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Abstract

We consider the problem of solving a linear system Ax = b over a cyclotomic field. What makes
cyclotomic fields of special interest is that we can easily find a prime p that splits the minimal
polynomial m(z) for the field into linear factors. This makes it possible to develop fast modular
algorithms.

We give two output sensitive modular algorithms, one using multiple primes and Chinese
remaindering, and the other using linear p−adic lifting. Both use rational reconstruction to
recover the rational coefficients in the solution vector. We also give a third algorithm which
computes the solution x as a ratio of two determinants modulo m(z) using Chinese remaindering
only. In general, because this representation for x is a factor of d = deg m more compact, we
can compute it the fastest in general.

We have implemented the algorithms in Maple with key parts of the implementation imple-
mented in C for efficiency. A complexity analysis and experimental timings show that on inputs
with random matrix entries, the third method is fastest. However, on real inputs arising from
problems in computational group theory, the first two methods are must faster than the third
method because the solution vectors have very small rational coefficients.

We also give a fast probabilistic algorithm for computing the roots of a cyclotomic polynomial
modulo a prime p and some new data on the height of the cyclotomic polynomials of order up
to 100 million.

1. Introduction

In this paper we consider the problem of how to efficiently solve a linear system Ax = b
over an algebraic number field Q(ζ) where ζ is a primitive k’th root of unity. These
number fields, which include the complex rationals, are called the cyclotomic fields. The
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minimal polynomial m(z) for ζ is Φk(z), the k’th cyclotomic polynomial. It is a monic
irreducible polynomial in Z[z] of degree d = φ(k) (where φ is Euler’s function) whose
roots are the primitive k’th complex roots of unity. The first few cyclotomic polynomials
are shown in Table 1.

k Φk(z) k Φk(z)

1 z − 1 6 z2 − z + 1

2 z + 1 7 z6 + z5 + z4 + z3 + z2 + z + 1

3 z2 + z + 1 8 z4 + 1

4 z2 + 1 9 z6 + z3 + 1

5 z4 + z3 + z2 + z + 1 10 z4 − z3 + z2 − z + 1

Table 1. Cyclotomic polynomials of order 1–10

Our motivation for considering linear systems over cyclotomic fields arose from prob-
lems given to us by Vahid Dabbaghian from computational group theory – from the
search for a matrix representation over C for a finite group. What is special about these
linear systems is that the size of the rationals in their solution vectors are much smaller
than they would be the input coefficients were randomly generated. This means that
our modular algorithms need to be output sensitive, sensitive to the size of the rational
numbers in x.

Finding efficient algorithms for solving a linear system Ax = b over Q is a classical
problem in computer algebra. One approach is to solve Ax = b modulo a sequence of
primes p1, p2, ...., and recover the rational solutions in x using Chinese remaindering and
rational number reconstruction. For a linear system of dimension n with Ai,j , bi ∈ Z
where |Ai,j |, |bi| < 10c, that is, the size of the integers in the input are bounded by c
digits in length, in general, the size of integers in the solution vector x are n times longer
than those in A and b. This means that if we use machine primes, primes of constant bit
length, this method will need O(cn) primes in general. If ordinary Gaussian elimination is
used to solve the O(cn) linear systems modulo the primes, the complexity of this multiple
prime approach is dominated by a term or order n4.

By using linear p−adic lifting one can reduce this to n3. The p−adic approach was first
applied to linear systems by Dixon in (5) and Moenck and Carter in (14). The recent
paper of Chen and Storjohann (2) describes an implementation of the this approach
which reduces the matrix inversion modulo p to floating point matrix multiplications so
that level 3 BLAS can be used. We also cite the work of Storjohann (18) which looks
at the complexity of solving Ax = b over Q and contains an extensive bibliography on
the problem. Progress has also been made on the complexity of sparse linear systems. In
(6), Eberly et. al. show that if one can multiply a matrix A of dimension n by a vector
in O(n) field operations, then one can compute the dense solution of Ax = b in O(n2.27)
field operations.

In principle, the same two basic approaches, Chinese remaindering and linear p−adic
lifting, with rational number reconstruction, can be applied to linear systems over a
number field Q(α). What makes the cyclotomic fields of special interest is the following
well known fact (which follows from Lemma 4).
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Lemma 1. Let m(z) = Φk(z) be a cyclotomic polynomial of degree d and let p be a
prime. The probability that m(z) splits into distinct linear factors over Zp is asymptoti-
cally 1/d.

Lemma 1 means that there are many primes that split m(z) available. If Q(α) is
an algebraic number field with minimal polynomial f(z) of degree d, in general, the
probability that f(z) splits into linear factors over Zp is 1/d! which is too low to try to
split f(z). Furthermore, since we can efficiently factor m(z) into linear factors over Zp we
can solve Ax = b mod p at each root of m(z), potentially in parallel, then interpolate the
n polynomials in xi ∈ Zp[z], again, potentially in parallel. And if we choose the prime(s)
p appropriately, so that arithmetic in Zp can be done directly by the hardware of the
computer, then the overall algorithm will be efficient in practice.

1.1. Organization of paper.

Our paper is organized as follows. In section 2 we look at the problem of finding a
prime p that splits a cyclotomic polynomial Φk(z) into linear factors over Zp and how to
compute the roots of Φk(z) in Zp efficiently. We then present and analyze the running
time of three modular algorithms for solving Ax = b over a cyclotomic field. The first
uses Chinese remaindering and rational reconstruction. The second uses linear p-adic
lifting and rational reconstruction. The third uses Chinese remaindering only.

We assume the reader is familiar with rational reconstruction. Rational reconstruction
was invented by Paul Wang in (19). A more accessible description of the rational recon-
struction problem and the solution using Euclid’s algorithm can be found in (3). We use
the algorithm of Monagan in (15) because it allows us to control the failure probability.

We have implemented the algorithms in Maple. In Section 3 we present timings com-
paring the algorithms on different problem sets including random inputs and real systems
given to us by Vahid Dabbaghian. Unlike the case of solving linear systems over the ra-
tionals, where the linear p-adic method is clearly superior, when solving Ax = b over a
cyclotomic field, computation of the “error” makes the linear p-adic method more ex-
pensive. We find that the Chinese remaindering approach is competitive and our third
algorithm is the fastest in general.

1.2. Dividing by m(z).

We use the following notation and lemma in our analysis. Let f(z) =
∑l

i=0 aiz
i with

ai ∈ Z. Let ‖ f ‖∞= maxi |ai| denote the height of f(z) and let ‖ f ‖1=
∑

i |ai| denote
the one-norm of f(z). For the matrix A and vector b of polynomials in Z[z] let

‖ A ‖= max
i,j

‖ Ai,j ‖∞ and ‖ b ‖= max
i

‖ bi ‖∞ .

Thus ‖ [A|b ] ‖ is the magnitude of the largest integer appearing in the coefficients of the
polynomials in A and b.

Lemma 2. Let m(z) = xd +
∑d−1

i=0 aiz
i with ai ∈ Z. Let f(z) =

∑l
i=0 biz

i with bi ∈ Z.
Let r be the remainder of f divided m. Then r ∈ Z[x] (because m is monic) and

||r||∞ ≤ (1 + ||m||∞)δ||f ||∞ where δ = l − d + 1.
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Proof. The quotient of f divided m has degree l−d, hence, there are at most l−d+1 = δ
subtractions in the division algorithm. The first subtraction is f1 := f − blx

l−dm. We
have ||blm||∞ ≤ ||f ||∞||m||∞, hence,

||f1||∞ ≤ ||f ||∞ + ||m||∞||f ||∞ = (1 + ||m||∞)||f ||∞.

For the purpose of bounding ||r||∞ we assume deg f1 = l − 1. The next subtraction is
f2 := f1 − lc(f1)xl−1−dm. Bounding |lc(f1)| ≤ ||f1||∞ we have

||f2||∞ ≤ ||f1||∞ + ||f1||∞||m||∞ = (1 + ||m||∞)2||f ||∞.

Repeating this argument the result is obtained. 2

1.3. The height of the cyclotomic polynomials.

Let m(z) = Φk(z) and let Hk =‖ Φk(z) ‖∞ . Thus Hk is height of the cyclotomic
polynomial of order k. In section 2, because powers of (1+ ‖ m(z) ‖∞) appear in bounds
that affect the complexity of our algorithms, we are interested in how large Hk can be. In
Table 1, the reader may see that Hk = 1 for 1 ≤ k ≤ 10. The first cylcotomic polynomial
with height Hk > 1 is Φ105(z) which has height 2. The first with height Hk > 2 is Φ385(z)
which has height 3. There are three cyclotomic polynomials of order less than 1000 with
height 3 and 37 with height 2.

But the situation for k < 1000 is misleading. Erdos has shown that for any constant
c > 0, Hk > kc for infinitely many k and Maier showed in (12) that this holds for a set
of positive density. In Table 2 below we have listed the values of k < 106 and Hk for
which Hk > Hj for 0 < j < k, that is, the orders k with increasing height Hk. Note, in
constructing this table, it is not hard to show that if Hk > 1 then k must be a product
of three or more primes, and secondly, if Hk > Hj for 0 < j < k then k must be odd and
square-free.

k Hk k Hk

105 = (3)(5)(7) 2 26,565 = (3)(5)(7)(11)(23) 59

385 = (5)(7)(11) 3 40,755 = (3)(5)(11)(13)(19) 359

1,365 = (3)(5)(7)(13) 4 106,743 = (3)(7)(13)(17)(23) 397

1,785 = (3)(5)(7)(17) 5 171,717 = (3)(7)(13)(17)(37) 434

2,805 = (3)(5)(11)(17) 6 255,255 = (3)(5)(7)(11)(13)(17) 532

3,135 = (3)(5)(11)(19) 7 279,565 = (5)(11)(13)(17)(23) 585

6,545 = (5)(7)(11)(17) 9 285,285 = (3)(5)(7)(11)(13)(19) 1,182

10,465 = (5)(7)(13)(23) 14 327,845 = (5)(7)(17)(19)(29) 31,010

11,305 = (5)(7)(17)(19) 23 707,455 = (5)(7)(17)(29)(41) 35,111

17,255 = (5)(7)(17)(29) 25 886,445 = (5)(7)(19)(31)(43) 44,125

20,615 = (5)(7)(19)(31) 27 983,535 = (3)(5)(7)(17)(19)(29) 59,518

Table 2. Increasing heights of cyclotomic polynomials of order k < 106
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The data for k < 106 suggests that the growth of Hk is accelerating. There is a jump
in the height at k = 327, 845. What got us interested in this problem was the discovery of
a large jump at k = 1, 181, 895 where Hk = 14, 102, 773. This is first k where the height
Hk ≥ k. This motivated us to develop and implement an asymptotically fast algorithm
(described below) for computing Φk(z) of large order so we could search for Φk(z) with
large height. We have computed the following data for 106 < k < 108 where the third
column shows the bit-length of Hk.

k Hk log2 Hk k Hk log2 Hk

983,535 59518 15.86 13441645 1475674234751 40.42

1181895 14102773 23.75 15069565 1666495909761 40.60

1752465 14703509 23.81 30489585 2201904353336 41.00

3949491 56938657 25.76 37495115 2286541988726 41.06

8070699 74989473 26.16 40324935 2699208408726 41.30

10163195 1376877780831 40.32 43730115 862550638890874931 59.58

Table 3. Increasing heights of cyclotomic polynomials of order 106 < k < 108.

One sees obvious “jumps” in the data. Note the height Hk = 862, 550, 638, 890, 874, 931
for k = 43, 730, 115 = (3)(5)(11)(13)(19)(29)(37). This is the first k for which Hk ≥ k2.

Since all these k have small prime factors, an obvious approach to try to find Φk(z)
with large height is to consider those k which are products of small primes. In (11),
Koshiba computed Hk = 669, 606 for k = (3)(7)(11)(13)(17)(19), the product of the
first 7 primes. Using our fast code, we have computed Hk = 8, 161, 018, 310 for k =
111, 546, 435, the product of the first 8 primes and Hk = 2, 888, 582, 082, 500, 892, 851 for
k = 3, 234, 846, 615, the product of the first 9 primes. We are still computing cyclotomic
polynomials of larger heights. We are maintaining our current results at

http://www.cecm.sfu.ca/~mmonagan/research/Heights.html

1.4. Computing the cyclotomic polynomials.

To compute Hk we first compute Φk(z) explicitly. Our algorithm uses the following
two facts (see Gallian (7)).

Lemma 3. For k square free let k = p1 × p2 × ...pm be the prime factorization of k.
If m = 1 then Φk(z) = 1 + z + ... + zk−1. If m > 1 then for any p|k,

Φk(z) =
Φk/p(zp)
Φk/p(z)

.

These two facts give us an algorithm for computing Φk(z) which does a sequence of exact
divisions of increasing degree. We show an example

Example 1. To compute Φ15(x) we first compute Φ3(z) = 1 + z + z2. Then

Φ15(z) =
Φ3(z5)
Φ3(z)

=
z10 + z5 + 1
z2 + z + 1

= z8 − z7 + z5 + z3 − z + 1.
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The algorithm is well known. It is used, for example, by Maple 11 to compute cyclo-
tomic polynomials. Noting that the divisor Φk/p(z) is dense of degree φ(k/p), and that the
quotient Φk(z) is dense, even though the dividend Φk/p(zp) is p sparse, using classical di-
vision, this last division, which dominates the cost, does O(φ(k)φ(k/p)) = O(pφ(k/p)2)
arithmetic operations in Z. For k = (3)(5)(7)(11)(13)(17), the product of the first 7
primes, this works out to about 1.2 billion arithmetic operations in Z.

To speed up the algorithm, we apply the Fast Fourier Transform to do the polynomial
exact division modulo primes and hence to reduce the complexity to O(φ(k) log φ(k))
arithmetic operations in Zq where q is a machine prime.

We pick the largest primes of the form q = 227r+1 and q = 226s+1 satisfying q2 < 263

so that multiplications in Zq can be done using signed 64 bit machine arithmetic. The
largest is q = 227 × 17 + 1. Let p be the largest prime dividing k and let n be the first
integer of the form n = 2k greater than pφ(k/p), the degree of the dividend in the last
division. Let ω be a primitive n’th root of unity in Zq. Using the discrete fast Fourier
transform (DFFT) (see (9), Ch. 4) in Zq we compute

A = [Φk/p(ωip) for i = 0, 1, ..., n− 1] ∈ Zn
q and

B = [Φk/p(ωi) for i = 0, 1, ..., n− 1] ∈ Zn
q

in O(n log2 n) machine operations in Zq. Next we divide pointwise; we compute

C = [
Ai

Bi
for i = 0, 1, ..., n− 1] ∈ Zn

q .

This requires n inverse calculations in Zq each of which has constant cost. Note, by lemma
1, provided we ensure k/p does not divide q− 1, it cannot happen that Bi = 0 for any i.

Oberserve that Ci = Φk(ωi). Thus we apply the inverse discrete FFT in Zq to C
to obtain the coefficients of Φk(z) modulo our prime q. We do this for two primes q1 =
227×17+1 and q2 = 227×15+1 and obtain the integer coefficients of Φk(z) using Chinese
remaindering. This assumes that Hk < bq1q2/2c < 261. To check that we have computed
Φk(z) correctly, that is, that Hk is not greater than bq1q2/2c, we test if Φk/p(zp) =
Φk(z)Φk/p(z) modulo additional primes using the discrete FFT.

2. Solving Systems Involving Roots of Unity

Let m(z) = Φk(z) be the cyclotomic polynomial of degree d = φ(k). We present three
modular algorithms for solving a linear system Ax = b modulo m(z) for the case A is
non-singular. We assume fractions in the input system Ax = b have been cleared and
powers of z have been reduced modulo m(z) so that Ai,j , bi are polynomials in Z[z] of
degree less than d.

For the purpose of determining the complexity of our algorithms we use n = dim A,
d = deg m(z), and suppose that largest integer appearing in the input A, b is bounded
by 10c and the largest integer appearing in the numerators and denominators of the
rational coefficients in the solution vector x is bounded by 10e. We will also assume that
the length of the largest integer in m(z) = Φk(z) is bounded by a constant to simplify
our analysis. To be precise, assume ||m||∞ < 106. By Table 2, this is satisfied for all
orders k < 106.

Thus the size of the input [A|b] and m(z) is in O(n2dc) and the size of the output x
is O(nde).
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2.1. Splitting m(z) into linear factors.

The following Lemma (see Huang (13)) characterizes those primes which split m(z)
into distinct linear factors. For completeness we give a proof.

Lemma 4. Let p be a prime and let m(z) = Φk(z) be the kth cyclotomic polynomial.
If p - k then m(z) has distinct roots in Zp if and only if p ≡ 1 (mod k).

Proof. Recall that if p is a prime then Fermat’s little theorem says ap ≡ a mod p for
all integers a, hence, 0, 1, 2, ..., p − 1 are roots of the polynomial zp − z over Zp. Since
m(z)|zk − 1, to prove the Lemma it suffices to show zk − 1|zp−1 − 1 over Zp if and only
if k|p− 1. The easiest way to see this is to verify that if p− 1 = kq then

zp−1 − 1 = zkq − 1 = (zk − 1)(zk(q−1) + zk(q−2) + ... + zk + 1)

and if p− 1 = kq + r with remainder r 6= 0 then the remainder of zkq+r − 1 divided by
zk − 1 is zr − 1 which is not zero over Zp. 2

For algorithms which use Chinese remaindering, we will need to obtain a sequence of
primes of the form p = qk +1 for which arithmetic in Zp can be done by the hardware of
the machine. In our Maple implementations of our algorithms on a 64 bit machine, we use
31 bit primes. The simplest way to do this is to start with the largest integer of the form
qk+1 < 231 and to test the integers in the sequence S = (qk+1, (q−1)k+1, (q−2)k+1, ...)
for primality. Let π(x) be the number of primes less than x and let π(x; k) be the number
of primes less than x of the form p = ik + 1. Direchlet’s theorem (see Chapter 9 of (1))
states that Π(x; k) ∼ x/(φ(k) ln x). Thus there should be lots of primes in the sequence
S of the required form. But this is an asymptotic result. We seek a result that guarantees
a minimum number of primes of the form qk + 1 in a range like [x, 2x] so that we could
pick a range to guarantee that our algorithms do not run out of primes of the required
form. A very useful theorem of Rosser and Schoenfeld (17) states that

3/5
x

lnx
< π(2x)− π(x) < 7/5

x

lnx
.

We know of no analagous result for primes in arithmetic progressions.
Now suppose we have found a prime p satisfying the condition in Lemma 4. Then

m(z) has d = φ(k) roots in Zp. To compute the roots of m(z) one could use a polynomial
factorization algorithm. Alternatively, one could use the probabilistic algorithm of Rabin
(see (16)) for finding the roots – Maple uses this algorithm. 1

But for cyclotomic polynomials, it is much faster to construct the roots directly, with-
out need for polynomial arithmetic. Let m(z) = Φk(z) be the kth cyclotomic polynomial
and d = φ(k). Let p be a prime of the form p = kq + 1 and let α be a primitive
element in Zp. Then β = αq is a primitive k’th root of unity and {βi for 0 < i ≤
k such that gcd(i, k = 1)} are all primitive k’th roots of unity and hence these are the
desired roots of m(z). This observation gives an algorithm for finding the roots of m(z)
as follows. Pick 1 < α < p− 1 at random until we get a primitive element. To test if α is
a primitive element we will need the factorization of p− 1. This is easy for p a machine
prime, and since the density of primitive elements is φ(p − 1)/(p − 1), this approach is
efficient. Better, however, is the following method which eliminates the need for integer
factorization and has a higher probability of success.

1 Gerhard and von zur Gathen also point out in their text that the basic ideas behind this probabilistic
algorithm, in particular, the gcd used to split m(z), were already known to Legendre in 1785.
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Step 1: Pick 0 < a < p− 1 at random and compute β = aq.
Now β is necessarily a k’th root of unity but it may not be primitive. To test if β is
primitive we do the following.

Step 2: Compute S = {βi for 0 < i < k} and check if the elements of S are distinct.
If they are then β = aq is a primitive k’th root of unity and the roots of m(z) can be
selected from S.

Steps 1 and 2 can be done in O(k + log2 q) multiplications and O(k log2 k) comparisons
of integers modulo p. The following lemma tells us the probability that β is primitive.

Lemma 5. Let p = kq + 1 be a prime. Let a be chosen at random such that 0 < a < p

and let β = aq. Then the probability that β is a primitive k’th root of unity is φ(k)/k.

Proof. β = aq is a primitive k’th root of unity implies βm 6≡ 1 mod p for all 0 < m < k.
We will count N the number of integers 0 < m < p satisfying βm 6≡ 1 mod p. Let α be a
primitive element. Then a = αi for some 0 ≤ i < p− 1 and βm = aqm = αiqm. Thus

βm 6≡ 1 mod p =⇒ αiqm 6≡ 1 mod p.

But α is a primitive element so

αiqm 6≡ 1 mod p =⇒ p− 1 - iqm =⇒ qk - iqm =⇒ k - im.

Let g = gcd(k, i). If g = 1 then k - im for all 0 < m < k since m < k. If g > 1 then
we have k

g |
i
g m for 0 < m = k

g < k. The the number of integers 0 < i < k satisfying
gcd(i, k) = 1 is simply φ(k) and since p = kq, N = p−1

k φ(k) = qφ(k). Thus the desired
probability N/(p− 1) = qφ(k)/(p− 1) = φ(k)/k as required. 2

The probability φ(k)/k is high. If k is prime it is (k − 1)/k. The lowest it can be is
when k is a product of distinct small primes, 2, 3, 5, 7, ... . For example, the lowest value
of φ(k)/k for k < 2000 is 0.23 for k = 210. Observe also that

φ(k)
k

≥ φ(k)
k

φ(q)
q

=
φ(kq)

kq
=

φ(p− 1)
p− 1

,

the probability that 0 < α < p is a primitive element. The difference can be significant.
For example, for k = 11, q = 6, p = 67, we have (φ(k)/k)/(φ(p − 1)/(p − 1)) = 3. The
following result (see Chapter 4 of (1)) bounds how low φ(k)/k can be.

Theorem 6 (Edmund Landeau, 1903). There exists a constant c > 0 such for all k > 1

φ(k)
k

≥ ck

ln(2 + ln k)
.

Thus we expect to try O(ln ln k) values β = aq before we get find one which is a primitive
k’th root of unity. Thus we have established the following result.

Theorem 7. For a prime p of the form p = kq + 1, the roots of m(z) = Φk(z) in Zp

can be computed in O((k + log2 q) log log k) multiplications in Zp and O(k log k log log k)
comparisons on average.
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Algorithm 1 CRT Approach
Input: A ∈ Zn×n[z], b ∈ Zn[z], m ∈ Z[z] a cyclotomic polynomial of degree d satisfying

A is non-singular (mod m(z)).
Output: x ∈ Qn[z] which satisfies Ax ≡ b (mod m(z)).
1: Set x(0) = 0, P = 1, and U = 1.
2: for k = 1, 2, 3, . . . do
3: Find a new prime pk s.t. m(z) has d distinct roots αk1, .., αkd in Zpk

and compute
them.

4: Let Ak = A mod pk and bk = b mod pk

5: for i = 1 to d do
6: Evaluate Ak and bk at z = αki mod pk.
7: Solve Ak(αki).xki ≡ bk(αki) mod pk for xki.
8: If Ak(αki) is not invertible modulo pk, set U = pk × U and goto step 3.
9: end for

10: Interpolate xk(z) using (αk1, xk1), .., (αkd, xkd).
11: Apply Chinese remaindering to recover x(k) from x(k−1) mod P and xk mod pk

and set P = pk × P .
12: if k ∈ {1, 2, 4, 8, 16, . . .} then
13: Let x be the output of applying rational reconstruction to the integer coefficients

of x(k) mod P.
14: If rational reconstruction succeeded and m(z)|(A.x− b) then output x.
15: end if
16: end for

2.2. Chinese Remaindering

2.2.1. The Algorithm
Algorithm 1 as stated assumes that A is invertible over Q. However, A may not be

invertible modulo a prime chosen in Step 3. In order to prove that Algorithm 1 is correct,
we need to show that all images of the solutions used in the reconstruction of the solution
x over Q are correct. Consider the 1 by 1 linear system

[10z + 15]x = [1]

where m(z) = z2 + z + 1. The solution is

x = [−2/35z + 1/35].

Looking at the solution we see that our algorithm cannot work if it uses primes 5 or 7.
It is clear that the matrix A = [10z + 15] is singular mod 5 and Algorithm 1 detects
this in step 8. But what about the prime 7? The determinant D = detA = 10z + 15
is not 0 modulo 7 but D−1 does not exist mod 7 and hence A is not invertible mod 7.
Does Algorithm 1 also eliminate the prime 7? Lemma 8 below proves that it does. First
a definition.

Definition 2.1. Let D = det(A) ∈ Z[z]. A prime p chosen by Algorithm 1 is said to be
unlucky if D is invertible modulo m(z) but D is not invertible modulo m(z) modulo p.

Lemma 8. Let p be a prime chosen in Algorithm 1 so that m(z) = Πd
i=1(z − αi) for

distinct αi ∈ Zp. Then p is unlucky ⇒ A(αi) is not invertible modulo p for some i.
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Proof. Let D = detA ∈ Z[z]. Then p is unlucky ⇒ D is not invertible modulo (m(z), p)
⇒ degz gcd(D mod p, m mod p) > 0 ⇒ z − αi|D mod p for some i ⇒ D(αi) = 0 mod p
⇒ A(αi) is not invertible mod p (for some i). 2

From the proof we can see also that the unlucky primes are precisely the primes that
divide the resultant

R = resz(D(z),m(z)).
It follows that for given inputs A, b and m(z) with A invertible in characteristic 0, there
are finitely many unlucky primes, and therefore, if the primes chosen by Algorithm 1 are
chosen from a sufficiently large set, Algorithm 1 will rarely encounter an unlucky prime.
Lemma 14 in Section 2.5 bounds the size of the integer R. This bound can be used to
bound the probability that Algorithm 1 chooses an unlucky prime. It can also be used
to modify Algorithm 1 to detect whether A is singular in characteristic 0 – A is proven
singular over Q when the integer U in the algorithm satisfies U ≥ 2|R|.

In our analysis of the running time of Algorithm 1 below we have assumed that unlucky
primes are rare, and hence, do not affect the running time.

2.2.2. Analysis
We state the running time of Algorithm 1 in terms of n, d, c which quantify the size of

the input and L, the number of primes needed by Algorithm 1 to reconstruct x. Because
we use machine primes, primes of constant bit-length that fit into a machine word, L is
normally linear in e, the length of the largest integer appearing in the rational coefficients
in x. But, rational reconstruction is not attempted at each step, because, unlike Chinese
remaindering, it cannot be done efficiently incrementally. Thus our description of the
algorithm implies that Algorithm 1 can use (up to twice as many) than are necessary to
reconstruct the rationals in x. Note also, depending on how the trial divisions in step 14
are implemented, we may need additional primes (see section 2.4).

In general, the length of the rationals appearing in the output can be slighty more then
nd times longer than those in the input (see Lemma 14). But in section 3.1 our linear
systems arising in practice illustrate that they can be much smaller. For this reason we
state the running time in terms of L and also for L ∈ O(cnd).

Theorem 9. The running time for Algorithm 1, assuming (i) no unlucky primes are
encountered, (ii) ||m(z)||∞ < 106, and (iii) not counting the cost of the trial divisions
m(z)|(Ax− b) (in the next section we will show that the trial divisions can be eliminated
from Algorithm 1), is

O(n3dL + n2d2L + n2dLc + ndL2).
Moreover, if L ∈ O(cnd) then the cost is

O(n4d2c + n3d3c2).

The n3dL term is the cost of the linear solves modulo p, the n2d2L term is for evaluating A
at the d roots modulo p, the n2dLc term is for reducing the input matrix A modulo p, and
the ndL2 term is the cost of the Chinese remaindering and the rational reconstruction.

Proof. In step 3 the cost of finding a prime p, reducing m(z) modulo p, and computing
the roots of m(z) in Zp using our algorithm from section 2.1 is dominated by other steps
in the algorithm.
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In step 4, reduction of the integer coefficients in A and b modulo p takes O(n2dLc)
arithmetic operations in Zp since there are n2 entries in A and n in b to reduce and each
entry is a polynomial with at most d non-zero terms. This needs to be done for each of
the L primes that we choose.

Step 6 evaluates Ai,j(z) and bi(z) at each root αk1, · · · , αkd modulo p. This costs
O(n2d2L) because there are n2 + n polynomials to be evaluated. Each requires O(d)
arithmetic operations in Zp using Horner’s rule. This needs to be done for all L primes.

For step 7, solving the system Ak(αki).xki ≡ bk(αki) mod pk for xki takes O(n3)
operations using Gaussian Elimination. Since this is done for each root and each prime,
the total cost of step 7 is of O(n3dL) arithmetic operations in Zp.

Interpolation in step 10 takes O(nd2L) arithmetic operations since we only need to
interpolate the solution vector which has n elements over the d roots. Notice that inter-
polation is dominated by the evaluations in step 6.

In step 11 Chinese remaindering is applied to integer coefficients of x(k−1) mod P and
xk mod pk. There are at most nd integers to reconstruct. The incremental cost at step
k is O(k) per coefficient since P is a product of k − 1 primes. Summing ndO(k) for
k = 1..O(L), the total cost is O(ndL2).

If classical Euclid’s algorithm is used for rational reconstruction in step 13, rational
reconstruction from an integer modulo P, a product of k machine primes, primes of
size O(1), costs O(k2). Since we attempt rational reconstruction after k = 1, 2, 4, 8, 16, ...
primes, the final successful rational reconstruction will dominate total the cost of rational
reconstruction. Since the solution vector x has at most nd rational coefficients, the total
cost of the final successful reconstruction is O(ndL2).

Adding the above contributions gives the running time as stated. 2

2.2.3. The Reconstruction Cost
In our implementation of Algorithm 1, we found, consistent with (2), that for dense

inputs with integer coefficients in A and b chosen uniformly at random, the rationals
in the solution vector x are much longer than the integers in A and b. For such inputs
rational reconstruction and Chinese remaindering can dominate the cost.

Obviously, one may employ asymptotically fast algorithms for Chinese remaindering
and rational reconstruction to reduce the theoretical complexity of Algorithm 1. However,
from a practical viewpoint, all one needs is fast integer multiplication and division. This
is relevant because Maple 11 is using the GMP integer arithmetic package which has fast
integer multiplication and long division but no fast Euclidean algorithm yet, hence, no
fast Chinese remaindering and rational reconstruction are available.

One may essentially reduce the cost of Chinese remaindering to that of integer multi-
plication without using asymptotically fast Chinese remaindering as follows. At step
k = 2j+1 suppose we have obtained u satisfying Au ≡ b mod m(z) mod P where
P = p1 × p2 × ...× p2j from step k = 2j . Suppose we next compute v satisfying Av ≡ b
mod m(z) mod Q where Q = p2j+1×p2j+2× ...×p2j+1 . We then need to solve for xk sat-
isfying Axk ≡ b mod m(z) mod PQ. If we write xk = u + wP we have w = (v−u)P−1

mod Q. This requires inverting the integer P modulo Q which costs O((2j)2) using the
classical Euclidean algorithm. But this is done once and then the scalar multiplication
of the vector of (v− u) by P−1 mod Q and the vector w by P costs O(ndM(2j)) where
M(k) is the cost of multiplying and dividing integers of length k. If a fast algorithm
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is used here the total cost of Chinese remaindering can be reduced from O(ndL2) to
O(L2 + nd log LM(L)).

The cost of the successful rational reconstruction of the ≤ nd rational coefficients in x
can similarly be reduced to roughly one rational reconstruction and O(nd) long multipli-
cations and divisions using a clever trick. Suppose we are reconstructing a rational from
an image u mod P and b is the LCM of the denominators of all rationals reconstructed
so far. The idea is to apply rational reconstruction to b× u mod P instead. We refer the
reader to (2) for details. Assuming fast integer multiplication and division are available,
these improvements effectively reduce the cost of Chinese remaindering and rational re-
construction to that of fast multiplication, that is, from O(ndL2) to O(L2 + ndM(L))
where M(L) is the cost of multiplication of integers of length L digits and the L2 term is
the cost of the classical Euclidean algorithm which Maple 11 uses for computing inverses
and rational reconstruction.

2.3. Linear p-adic Lifting

2.3.1. The Algorithm

Algorithm 2 Linear p-adic Lifting Approach
Input: A ∈ Zn×n[z], b ∈ Zn[z], m ∈ Z[z] a cyclotomic polynomial of degree d.
Output: x ∈ Qn[z] which satisfies A.x = b (mod m)
1: Find a machine prime p s.t. m splits linearly over Zp, and compute the roots α1, .., αd

of m(z) mod p
2: Let e0 = b, x(0) = 0
3: Invert A(αi) mod p for all roots.

If any A(αi) is not invertible mod p then goto step 1.
4: for k = 0, 1, 2, . . . do
5: Reduce ek mod p
6: for i = 1 to d do
7: Evaluate the error ek at z = αi mod p.
8: Compute xki ≡ A(αi)−1.eki mod p
9: end for

10: Interpolate xk(z) from (α1, xk1), ...,(αd, xkd).
11: Set ek+1 = (ek −A.xk mod m(z)) / p
12: x(k+1) = x(k) + xk × pk

13: if k + 1 ∈ {1, 2, 4, 8, 16, ..., } then
14: Let x be the output of applying rational reconstruction to x(k+1) mod pk+1.
15: If rational reconstruction succeeds and m(z)|(A.x− b) then output x.
16: end if
17: end for

2.3.2. Analysis
We state the running time of Algorithm 2 in terms of n, d, c and L, the number of

lifting steps that Algorithm 2 takes. Assuming the primes used by Algorithms 1 and 2
are of the same length, L the number of lifting steps in Algorithm 2 is approximately
equal to L the number of primes used by Algorithm 1.
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Theorem 10. The running time for Algorithm 2, assuming (i) the prime p chosen in
step 1 is not unlucky, (ii) ||m(z)||∞ < 106, and (iii) not counting the cost of the trial
divisions m(z)|(Ax− b), is

O(n3d + n2d2Lc + ndL2).
Moreover, if L ∈ O(cnd) then the cost is

O(n3d + n3d3c2 + n3d3c2) = O(n3d3c2).

The n3d term is the cost of computing the d matrix inverses and the n2d2Lc term is
the cost of computing the error ek in step 11. The ndL2 term is the cost of step 12 which
is a conversion from the p-adic representation of the solution to an integer representation.
The ndL2 term is the cost of rational reconstruction.

Before we give the proof we bound ||Axk mod m(z)|| that appears in step 11 and
thus prove that and the size of the integers in the error ek is bounded. Notice that the
bound necessarily depends on ||m||∞. Our simplifying assumption that ||m||∞ < 106

means that this factor in the bound may be ignored.

Lemma 11. Bounds on the error ek.
(i) ||Axk mod m(z)|| ≤ (p− 1)nd||A||(1 + ||m||∞)d−1

(ii) ||ek|| ≤ nd||[A|b]||(1 + ||m||)d−1.

Proof. Since xk ∈ Zn
p [z] we have ||xk|| < p and so ||Axk|| ≤ (p − 1)nd||A|| where the

factor of n comes from the matrix vector multiplication and the factor d comes from
multiplying polynomials of degree < d. Applying Lemma 2 to divide the polynomials in
Axk by m(z) gives (i).

We prove (ii) by induction on k. Since e0 = b, (ii) holds at step k = 0. In step 11 the
algorithm computes ek+1 := (ek −Axk mod m(z))/p. Assuming (ii) is true for k, then

||pek+1|| = ||ek −Axk mod m(z)|| ≤ ||ek||+ ||Axk mod m(z)||.

Substituting for ||ek|| (induction assumption) and for ||Axk mod m(z)|| from (i) have

||pek+1|| ≤ nd||[A|b]||(1 + ||m||∞)d−1 + (p− 1)nd ‖ [A|b] ‖ (1 + ||m||∞)d−1

= pnd ‖ [A|b] ‖ (1 + ||m||∞).

Dividing both sides by p we obtain (ii) is true by induction for all k. 2

Proof of theorem 10. In Algorithm 2 we only need one prime p that splits m(z) over Zp.
The time for computing this may be ignored. In step 3 we pre-compute the inverse of the
input matrix A at each root d modulo p using Gaussian elimination. This costs O(dn3)
arithmetic operations in Zp. To reduce the error ek modulo p in step 5 costs O(ndcL)
operations since ek is a vector of n polynomials of degree < d with coefficients of length
c digits and this is done O(L) times.

Substitution of all d roots into ek costs O(nd2L) arithmetic operations. Computing the
solution vector xki is just a matrix vector multiplication modulo p which costs O(n2dL)
in total. Interpolation costs O(nd2L) – the same as in Algorithm 1. To compute the
error ek in step 11 we need to do a matrix vector multiplication of polynomials over Z
then divide by m(z). Under our assumption that ||m||∞ < 106, this is dominated by the
matrix vector multiplication, and not division by m(z), which requires n2 multiplications
of polynomials of degree less than d. Now the integer coefficients of the polynomials in A
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are of size O(c) but the integers in xk are modulo p, that is, of size O(1). Consequently fast
integer multiplication is not applicable here. This costs O(n2d2Lc) in total using classical
polynomial multiplication. In step 12, adding xkpk to xk costs O(ndk) operations for each
lifting step. In total this is O(ndL2) which note is the same as the cost of the incremental
Chinese remaindering in Algorithm 1. The rational reconstruction cost is the same as for
Algorithm 1, namely O(ndL2). Therefore, the total running time for this algorithm, not
counting the cost of the trial divisions in step 15 is O(n3d + n2d2Lc + ndL2). 2

2.3.3. Computing the error.
In our implementation of Algorithm 2, one of the most expensive parts is the com-

putation of the error in step 11, in particular, the matrix vector multiplication in Axk

which needs to be computed over Z. This requires n2 polynomial multiplications and n
divisions by m(z). It has complexity O(n2d2c) assuming classical multiplication. Since
the size of A is O(n2dc), we cannot reduce the complexity of computing the error by
more than a factor of d. We have attempted to do this by choosing primes p1, p2, ... such
that m(z) has d roots αij in Zpi

– as we do for Algorithm 1 – evaluating A(αij) mod pi,
caching these primes, the αij and the matrices A(αij) mod pi for re-use in the next lifting
step, multiplying A(αij)xk(αij) mod pi, interpolating, and then Chinese remaindering to
recover ek+1 ∈ Z[z]. For this one needs a tight bound on ||ek+1||. In section 3 we will
see that the improvement obtained is very good for randomly generated problems which
have large rationals in the solution vector but not good on our real data sets where L
the number of lifting steps is small.

2.3.4. The reconstruction cost.
Another expensive component of Algorithm 2 is the reconstruction cost O(ndL2) when

L is large. We have already mentioned how the rational reconstruction cost can be reduced
to O(L2 + ndM(L) log L) where M(L) is the cost of multiplying integers of size L. The
cost of step 11 can similarly be reduced from O(ndL2) to O(L2 + ndM(L) log L), as
follows. First observe that the algorithm only attempts rational reconstruction for
k ∈ {1, 2, 4, 8, ..., 2j , ...}, that is, we only need to compute x(k) for these values of k. Now

x(k) = x0 + x1p + ... + xk−1p
k−1

thus
x(2k) = x0 + x1p + ... + x2k−1p

2k−1 = x(k) + pk∆k

where ∆k = xk + xk+1p + ... + x2k−1p
k−1. To compute x(2k), if we first compute x(k)

then ∆k then the scalar multiplication of ∆k by pk costs O(ndM(k)) where M(k) is the
integer multiplication cost. Now if one computes ∆k using the same method recursively,
the cost of computing x(2k) is the cost of computing x0, x1, ..., x2k−1 plus

T (2k) ≤ 2T (k) + ndO(M(k)).

Solving for T (L) we obtain a total cost of O(ndM(L) log L).

2.4. Trial Division

Algorithms 1 and 2 both terminate when rational reconstruction of x succeeds and
m(z)|b − Ax over Q. We use the rational reconstruction in (15), which builds in some
redundancy so that if it succeeds, the output x is correct with high probability. One
way to speed up the trial divisions is to avoid arithmetic with the fractions that appear
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in x. If we compute D the least common multiple of the denominators of all fractions
appearing in the coefficients of the polynomials in x, Dx clears the fractions in x. We
test if m(z)|Db−A(Dx). Here all arithmetic is over Z since m(z) is monic over Z. This
is quite effective in practice. In our experiments, the time spent doing trial divisions this
way was always less than 10% and typically 1-2% of the total time.

However, we show that the trial division can be omitted entirely if the modulus M =
p1 × p2 × ... × pk in Algorithm 1 (M = pk in Algorithm 2) is sufficiently large. That is,
by using additional primes (if necessary) in Algorithm 1, or by doing additional lifting
steps (if necessary) in Algorithm 2, we can omit the test. The idea is to bound the size
of the integer coefficients in the remainder of Db−A(Dx) divided m(z) and require that
the modulus M be greater than twice (allowing for positive and negative integers) the
bound.

Let N = ||Dx||. First ||A(Dx)|| ≤ ndN ||A|| since each entry in the vector A(Dx) is
obtained by adding n products of polynomials of degree at most d− 1. Hence

||Db−A(Dx)|| ≤ D||b||+ ndN ||A|| = B.

Now we compute the remainder ri of the i’th entry of the vector Db−A(Dx) divided by
m(z). Applying Lemma 2 with δ = (2d− 2)− d + 1 = d− 1 we have, for all i,

||ri||∞ ≤ (1 + ||m(z)||∞)d−1B.

Hence we can state the following result.

Theorem 12. If rational reconstruction succeeds in Algorithms 1 and 2 and the modulus
M satisfies

M > 2(1 + ||m(z)||∞)d−1(D||b||+ ndN ||A||) = B

then m(z)|b−Ax over Q.

Remark: because m(z) is a cyclotomic polynomial, ||m||∞ is small as noted in the
introduction. For ||m(z)||∞ = 1, Theorem 12 requires M > 2d(D||b|| + ndN ||A||). This
is not much longer than D||b||+ N ||A||.

Now we consider the size of the integer D in Theorem 12. Consider x = [1/p+z/q+z2/r]
with p, q, r distinct primes. Here D = LCM(p, q, r) = pqr is three times longer than the
size of the rationals in x and hence, if we apply Theorem 12, we may need additional
primes in Algorithm 1. In practice, this situation does not normally happen – D is not
significantly larger than the LCM of the denominators in x. But it does mean that using
Theorem 12 may increase the number of primes needed by Algorithm 1 (the number of
lifting steps needed by Algorithm 2).

In practice, on both the random data and real problems in section 3, because of the
redundancy of the rational reconstruction algorithm in (15), after rational reconstruction
succeeded, the value of M in Algorithms 1 and 2 always satisfied Theorem 12 with no
additional primes (lifting steps resp.) needed. Even for those problems in data set 2 for
which one 31 bit prime was sufficient to reconstruct the solution vector x – Theorem 12
was satisfied with zero additional primes (lifting steps resp.) needed.
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2.5. A Bound for D

Recall that D is the LCM of the denominators of the fractions appearing in the solution
vector x where x = A−1b mod m(z). Thus D divides the LCM of the denominators of
the fractions appearing in the inverse of the polynomial det A modulo m(z), that is,
D|resz(detA,m(z)) ∈ Z. We have degz det A ≤ n(d− 1) since degz Ai,j < d. We use the
following result (see (10)) to bound ||det(A)||∞.

Lemma 13 ( Goldstein and Graham, 1974 ). Let A be an n by n matrix of polynomials
in Z[z]. Let A′ be the matrix of integers with A′i,j = ||Ai,j ||1 that is, A′i,j is the one norm
of Ai,j . Let H be Hadamard’s bound for detA′. Then ||det A||∞ ≤ H.

Since degz Ai,j ≤ d − 1 we have A′i,j ≤ dC. Applying Hadamard’s bound to bound
|det A′| we obtain

||det A||∞ ≤ Πn
i=1

√
Σn

j=1A
′2
i,j = dnnn/2||A||n.

To calculate resz(detA,m(z)), because m(z) is monic

resz(detA,m(z)) = ± res(r(z),m(z))

where r(z) is the remainder of detA divided m(z). Applying Lemma 2 to determine
||r||∞ we have degz det A ≤ n(d− 1) thus δ ≤ n(d− 1)− d + 1 = (n− 1)(d− 1) and

||r||∞ ≤ (1 + ||m||∞)(n−1)(d−1)dnnn/2||A||n.

Let R = resz(r(z),m(z)). Note that R is an integer. To bound |R| recall that R = detS
where S is Sylvester’s matrix for the polynomials r(z) and m(z). Now degz r < d but
for the purpose of bounding |R| we assume degz r = d− 1. Then S is a 2d− 1 by 2d− 1
matrix of integers where the d coefficients of r(z) are repeated in the first d rows of S and
the d + 1 coefficients of m(z) are repeated in the last d− 1 rows. Applying Hadamard’s
bound to the rows of S we obtain

|det S| ≤
√

d||r||2∞
d
×

√
(d + 1)||m||2∞

d−1

from which we obtain the following result where we used
√

d + 1
d−1

<
√

d
d

for d > 1 to
simplify the result.

Lemma 14. Let R = resz(detA,m(z)). Then

|R| < dnd+d||m||d−1
∞ (1 + ||m||∞)(n−1)(d−1)dndn/2||A||nd.

The bound says the size of the denominators in x = A−1b can could more than nd times
longer than ||A||. Indeed if one constructs inputs A and b with polynomials of degree
d− 1 with coefficients chosen randomly from [0, 10c), so that ||A|| < 10c, ||b|| < 10c and
the bit-length of the input is O(n2d log 10c) = O(cn2d), then one readily finds examples
with D > 10cnd.

2.6. Determinant Ratios

From Cramers rule, the solution vector x of the linear system Ax = b mod m(z) may
be expressed as

xi =
det(A(j))
det(A)

mod m(z)
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where A(j) is the matrix A with the j′th column replaced by b. The analysis in the
previous section showed that the rationals in the solution vector x may be up to nd
times longer than the integers in the input A, b, which means that x may be d times
longer than the input. The factor of d comes from inverting det(A) modulo m(z). If we
choose instead to write the solutions in the form

xj =
det(A(j)) mod m(z)
det(A) mod m(z)

,

in general, the integers in the determinants will be a factor of d times smaller. Moreover
we can easily compute images of det(A(j)) and detA by modifying the solving of A(αi)x =
b(αi) mod pk in Algorithm 1. One also computes the determinant d = det(A(αi)) mod pk

(at negligible additional cost) to obtain images of detA and then multiplies the scalars
xj(αi) mod pk by d (at negligible additional cost) to obtain images of detA(j). In order
to reconstruct the integer coefficients in det A mod m(z) and the det(A(j)) mod m(z)
using Chinese remaindering, we will need bounds on their height. We state these in the
following lemma.

Lemma 15.

||det A mod m(z)||∞ ≤ dn||A||n(1 + ||m||∞)(n−1)(d−1)

and
||det A(j) mod m(z)||∞ ≤ dn||A||n−1||b||∞(1 + ||m||∞)(n−1)(d−1).

Proof. In the previous section we have determined that ||det A||∞ ≤ dn||A||n. Now
det A ∈ Z[z] has degree at most n(d− 1) in z. Applying Lemma 2 to bound ||det A mod
m(z)||∞ yields the first result. The second result follows by noting that Lemma 13, which
is stated in terms of the rows of A, also applies to the columns of A. 2

We now give the algorithm. Since we use these bounds to determine the number of
primes needed in advance, we recursively solve Ax = b mod m(z) modulo half the primes,
then modulo the other half, and Chinese remainder the two results. This effectively
reduces the integer Chinese remaindering cost to the cost of integer multiplication (there
is one inverse computed modulo the product of half the primes but O(nd) multiplications
of large integers).

In comparing Algorithm 1 and Algorithm 3, since Algorithm 3 needs to reconstruct
integers (not rationals) of length d times smaller than Algorithm 1 in general, it needs a
factor of approximately 2d fewer primes and hence will be 2d times faster than Algorithm
1. However, the size of the rationals in the solution vectors of real applications may be
much smaller than the bound in Lemma 14. So Algorithm 3 is not necessarily faster than
Algorithms 1 and 2.

3. Implementation and Timings

We have implemented Algorithms 1, 2 and 3 in Maple. Our implementation of Algo-
rithms 1 and 2 includes the optimizations described in 2.2.3 and 2.3.3 for reducing the
reconstruction cost, 2.3.4 for speeding up the computation of the error, and they apply
Theorem 12 instead of doing trial division. We use 25 bit floating point primes on 32 bit
machines, and 31 bit integer primes on 64 bit machines so that we can use the C codes
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Algorithm 3 Determinant Ratio.
Input: A ∈ Z[z]n×n, b ∈ Z[z]n, m ∈ Z[z] a cyclotomic polynomial of degree d.
Output: D ∈ Z[z] and x ∈ Z[z]n which satisfy

D = detA mod m(z) and A.x ≡ Db mod m(z).
1: Let B = dn||A||n−1 max(||A||, ||b||)(1 + ||m||)(n−1)(d−1).
2: Let P = {p1, ..., pk} be a set of distinct primes such that Πpi > 2B and m(z) splits

into distinct linear factors modulo pi.
3: Call Subroutine C with inputs A, b,m and P .

Algorithm 4 Subroutine C
Input: A, b,m in Z[z] and P = {p1, p2, ..., pk} a set of primes.
Output: (D,X,M) satisfying D = detA mod m(z) mod M and m(z)|AX−Db mod M.
1: if k > 1 then
2: Set h = bk/2c.
3: Set (D1, X1,M1) = C(A, b,m, {p1, p2, ..., ph}).

Set (D2, X2,M2) = C(A, b,m, {ph+1, ..., pk}).
4: Set M = M1M2 – note, this is the product of the primes used which is not neces-

sarily equal to Πk
i=1pi.

5: Compute i = M−1
1 mod M2.

6: Set ∆D = i(D1−D2) mod M2 and ∆X = i(X1−X2) mod M2 using the symmetric
range for the integers modulo M2.

7: Set D = D1 + ∆DM1 ∈ ZM [z].
Set X = X1 + ∆XM1 ∈ ZM [z]n.

8: Ouput (D,X,M)
9: else

10: Compute the roots α1, ..., αd of m(z) mod p1.
11: Set A = A mod p1 and b = b mod p1

12: for i = 1 to d do
13: Evaluate A and b at z = αi mod p1.
14: Solve A(αi).xi ≡ b(αi) mod p1 for xi ∈ Zn

p1
and compute Di = detA(αi) mod p1.

15: if Di 6= 0 then set xi = Di × xi mod p1

else pick a new prime p > p1 s.t. m(z) splits into linear factors and restart
Algorithm M using p1 = p.

16: end for
17: Interpolate D ∈ Zp[z] from (α1, D1), ..., (αd, Dd).
18: Interpolate x ∈ Zp[z]n from (α1, x1), ..., (αd, xd).
19: Output D,x, p1.
20: end if

in Maple’s LinearAlgebra:-Modular package which provide fast BLAS based routines
for doing linear algebra over Zp. These codes are for dense linear systems.

We compare our algorithms on three data sets described below. All timings were
obtained using Maple 11 on an AMD R© Opteron 150 processor running @ 2.4 GHz with
2GB of RAM. This is a 64 bit single core processor.

Data Set 1: Randomly Generated Inputs
For the first data set we use the 7th cyclotomic polynomial m(z) = 1+ z + z2 + z3 + z4 +
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z5 + z6. The data consists of systems of dimension 10, 20, 40, 80, 160 where the entries of
A and b were generated using the Maple command
> f := randpoly(z,dense,degree=5,coeffs=rand(2^c)):

for different values of c which specifies the lengths of the integer coefficients in binary dig-
its. This Maple command will give us a dense polynomial in z of degree 5 and coefficients
uniformly chosen at random from [0, 2c).

n Coefficient length c in binary digits Remark

2 4 8 16 32 64 128 256 512 1024

10 .046 .096 .223 .498 1.242 2.823 6.981 18.47 51.92 158.8 CRT

.057 .081 .116 .258 .552 1.291 3.359 9.511 30.00 104.2 Lift 2

.054 .118 .231 .451 .956 3.260 6.981 16.22 43.55 118.4 Padic

.009 .011 .013 .020 .051 .090 .147 .320 .643 1.274 Cramer

20 .202 .414 .868 1.892 5.762 14.70 37.34 104.2 310.8 930.3 CRT

.155 .250 .487 1.066 2.578 6.297 16.87 49.17 164.3 612.5 Lift2

.314 .698 1.442 2.981 6.358 23.20 50.47 115.0 310.8 827.4 Padic

.030 .040 .056 .081 .187 .357 .718 1.427 2.988 6.396 Cramer

40 .877 2.034 4.252 9.412 32.88 86.82 226.0 644.1 2038 – CRT

.630 1.270 2.539 5.291 13.74 33.74 93.29 291.2 1030 4142 Lift2

2.104 4.706 10.08 21.67 46.85 190.7 411.8 916.7 2415 – Padic

.146 .219 .307 .438 1.121 2.340 4.711 9.405 20.41 45.77 Cramer

80 11.44 15.13 32.54 71.59 250.8 659.3 1780 – – – CRT

3.564 6.972 14.01 30.11 80.11 197.1 605.0 1998 – – Lift2

16.04 36.36 79.89 177.4 383.0 1526 3203 – – – Padic

1.046 1.575 2.197 3.279 10.17 24.10 50.89 108.6 239.7 537.2 Cramer

160 91.23 120.9 264.8 581.1 2283 – – – – – CRT

54.14 53.47 110.4 239.3 660.0 1629 4584 – – – Lift2

251.4 318.3 706.8 1650 3528 – – – – – Padic

8.712 13.13 18.15 27.96 112.2 262.6 584.0 1197 2317 4546 Cramer

m(z) := z6 + z5 + z4 + z3 + z2 + z + 1, d = 6

Table 4. Runtimes (in CPU seconds) “–” denotes the running time is over 5000 seconds.

Table 4 shows the running time of dense random polynomial inputs for Algorithm 1
(CRT), Algorithm 2 (Padic), Algorithm 2 with the optimization for computing the error
(Lift2), and Algorithm 3 (Cramer). We clearly see the advantage of Algorithm 3 here
and that the optimized Padic lifting method is faster than Algorithm 1 as n gets larger.
Data Sets 2 & 3: Real Problems
The problems in these data sets were given to us by Vahid Dabbaghian. They include
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systems with various dimensions, coefficient lengths, and minimal polynomials where,
note, the dimenion n of the system is indicated in the filename. The systems are available
at http://www.cecm.sfu.ca/CAG/code/VahidsSystems.zip

file sys49 sys100 sys100b sys144 sys196 sys225 sys256 sys576 sys900

degz(m) 4 8 4 2 2 4 4 6 8

k 5 24 8 4 3 5 12 7 24

||A||∞ 10 5 2 4 11 2 3 3 2

||x||∞ 45 14 1 1 229 875 2 1 2

L 4 1 1 1 9 36 1 1 1

CRT .144 .788 .029 .036 3.344 3.056 .155 .842 2.358

Padic .109 .443 .030 .029 1.183 2.374 .174 .612 2.761

Lift 2 .111 .294 .100 .163 1.973 1.678 .640 3.022 7.627

Cramer .293 4.159 .305 .147 6.206 4.644 3.748 53.69 338

Table 5. Runtime (in CPU seconds) on some of the systems given by Vahid Dabbaghian.

file 144Huge 196Huge 256Huge 256Huge2 324Huge 400Huge 484Huge

degz(m) 40 12 4 24 16 108 88

k 55 13 12 39 17 171 276

||A||∞ 83 57 596 129 196 707 808

||x||∞ 159 108 90010 255 573 2202 2504

L 8 7 4096 16 16 128 128

CRT 21.19 6.808 3904 64.01 67.97 12063 13653

Padic 22.62 5.850 1908 49.16 63.41 8536 8632

Lift 2 12.11 3.997 3349 60.68 60.59 26816 36529

Table 6. Runtime (in CPU seconds) on some of the huge systems given by Vahid Dabbaghian.

Tables 5 and 6 show running times for systems given to us by Vahid Dabbaghian. The
labeling of the algorithms is the same as in Table 4. Most of the input systems in data set
2 are sparse. All solution vectors have small rationals, some very small. The problems in
data set 3 are dense systems with larger integers in the input and solution vector x. To
indicate this we have shown the maximum length of the coefficients in the inputs A and
b and in the output x, in binary digits. In addition, we show L, the number of machine
primes that are needed to construct the solution vector in the Chinese remaindering
approach. For the given inputs, this is the same as the number of lifting steps needed in
the linear p-adic lifting algorithm.

The data shows that Algorithm 3 performs very poorly on these inputs. It also shows
that the optization for computing the error in Algorithm 2 is not always helpful and that
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Algorithm 1 is competitive with both versions of Algorithm 2. Our conclusion is that
running Algorithms 1 and 3 simultaneously (which is not difficult to implement) would
be the best practical solution.
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