses software arithmetic which is relatively very slow. Also, Eval evaluates each
polynomial in M independently, that is, if M1,1 = 2z31z2 and M2,2 = z31 + 5z3

16 Ayoola Jinadu and Michael Monagan

say, Eval computes α3
1 twice. To speed up evaluations we have written a C pro-

gram to compute M(α) for p < 263 using hardware arithmetic. In Maple, we
first precompute a vector of degrees

D =

[
max

1≤i,j≤t
deg(Mij , zk) : 1 ≤ k ≤ n

]
.

For each α ∈ Znp we call our C program from Maple with inputs M,α,D, p. To
save multiplications our C program first computes power arrays

Pk =
[
αik : 0 ≤ i ≤ Dk

]
for 1 ≤ k ≤ n

then uses these Pk to evaluate Mi,j(α) for 1 ≤ i, j ≤ t. Maple uses two data
structures for polynomials, the SUM-OF-PROD data structure and the POLY
data structure. POLY was added to Maple in 2013 by Monagan and Pearce [19]
to speed up polynomial arithmetic. Figure 1 shows the POLY data structure for
the polynomial f = 9xy3z − 4 y3z2 − 6xy2z − 8x3 − 5. Figure 2 shows how the
same polynomial is represented in the SUM-OF-PROD data structure. All boxes
in Figures 1 and 2 represent arrays. The first entry in each box is a header word;
it encodes the object type and the array length.

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

Fig. 1: Maple’s POLY representation for f = 9xy3z − 4 y3z2 − 6xy2z − 8x3 − 5.

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

Fig. 2: Maple’s SUM-OF-PROD representation for f = 9xy3z − 4 y3z2 − 6xy2z −
8x3 − 5.

In POLY, if M = zd11 z
d2
2 · · · zdnn is a monomial in f , then M is encoded as

the integer d2nb +
∑n−1
i=0 2ibdi where d =

∑n
i=1 di and b = b64/(n + 1)c. For

example, the monomial xy3z with d = 5, b = 16, n = 3 is encoded as the integer
5 · 248 + 232 + 3 · 216 + 1. This is depicted as 5131 in Figure 1. This encoding
allows Maple to compare two monomials in the graded monomial ordering using

An Interpolation Algorithm for computing Dixon Resultants 17

a single 64 bit integer comparison. Also, provided overflow does not occur, Maple
can multiply two monomials using a single 64 bit integer addition.

When does Maple use POLY instead of SUM-OF-PROD? If a polynomial f
has (i) all integer coefficients, (ii) more than one term, (iii) is not linear, and
(iv) all monomials in f can be encoded in a 64 bit integer using B bits for di
and 64− nB bits for d, then it is encoded using POLY otherwise the SUM-OF-
PROD representation is used. In a typical Dixon matrix both representations
are used so we have to handle both and we need to know the details of both
representations.

Also important for efficiency is how to multiply in Zp. We do not use the
hardware division instruction which is very slow. Instead we use Roman Pearce’s
assembler implementation of Möller and Granlund [20] which replaces division
with two multiplications and other cheap operations.

Table 2: Timings showing improvements for Heron5d and Tot systems

System Eval Determinant Total C-Eval New Total
Heron5d 70.17s (66.2%) 9.74s (9.18%) 106.07s 18.02s (3.89x) 42.82s (2.48x)

Tot 635.75s (83.3%) 37.66s (4.9%) 763.2s 32.36s (19.64x) 150s (5.08x)

Table 2 shows the improvement obtained using our C code for evaluating a
Dixon matrix M at integer points modulo a prime for both Tot and Heron5d
systems. Column Eval contains the timings using Eval command and column C-
Eval is the timings for the case when our C code was used. Column Determinant
is the amount of time spent computing the determinant of integer matrices
modulo a prime. Column Total contains the total CPU timings using Eval and
column New Total is the new total CPU timings for both polynomial systems
when the C code for matrix evaluation was used.

5.2 Timings

We present two tables for our Dixon resultant algorithm. Table 3 contains ba-
sic information about the polynomial systems that is stored on the web at
www.cecm.sfu.ca/~mmonagan/code/DixonRes. This web address also contain
our Maple and C codes and they are freely available for use. Table 3 includes
timings comparing three methods. Columns 1 − 4 contain names of the poly-
nomial systems, the number of equations in each system, the dimension of the
Dixon matrix D and the rank of its maximal minor M respectively. The number
of terms in the product of all the monic square-free factors in expanded form
when the denominators are cleared is denoted by #S, the number of terms in
R labelled #R is in column 7 and column 6 labelled tmax = max(#fjk,#gjk).
In column 8 named as DRes, we report the timings of our Dixon resultant al-
gorithm. Column 9 contain timings of an efficient Maple implementation of the
Gentleman & Johnson minor expansion method. The timings of a hybrid imple-
mentation of Zippel’s sparse algorithm in Maple + C are given in column 11. All
our experiments were performed on an Intel Xeon E5-2680 v2 processor using 1
core. The first prime used in our code is the 62 bit prime p = (250)(61)(67) + 1.

www.cecm.sfu.ca/~mmonagan/code/DixonRes

18 Ayoola Jinadu and Michael Monagan

The Gentleman & Johnson minor expansion algorithm uses a lot of space.
To reduce space and speed it up, we first divide each row i of the Dixon matrix
M by the gcd of the entries in row i. Then we permute the Dixon matrix M
by putting the sparsest columns at the left of the matrix. We call this method
the cleaned version of the Gentleman & Johnson method. The timings for it are
presented in column 10 labelled as Cleaned.

Our DixonRes algorithm outperforms Zippel’s sparse interpolation. This was
expected because #R is much larger than tmax. Another reason is because more
primes are needed to recover integer coefficients in R compared to the Rj ’s. Our
algorithm is not always faster than the Gentleman & Johnson algorithm. The
evaluation cost of the Dixon matrix is still the bottleneck of our algorithm while
the determinant computation takes roughly 10% of the total time.

Some Dixon matrices have a block diagonal form and often, the determinant
of all the blocks produce the same Dixon resultant R. For the timings recorded
in Tables 2 and 3, we always compute the determinant of the smallest block
after confirming that all blocks produce the same Dixon resultant. So, both #S
and #R are the number of terms due to the determinant of the smallest block
obtained. However for the Tot system, the 25× 25 block matrix did not produce
all the monic square-free factors Rj so we had to compute the determinant of
the 31×31 block matrix. Details about the block structure of the Dixon matrices
are provided in Table 4.

Table 3: DixonRes versus Minor Expansion and Zippel’s Interpolation

System #Eq n/m dimD/Rank #S tmax #R DRes Minor Cleaned Zippel
Robot-t1 4 4/7 (32× 48)/20 450 14 6924715 7.34s 2562.6s 188.4s > 105s
Robot-t2 4 4/7 (32× 48)/20 13016 691 16963876 316.99s ! 2559.6s > 105s
Robot-b1 4 4/7 (32× 48)/20 334 85 6385205 27.78s 182.4s 15.15s > 105s
Robot-b2 4 4/7 (32× 48)/20 11737 624 16801877 241.61s ! 2452.8s > 105s
Heron5d 15 14/16 (707× 514)/399 823 822 12167689 23.12s ! ! > 105s
Flex-v1 3 3/15 (8× 8)/8 5685 2481 45773 201s 5.09s NA 308684.76s
Flex-v2 3 3/15 (8× 8)/8 12101 2517 45773 461.4s 5.02s NA 308684.76s

Perimeter 6 6/4 (16× 16)/16 1980 303 9698 49.97s 18.23 NA 2360.27s
Pose 4 4/8 (13× 13)/12 24068 8800 24068 461.4s 4.48s NA 21996.25s

Pendulum 3 2/3 (40× 40)/33 4667 243 19899 45.46s 1721.50s NA 2105.321s
Tot 4 4/5 (85× 94)/56 8930 348 52982 82.11s ! ! 17370.07s

Image3d 10 10/9 (178× 152)/130 130 84 1456 2.34s 1.04s NA 53.68s
Heron3d 6 5/7 (16× 14)/13 23 22 90 0.411s 0.014s NA 0.738s
Nachtwey 6 6/5 (11× 18)/11 244 106 244 7.23s 0.424s NA 5.36s
Storti 6 5/2 (24× 113)/20 12 4 32 0.177s 229.945s NA 0.053s

! = ran out of memory, NA= Not Attempted

In Table 4, we provide details about block sizes of each Dixon matrix M
and the number of black box probes required by our Dixon resultant algorithm
to successfully interpolate the Rj ’s. The quantity Q in Table 4 is the number
of black box probes done to obtain all degree bounds needed by Algorithm
DixonRes. In Table 4, the quantity p1 is the number of probes needed to get the
first image of the Rj ’s . If the rational number reconstruction process fails on the
first image, then more primes are needed. The number of black box probes used

An Interpolation Algorithm for computing Dixon Resultants 19

Table 4: Block structure and # of probes used by Algorithm DixonRes and Zippel’s
interpolation

System Block Structure Q p1 p2 Zippel-probes
Robot-t1 [8, 8] 3641 13000 - -
Robot-t2 [12] 5685 705796 - -
Robot-b1 [8, 8] 3901 91000 - -
Robot-b2 [12] 5489 529984 - -
Heron5d [49, 52, 48, 50, 49, 53, 50, 48] 307 62928 - -
Flex-v1 [8] 1693 588060 - 3310871
Flex-v2 [8] 5017 2664948 - 3310871

Perimeter [16] 1243 225828 - 230773
Pose [12] 1072 525636 - 569513

Pendulum [17, 16] 8971 114920 - 128322
Tot [31, 25] 4261 420000 - 742099

Image3d [13, 14, 14, 15, 18, 19, 18, 19] 401 12320 - 29415
Heron3d [6, 7] 133 1392 - 3071
Nachtwey [11] 576 39780 18020 12983
Storti [20] 273 816 - 343

for the second prime is p2. One prime is typically enough to interpolate the Rj ’s.
Zippel-probes represents the number of probes used by Zippel’s algorithm to
interpolate R. Note that the block structure depends on the variable elimination
order. For example, we record that the block structure for Robot-b1 is [8, 8]. For
a different variable elimination order, we get [8, 4, 4].

6 Conclusion

We have designed and implemented a new Dixon resultant algorithm that com-
putes the monic square-free factors of the Dixon resultant R of a parametric
polynomial system using sparse interpolation tools. We have shown that there is
a huge reduction in the number of terms when the monic square-free factors of R
are interpolated instead of interpolating R.We have also shown that a Kronecker
substitution can be used to reduce the problem of interpolating a multivariate
rational function using Cuyt and Lee’s method to a univariate rational function
interpolation.

We implemented our algorithms in Maple and implemented several subrou-
tines in C including the evaluation of the Dixon matrix modulo a prime. Our
benchmarks showed that our algorithms is much faster than Zippel’s sparse in-
terpolation. We are currently working on the analysis of the failure probability
of our new Dixon resultant algorithm.

References

1. Atti, N. B. and Lombardi, H. and Diaz-Toca G. M.: The Berlekamp-Massey algo-
rithm revisited. AAECC 17, 4 (2006), pp. 75–82.

2. Ben-Or, M., and Tiwari, P.: A Deterministic Algorithm for Sparse Multivariate
Polynomial Interpolation. Proceedings of STOC ’20 , pp. 301–309, ACM, 1988.

20 Ayoola Jinadu and Michael Monagan

3. Chtcherba, A. D., and Kapur, D.: On the Efficiency and Optimality of Dixon-Based
Resultant Methods. Proceedings of ISSAC ’2002 , pp. 29–36, ACM, 2002.

4. Cuyt, A., and Lee, W.-S.: Sparse Interpolation of Multivariate Rational Functions.
J. Theoretical Comp. Sci. 412, pp. 1445–1456, Elsevier, 2011.

5. Dixon, A.: On a form of the Eliminant of Two Quantics. Proceedings of the London
Mathematical Society 2, (1908), pp. 468–478.

6. Dixon, A.: The eliminant of three Quantics in Two Independent Variables. Proceed-
ings of the London Mathematical Society 2, (1909), pp. 49–69.

7. Gentleman, W. M., and Johnson, S. C.: The Evaluation of Determinants by Ex-
pansion by Minors and the General Problem of Substitution. Mathematics of Com-
putation 28, 126 (1974), pp. 543–548.

8. Gerhard, J., and Von zur Gathen, J.: Modern Computer Algebra. Cambridge Uni-
versity Press, 2013.

9. Hu, J., and Monagan, M.: A fast parallel sparse polynomial GCD algorithm. Pro-
ceedings of ISSAC ’2016 , pp. 271–278, ACM, 2016.

10. Kapur, D., and Saxena, T.: Extraneous Factors in the Dixon Resultant Formula-
tion. Proceedings of ISSAC ’97 pp. 141–148, ACM, 1997.

11. Kapur, D., Saxena, T., and Yang, L.: Algebraic and Geometric Reasoning using
Dixon Resultants. Proceedings of ISSAC ’94 , pp. 99–107, ACM, 1994.

12. Kapur, D., and Saxena, T.: Comparison of Various Multivariate Resultant formu-
lations. Proceedings of ISSAC ’95 , pp. 187–194, ACM, 1995.

13. Khodadad, S., and Monagan, M.: Fast Rational Function Reconstruction. Pro-
ceedings of ISSAC ’2006 , pp. 184–190, ACM, 2006.

14. Lewis, R.: Dixon-EDF: The Premier Method for Solution of Parametric Polynomial
Systems. Special Sessions in Applications of Computer Algebra (2015), Springer,
pp. 237–256.

15. Lewis, R.: Resultants, Implicit Parameterizations, and Intersections of Surfaces.
International Congress on Mathematical Software (2018), Springer, pp. 310–318.

16. Lewis, R.: Private Communication.
17. Lewis, R.: New Heuristics and Extensions of the Dixon Resultant for Solving

Polynomial Systems. Applications of Computer Algebra, Montreal, Canada (2019),
pp. 16–20.

18. Monagan, M.: Maximal Quotient Rational Reconstruction: An Almost Optimal
Algorithm for Rational Reconstruction. Proceedings of ISSAC ’2004 , pp. 243–249,
ACM, 2004.

19. Monagan, M., and Pearce R.: The design of Maple’s sum-of-products and POLY
data structures for representing mathematical objects. Communications in Com-
puter Algebra, 48(4):166–186, ACM, 2014.

20. Möller, N., and Grandlund T.: Improved Division by Invariant Integers. Transac-
tions on Computers 60(2):165–175, IEEE, 2011.

21. Storti, D.: Algebraic Skeleton Transform: A symbolic computation challenge,
Submitted to Faculty Papers and Data, Mechanical Engineering, ResearchWorks
Archive. http://hdl.handle.net/1773/48587

22. Tot, J.: Private Communication.
23. Zippel, R.: Probabilistic Algorithms for Sparse Polynomials. Proceedings of EU-

ROSAM ’79 , pp. 216–226, (1979), Springer-Verlag, 1979.
24. Zippel, R.: Interpolating Polynomials from their Values. Journal of Symbolic

Computation 9 (1990), Springer, pp. 375–403.

	An Interpolation Algorithm for computing Dixon Resultants

