
A high-performance algorithm for calculating cyclotomic
polynomials.

Andrew Arnold
Department of Mathematics

Simon Fraser University
Burnaby, B.C. Canada.

ada26@sfu.ca.

Michael Monagan
Department of Mathematics

Simon Fraser University
Burnaby, B.C. Canada.

mmonagan@cecm.sfu.ca.

ABSTRACT
The nth cyclotomic polynomial, Φn(z), is the monic poly-
nomial whose φ(n) distinct roots are the nth primitive roots
of unity. Φn(z) can be computed efficiently as a quotient
of terms of the form (1 − zd) by way of a method the au-
thors call the Sparse Power Series algorithm. We improve
on this algorithm in three steps, ultimately deriving a fast,
recursive algorithm to calculate Φn(z). The new algorithm,
which we have implemented in C, allows us to compute Φn(z)
for n > 109 in less than one minute.

Categories and Subject Descriptors:
G.0 [Mathematics of Computing]: General
General Terms: Algorithms
Keywords: Cyclotomic Polynomials

1. INTRODUCTION
The nth cyclotomic polynomial, Φn(z), is the minimal

polynomial over Q of the nth primitive roots of unity.

Φn(z) =
nY
j=1

gcd(j,n)=1

`
z − e

2πi
n
j´. (1.1)

We let the index of Φn(z) be n and the order of Φn(z) be
the number of distinct odd prime divisors of n. The nth in-
verse cyclotomic polynomial, Ψn(z), is the monic polynomial
whose roots are the nth non-primitve roots of unity.

Ψn(z) =
nY
j=1

gcd(j,n)>1

`
z − e

2πi
n
j´ =

zn − 1

Φn(z)
. (1.2)

We denote by A(n) the height of Φn(z), that is, the largest
coefficient in magnitude of Φn(z). It is well known that for
n < 105, A(n) = 1 but for n = 105, A(n) = 2. The smallest
n with A(n) > 2 is n = 385 where A(n) = 3. Although
the heights appear to grow very slowly, Paul Erdős proved
in [2] that A(n) is not bounded above by any polynomial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

in n, that is, for any constant c > 0, there exists n such
that A(n) > nc. Maier showed that the set of n for which
A(n) > nc has positive lower density. A natural question to
ask is, what is the first n for which A(n) > n?

In earlier work [1], we developed two asymptotically fast
algorithms to compute Φn(z). The first algorithm, which
we call the FFT algorithm, uses the Fast Fourier Transform
to perform a sequence of polynomial exact divisions in Z[z]
modulo a prime q. Using this algorithm we found the small-
est n such that A(n) > n, namely for n = 1, 181, 895, the
height A(n) = 14, 102, 773. Here n = 3 · 5 · 11 · 13 · 19 · 29. To
find Φn(z) with larger height, we tried simply multiplying
this n by additional primes. In this way we found an n with
A(n) > n2 and several n > 109 with A(n) > n4, the latter
requiring the use of a supercomputer with a lot of RAM.

The second algorithm, which we call the Sparse Power Se-
ries (SPS) algorithm, does a sequence of sparse series multi-
plications and divisions in O(2kφ(n)) integer arithmetic op-
erations. Although not asymptotically faster than the FFT
algorithm, it turns out that because the SPS algorithm only
needs integer additions and subtractions, it is considerably
faster (more than 20 times - see section 4) than the FFT
algorithm. Using the SPS algorithm we found the small-
est n with A(n) > n2, A(n) > n3 and A(n) > n4, namely
n = 43, 730, 115, n = 416, 690, 995, and 1, 880, 394, 945, re-
spectively, as well as other new results. One of the difficulties
when n > 109 is space. For such n, even storing Φn(z) re-
quires many gigabytes of memory. The SPS algorithm has a
substantial space advantage over the FFT algorithm. It has
now been implemented in the Sage and Maple 13 computer
algebra systems.

In this paper we present a fast recursive algorithm to cal-
culate Φn(z) and Ψn(z). It improves on the sparse power
series (SPS) algorithm by approximately another factor of
10 (see section 4). To give one specific benchmark; Yoichi in
[4, 5] found A(n) for n the product of the first 7 odd primes
but was unable to determine A(n) for n the product of the
first 8 primes. We used the FFT algorithm to find A(n) for
n the product of the first 9 odd primes in approx. 12 hours.
The SPS algorithm takes 7 minutes and our new algorithm
takes 50 seconds. A challenge problem given to us by Noe
[6] is to compute Φn(z) for n = 99, 660, 932, 085 which we
expect will have a huge height. The main difficulty now is
space; for the mentioned unsolved problem, the set of coeffi-
cients of Φn(z), stored as 320-bit integers (which we estimate
will be sufficient) requires over 750 GB of space.

Our paper is organized as follows. Section 2 presents iden-
tities involving zn − 1, Φn(z) and Ψn(z) used in the algo-
rithms, and the basic algorithm used for the FFT approach.

112

Section 3 details the Sparse Power Series algorithm for com-
puting Φn(z) and introduces a similar algorithm for comput-
ing Ψn(z), then develops improvements in three steps. The
third step makes the algorithm recursive. Section 4 presents
some timings comparing the FFT algorithm, the original
SPS algorithm, and the three improvements.

2. USEFUL IDENTITIES OF CYCLOTOMIC
POLYNOMIALS

Before describing the algorithms, we establish some basic
identities of cyclotomic polynomials. First, as the roots of
Φn(z) and Ψn(z) consist of all nth roots of unity, we have

Φn(z)Ψn(z) =

n−1Y
j=0

(z − e
2πj
n
i) = zn − 1. (2.1)

Every nth root of unity is a dth primitive root of unity for
some unique d|n. Conversely, if d|n, every dth primitive root
of unity is trivially an nth root of unity. As such,

Y
d|n

Φd(z) = zn − 1. (2.2)

Applying the Möbius inversion formula to (2.2), we have

Φn(z) =
Y
d|n

(zd − 1)µ(
n
d

), (2.3)

where µ is the Möbius function. From (2.1) and (2.3) we
obtain a similar identity for Ψn(z).

Ψn(z) =
Y

d|n,d<n
(zd − 1)−µ(

n
d

), (2.4)

and from (2.1) and (2.2), we have that

Ψn(z) =
Y

d|n,d<n
Φd(z). (2.5)

Thus Ψn(z) is a product cyclotomic polynomials.
Given Φ1(z) = z − 1 and Ψ1(z) = 1, we can compute all

cyclotomic polynomials using the following lemmas.

Lemma 1. If p, q primes such that p - n and q|n then

Φnp(z) =
Φn(zp)

Φn(z)
, (2.6a)

Φnq(z) = Φn(zq), (2.6b)

Ψnp(z) = Ψn(zp)Φn(z), and (2.6c)

Ψnq(z) = Ψn(zq). (2.6d)

Lemma 2. If n > 1 is odd then

Φ2n(z) = Φn(−z) and (2.7a)

Ψ2n(z) = −Ψn(−z)(zn + 1). (2.7b)

Lemmas 1 and 2 are well-known. One can prove these
identities by equating roots of both sides of the respective
equations. Given Φn(z)Ψn(z) = zn − 1, the identities for
Ψn(z) (2.6c), (2.6d) and (2.7b) can be easily derived from
(2.6a), (2.6b) and (2.7a), their respective analogs for Φn(z).

These lemmas give us a means to calculate Φn(z). For ex-
ample, for n = 150 = 2 · 3 · 52 we have

Φ3(z) = Φ1(z3)
Φ1(z)

= z3−1
z−1

= z2 + z + 1, and

Φ15(z) = Φ3(z5)
Φ3(z)

= z10+z5+1
z2+z+1

= z8 − z7 + z5 − z4 + z3 − z + 1, by (2.6a).

Φ75(z) = Φ15(z5) by (2.6b),

= z40 − z35 + z25 − z20 + z15 − z5 + 1.

Φ150 = Φ75(−z) by (2.7a),

= z40 + z35 − z25 − z20 + z15 + z5 + 1

We formally describe this approach in algorithm 1.

Algorithm 1: Computing Φn(z) by repeated polynomial
division

Input: n = 2e0pe11 p
e2
2 · · · pe

k

k , where 2 < p1 < · · · < pk,
e0 ≥ 0, and ei > 0 for 1 ≤ i ≤ k

Output: Φn(z)
1 m←− 1
2 Φm(z)←− z − 1
3 for i = 1 to k do
4 Φmpi(z)←− Φm(zpi)/Φm(z) // By (2.6a)
5 m←− m · pi
6 if e0 > 0 then
7 Φ2m(z)←− Φm(−z) // By (2.7a)
8 m←− 2m

// m is the largest squarefree divisor of n now

9 s←− n/m
10 Φn(z)←− Φm(zs) // By (2.6b)

return Φn(z)

While algorithm 1 is beautifully simple, it is not nearly the
fastest way to compute Φn(z), particularly if we use classi-
cal polynomial division to calculate the polynomial quotient
Φm(zpi)/Φm(z) (line 4). For even though the numerator is
sparse, the denominator and quotient are typically dense.

We implemented algorithm 1 using the discrete fast Fourier
transform (FFT) to perform Φm(zpi)/Φm(z) fast. This is
done modulo suitably chosen primes qj . The cost of comput-
ing one image of Φn(z) modulo a prime q is O(φ(n) log φ(n))
arithmetic operations in Zq. With each iteration of the loop
on line 3, the degree of the resulting polynomial grows by a
factor. As such the cost of this approach is dominated by
the last division. For a description of the discrete FFT, we
refer the reader to [3].

We compute images of Φn(z) modulo sufficiently many
primes and recover the integer coefficients of Φn(z) using
Chinese remaindering. In order to apply the FFT modulo q,
we need a prime q with 2k|q−1 and 2k > φ(n), the degree of
the output Φn(z). Since for n > 109 there are no such 32 bit
primes, we used used 42-bit primes with arithmetic modulo
q coded using 64-bit machine integer arithmetic.

It follows from lemma 1 that for primes p|n, the set of
nonzero coefficients of Φnp(z) and Φn(z) are the same. Sim-
ilarly, by lemma 2 we have A(n) = A(2n) for odd n. Thus
Φn(z) for even or nonsquarefree n, for our purposes, are
uninteresting. Moreover, if n̄ is the largest odd squarefree
divisor of n, then it is easy to obtain Φn(z) from Φn̄(z).

113

For the remainder of this paper, we only consider Φn(z) for
squarefree, odd n.

3. HIGH-PERFORMANCE ALGORITHMS
FOR COMPUTING ΦN (Z)

Our C implementation of the FFT-based approach proved
to be faster than methods available via computer algebra
systems at the time. Using this method we were able to
compute examples of Φn(z) of degree in the billions and
height well beyond that. However, the FFT approach was
eclipsed by a faster algorithm.

For n > 1, the number of squarefree divisors of n is even.
As such we can rewrite (2.3) as

Φn(z) =
Y
d|n

(1− zd)µ(
n
d

). (3.1)

As Φn(z)Ψn(z) = zn − 1 we also have, for n > 1,

Ψn(z) = −
Y

d|n,d<n
(1− zd)−µ(

n
d

). (3.2)

In our implementation of every algorithm presented in sec-
tion 3, we compute Φn(z) as the product of terms (1−zd)±1

appearing in (3.1); however, in the identities we present in
this section it is often less cumbersome to express Φn(z) in
terms of (zd−1)±1. We refer to the (1−zd)±1 (alternatively
(zd − 1)±1) comprising Φn(z) as the subterms of Φn(z).

Given that the power series expansion of (1 − zd)−1 is
(1 + zd + z2d + z3d + . . .), it becomes equally easy to either
multiply or divide by (1− zd). Φn(z) can thus be computed
as the truncated power series ofY

µ(
n
d

)=1

(1− zd) ·
Y

µ(
n
d

)=−1

(1 + zd + z2d + . . .), (3.3)

as described in procedure SPS.

Procedure SPS(n), computing Φn(z) as a quotient of
sparse power series

The Sparse Power Series (SPS) Algorithm

Input: n a squarefree, odd integer

Output: a(0), . . . , a(φ(n)
2

), the first half of the
coefficients of Φn(z)

// we compute terms up to degree D

1 D ←− φ(n)
2

, a(0)←− 1
2 for 1 ≤ i ≤M do a(i)←− 0
3 for d|n such that d < n do
4 if µ(n

d
) = 1 then // multiply by 1− zd

5 for i = D down to d by −1 do
6 a(i)←− a(i)− a(i− d)

7 else // divide by 1− zd
8 for i = d to D do
9 a(i)←− a(i) + a(i− d)

return a(0), a(1), . . . a(D)

The brunt of the work of the SPS algorithm takes place
on lines 6 and 9, where we multiply by (1 − zd) and (1 −
zd)−1 respectively. In either case, computing this product,
truncated to degree D = φ(n)/2, takes O(D− d) ∈ O(φ(n))

arithmetic operations in Z. As n, a product of k distinct
primes, has 2k positive divisors, the SPS method requires
some O(2k · φ(n)) operations to compute Φn(z) of order k.
Note that while 1− zn appears in (3.1), we do not multiply
by 1− zn is algorithm SPS, as it does not affect our result.
This is because 1− zn ≡ 1 (mod zD) for D = φ(n)/2.

Using the analog identity for Ψn(z), (3.2), we derive a very
similar method for Ψn(z), described by procedure SPS-Psi.

Procedure SPS-Psi(n), computing Ψn(z) as a quotient
of sparse power series

A Sparse Power Series Algorithm for Ψn(z)

Input: n a squarefree, odd integer

Output: b(0), . . . , b(bn−φ(n)
2
c), the first half of the

coefficients of Ψn(z)

1 D ←− bn−φ(n)
2
c, b(0)←− 1

2 for 1 ≤ i ≤ D do b(i)←− 0
3 for d|n such that d < n do
4 if µ(n

d
) = −1 then // multiply by 1− zd

5 for i = D down to d by −1 do
6 b(i)←− b(i)− b(i− d)

7 else // divide by 1− zd
8 for i = d to D do
9 b(i)←− b(i) + b(i− d)

return b(0), b(1), . . . , b(D)

By a similar analysis as for SPS, we see that procedure
SPS-Psi requires O(2k(n− φ(n)) ∈ O(2k · n) arithmetic op-
erations.

3.1 The palindromic property of cyclotomic co-
efficients

In the SPS and SPS-Psi methods we truncate to half the
degree of Φn(z) and Ψn(z) respectfully. This is because it
is trivial to obtain the ter,s of higher degree. For n > 1 the
coefficients of Φn(z) are palindromic and those of Ψn(z) are
antipalindromic. That is, given

Φn(z) =

φ(n)X
i=0

a(i)zi and Ψn(z) =

n−φ(n)X
i=0

b(i)zi,

we have that a(i) = a(φ(n)− i) and b(i) = −b(n−φ(n)− i).
We prove a related result, which will bode useful in subse-
quent algorithms.

Lemma 3. Let

f(z) = Φn1(z) · Φn2(z) · · ·Φns(z) =
DX
i=0

c(i)zi (3.4)

be a product of cyclotomic polynomials such that nj is odd
for 1 ≤ j ≤ s. Then c(i) = (−1)Dc(D− i) for 0 ≤ i < D. In
other words, if D is odd f(z) is antipalindromic, and if D is
even f(z) is palindromic.

Proof. Clearly f(z) is monic. If ω is a root of f , then
ω is an (nj)th primitive root of unity for some j such that
1 ≤ j ≤ s. In which case, ω−1 is also an (nj)th primitive
root of unity and hence is also a root of f(z). Set

g(z) = zDf(z−1) =
DX
i=0

c(D − i)(z). (3.5)

114

g(z) is a polynomial of degree D with leading coefficient
c(0) whose roots are the roots of f . Thus f(z) and g(z) only
differ by the constant factor c(0)/c(D) = c(0). We need only
resolve c(0). To that end, we observe that φ(n) is even for
odd n > 1, and φ(1) = 1. Thus r ≡ D (mod 2), where r is
the cardinality of

{j : 1 ≤ j ≤ s and nj = 1}. (3.6)

The constant term of f , c(0), is the product of the constant
terms of the Φnj (z) in (3.4). Since the constant term of
Φ1(z) = z − 1 is −1, and by (3.1), the constant term of
Φn(z) is 1 for n > 1, we have that c(0) = (−1)r = (−1)D,
completing the proof.

We note that lemma 3 does not hold if we relax the re-
striction that nj must be odd in (3.4). Consider the trivial
counterexample Φ2(z) = z+1. By (2.5), we have that Ψn(z)
is a product of cyclotomic polynomials, and so lemma 3 ap-
plies to Ψn(z) for odd n, or any product of the form

Ψn1(z) ·Ψn2(z) · · ·Ψns(z), (3.7)

where n1, n2, . . . , ns are all odd.

3.2 Improving the sparse power series method
by further truncating degree

The sparse power series algorithm slows appreciably as
we calculate Φn(z) for n with increasingly many factors.
The slowdown in computing Φnp(z) compared to Φn(z) is
twofold. By introducing a new prime factor p we double the
number of subterms (1−zd)±1 in our product (3.1). In addi-
tion, the degree of Φnp(z) is p− 1 times that of Φn(z), thus
increasing the cost of multiplying one subterm (1 − zd)±1

by a factor. For Φn(z) of larger degree the algorithm also
exhibits poorer locality.

In procedure SPS, we effectively compute 2k distinct power
series, each a product of subterms (1−zd)±1, each truncated
to degree φ(n)/2. We can improve the SPS algorithm if we
truncate any intermediate power series to as minimal degree
necessary, thereby reducing the number of arithmetic op-
erations and leveraging locality where possible. We let the
degree bound refer to the degree we must truncate to at some
stage in the computation of Φn(z) using the SPS algorithm
or a variant thereof.

Depending on the order in which we multiply the subterms
of Φn(z), some of the intermediate products of subterms we
compute may be polynomials as well. If, at some point of
our computation of Φn(z), we have a product of subterms
that is a polynomial f(z) of degree D, then f(z) is a product
of cyclotomic polynomials satisfying lemma 3 (provided n is
odd and squarefree), and we need only truncate to degree at
most bD/2c at previous stages of the computation.

Once we have computed f(z), our degree bound may in-
crease. In which case we can generate higher-degree terms
of f(z) as necessary using lemma 3.

More generally, if we have some product of subterms of
Φn(z) and we know polynomials f1(z), f2(z), . . . fs(z) of de-
grees D1, D2, . . . , Ds will occur as products of subterms at
later stages of our computation, then we can truncate to
bD/2c, where D = min1≤j≤sDs. Our aim is to order the
subterms in an intelligent manner which minimizes the growth
of the degree bound over the computation of Φn(z).

To further our aim, we let n = mp, where p is the largest
prime divisor of n and m > 1. In which case

Φmp(z) =
Φm(zp)

Φm(z)
by lemma 1,

=Ψm(z) · Φm(zp) · (zm − 1)−1.

(3.8)

By (3.1) and (3.2), we can break Ψm(z) and Φm(z) into
respective products of subterms.

Φn(z) = Y
d|m,d<m

(zd− 1)−µ(
m
d

)

! Y
d|m

(zdp− 1)µ(
m
d

)

!
(zm− 1)−1.

(3.9)

Thus to compute Φn(z), we can first compute Ψm(z), the

leftmost product of (3.9) to degree m−φ(m)
2

, use the an-
tipalindromic property of Ψm(z) to reconstruct its remain-
ing coefficients, and then multiply the remaining subterms
as we would in algorithm SPS. Algorithm SPS2 describes
the method.

Procedure SPS2(n) : First revision of algorithm SPS

Algorithm SPS2: Improved Sparse Power Series

Input: n = mp, a squarefree, odd integer with greatest
prime divisor p

Output: a(0), . . . , a(φ(n)
2

), the first half of the
coefficients of Φn(z)

// Compute first half of Ψm(z)

1 a(0), a(1), . . . , a(bn−φ(m)
2
c)←− SPS-Psi(m)

// Construct other half of Ψm(z) using lemma 3

2 D ←− m− φ(m)

3 for i = dm−φ(m)
2
e to D do a(i)←− −a(m− φ(m)− i)

// Multiply by Φm(zp)

4 D ←− φ(n)
2

5 a(m− φ(m) + 1), a(m− φ(m) + 2), . . . , a(D)←− 0
6 for d|m do
7 if µ(n

d
) = 1 then

8 for i = D down to d by −1 do
9 a(i)←− a(i)− a(i− dp)

10 else
11 for i = d to D do
12 a(i)←− a(i) + a(i− dp)

// Divide by zm − 1 = (−1− zm − z2m − . . .)
13 for i = m to D do a(i)←− −a(i)− a(i−m)

return a(0), a(1), . . . a(D)

For n = mp with k distinct prime divisors, Ψm(z) com-
prises 2k−1 − 1 of the 2k subterms of Φn(z). For each of
these subterms appearing in Ψm(z) we truncate to degree
(m−φ(m))/2. The asymptotic operation cost of SPS2 is no
different than that of SPS; however, in practise this method
cuts the running time in half (see table 1 for timings).

We note that the speed-up is not as substantial for m with
very few prime factors. In the event that n is prime, we have
m = 1 and Ψm(z) = 1. In such case the execution of SPS
and SPS2 are effectively the same. For n = qp, a product

115

of two primes with q < p, Φn(z) has only four subterms
and we only get gains on the single subterm appearing in
Ψq(z) = z − 1. For Φn(z) of low order, the proportion of
subterms of Φn(z) appearing in Ψm(z) is further from 1/2
compared to Φn(z) for highly composite n (i.e. n for which
k is larger). That said, however, Φn(z) is already easy to
compute by the original SPS method for Φn(z) of low order,
as these cyclotomic polynomials have very few subterms.

3.3 Calculating Φn(z) by way of a product of
inverse cyclotomic polynomials

In algorithm SPS2 we bound to a smaller degree than in
SPS when multiplying the first 2k−1 − 1 subterms of Φn(z).
We are able to lower the degree bound for many of the re-
maining 2k−1+1 subterms of Φn(z). To that end we establish
the next identity.

Let n = p1p2 · · · pk, a product of k distinct odd primes.
For 1 ≤ i ≤ k, let mi = p1p2 · · · pi−1 and ei = pi+1 · · · pk.
We set m1 = ek = 1, and let e0 = n. Note that n = eipini
for 1 ≤ i ≤ k. In addition, ei−1 = piei and mi+1 = mipi.
We restate (3.8), which was key to SPS2, as

Φn(z) =
Ψmk (zek)

(zn/pk − 1)
Φmk (zek−1). (3.10)

By repeated application of lemma 1, we have

Φn(z) =
Ψmk (zek)

(zn/pk − 1)

Ψmk−1(zek−1)

(zn/pk−1 − 1)
Φmk−1(zek−2),

. . .

=
Ψmk (zek)

(zn/pk − 1)
· · · Ψm2(ze2)

(zn/p2 − 1)

Ψm1(ze1)

(zn/p1 − 1)
Φm1(ze0),

=

kY
j=1

Ψmj (zej)

(zn/pj − 1)

!
· Φm1(ze0).

(3.11)

As Ψm1(ze1) = Ψ1(ze1) = −1, and Φ1(ze0) = Φ1(zn) =
zn − 1, this simplifies to

Φn(z) =
kY
j=2

Ψmj (zej) ·
kY
j=1

(zn/pj − 1)−1 · (zn − 1) (3.12)

For example, for n = 105 = 3 · 5 · 7,

Φ105(z) =

Ψ15(z)Ψ3(z7)(z15 − 1)−1(z21 − 1)−1(z35 − 1)−1(z105 − 1)

As with algorithm SPS2, we first calculate half the terms
of Ψmk (zek) = Φp1p2...pk−1(z), those with degree at most

bφ(mk)
2
c. We then iteratively compute the product

Ψmk (zek) · · ·Ψm2(ze2) (3.13)

from left to right. When calculating the degree of Ψmj (zej)
we truncate to degree at most$

1

2

kY
i=j

(mi − φ(mi))ei

%
, (3.14)

half the degree of the product in (3.13). As our intermediate
product grows larger we have to truncate to larger degree.
The term Ψmi(zei), comprises 2i−1 − 1 subterms of Φn(z).
We compute Ψmk (zek) first because that contains 2k−1 sub-
terms, nearly half of the 2k we must multiply by to compute

Φn(z), so it is best that we multiply these subterms first
before the degree bound swells.

We leverage lemma 3 again when computing the product
(3.13). Suppose we have half the terms of

f(z) =
kY

i=j+1

Ψmi(zei),

for some j ≥ 2 and we want to compute

g(z) = f(z) ·Ψmj (zej),

towards the aim of obtaining Φn(z). As both f(z) and g(z)
have the (anti)palindromic property of lemma 3, when com-
puting g(z) we need to truncate to degree at most bD/2c,
where D is the lesser of

Dg =
kY

i=j−1

(mi − φ(mi))ei and φ(n),

the former of which is the degree of g(z), the latter being
the degree of Φn(z). Thus we apply lemma 3 to generate
the higher-degree terms of f(z) up to degree D. Once we
have the product (3.13) we then apply the palindromic prop-
erty again to generate the coefficients up to degree φ(n)/2,
provided we do not have them already. We then divide by
the subterms (1 − zn/pj) for 1 ≤ j ≤ k, truncating, again,
to degree φ(n)/2. We describe this approach in procedure
SPS3. We assume the ei and mi were precomputed.

For n a product of one or two primes, SPS3 executes the
same as in SPS2, and we see no gains. We only begin to
see improved performance for n a product of three primes.
In practise, we see the biggest improvement in performance
when computing Φn(z) with many distinct prime factors.
These are the cyclotomic polynomials which are most diffi-
cult to compute.

We do not have an intelligible analysis of the asymptotic
operation cost of algorithm SPS3. We try to answer, how-
ever, for what subterms of Φn(z) do we truncate to lower
degree using SPS3 versus SPS2? For the 2k−1 − 1 subterms
appearing in Ψmk (zek) we truncate to the same degree as in
SPS2. These are exactly the subterms for which SPS2 had
gains over SPS. For the k subterms of the form (1 − zn/p),
we truncate to degree φ(n)/2 in SPS3. Moreover, the degree
of the product in (3.13) is, by (3.12),

φ(n)− n+
X
p|n

n/p. (3.15)

Thus (3.13) potentially has degree greater than that of Φn(z),
provided

1/p1 + 1/p2 + · · ·+ 1/pk > 1. (3.16)

So, for some n there may exist additional subterms for which
we do not have gains. For n = p1p2 · · · pk for which Φn(z)
is presently feasible to compute, however, it is seldom the
case that (3.16) holds. The smallest odd, squarefree n for
which (3.16) holds is n = 3, 234, 846, 615, the product of
the first nine odd primes. Thus for n a product of k < 9
distinct primes we have gains for all the remaining subterms.
In any case, we always truncate to a lower degree than in
procedure SPS2 when calculating Ψmi(zei) for k−8 < i < k.
As Ψmk (zek) · · ·Ψmk−7(zek−7) comprise 2k−1 − 2k−8 − 8, or

close to half of the 2k subterms.
Quantifying these gains is more difficult. Timings suggest,

however, that for n with 6 or more factors, computing Φn(z)

116

Procedure SPS3(n) : Second revision of algorithm SPS

Algorithm SPS3: Iterative Sparse Power Series

Input: n = p1p2 . . . pk, a squarefree product of k primes

Output: a(0), . . . , a(φ(n)
2

), the first half of the
coefficients of Φn(z)

1 a(0), a(1), a(2), . . . , a(φ(n)/2)←− 1, 0, 0, . . . , 0
2 Df ←− 0, Dg ←− mk − φ(mk), D ←− min(Dg, φ(n))
3 for j = k down to 2 do

// × by Ψmj (zej); truncate to degree bD/2c
4 for d|mj such that d < mj do
5 if µ(n

d
) = −1 then

6 for i = D down to d by −1 do
7 a(i)←− a(i)− a(i− d)

8 else
9 for i = d to D do

10 a(i)←− a(i) + a(i− d)

11 Df ←− Dg
12 if j > 2 then
13 Dg ←− Dg + (mj+1 − φ(mj+1))ej+1

14 D ←− min(Dg, φ(n))

15 else D ←− φ(n)
// Use lemma 3 to get higher-degree terms

16 for i←− bDf/2c+ 1 to bD/2c do
17 a(i)←− (−1)Df a(Df − i)

// ÷ by (1− zn/pj); truncate to degree φ(n)/2
18 for j = 1 to k do
19 for i = n/pj to φ(n)/2 do
20 a(i)←− a(i) + a(i− n/pj)

return a(0), a(1), . . . , a(φ(n)/2)

using SPS3 is between 3 and 5 times faster than SPS2 (see
section 4). The speed-up is typically larger for n with more
prime factors.

3.4 Calculating Φn(z) and Ψn(z) recursively.
Algorithm SPS3 depended on the identity (3.12), which

describes Φn(z) in terms of a product of inverse cyclotomic
polynomials of decreasing order and index. We derive a sim-
ilar expression for Ψn(z). Let mi and ei be as defined in
section 3.3, and again let n = p1p2 · · · pk be a product of
k distinct odd primes where p1 < p2 < . . . pk. Again by
repeated application of lemma 1,

Ψn(z) = Φmk (zek)Ψmk (zek−1),

= Φmk (zek)Φmk−1(zek−1)Ψmk−1(zek−2),

. . .

= Φmk (zek) · · ·Φm1(ze1)Ψm1(ze1).

(3.17)

As m1 = 1 and Ψ1(z) = 1, we thus have that

Ψn(z) =
kY
j=1

Φmj (zej). (3.18)

(3.12) and (3.18) suggest a recursive method of computing
Φn(z). Consider the example of Φn(z), for n = 1155 =
3 · 5 · 7 · 11. To obtain the coefficients of Φ1105(z), procedure

SPS3 constructs the product

Ψ105(z)Ψ15(z11)Ψ3(z77)(1− z385)−1·
· (1− z231)−1(1− z165)−1(1− z105)−1(1− z1155) (3.19)

from left to right. However, in light of (3.18), we know
this method computes Ψ105(z) in a wasteful manner. We
can treat Ψ105(z) as a product of cyclotomic polynomials of
smaller index:

Ψ105(z) = Φ15(z)Φ5(z7)Φ1(z35).

One could apply (3.12) yet again, now to Φ15(z), giving us

Φ15(z) = Ψ5(z)(1− z5)−1(1− z3)−1(1− z15).

Upon computing Ψ105(z), we can break the next term of
(3.19), Ψ15(z11) into smaller products in a similar fashion.
We effectively compute Φn(z) by recursion into the factors
of n. We call this approach the recursive sparse power series
method, and we describe our implemetation in procedure
SPS4.

SPS4 effectively takes a product of cyclotomic polynomi-
als f(z), and multiplies by either Φm(ze) (or Ψm(ze)), by
recursion described above. If we are to multiply by Ψm(ze),
upon completion of our last recursive call, we are finished
(line 8 of SPS4). This is because Ψm(ze) is exactly a prod-
uct of cyclotomic polynomials by (3.18). If, however, we
are to multiply by Φm(ze), once we have completed our last
recursive call, we need to divide and multiply by some ad-
ditional subterms (lines 10 and 13), as is necessary by the
identity (3.13).

Obtaining the degree bound in the recursive SPS method
is not as immediate as in the previous SPS algorithms. In
the iterative SPS our algorithm produces a sequence of in-
termediate polynomials. With the possible exception that
the output polynomial Φn(z), these polynomials are in or-
der of increasing degree. In the recursive SPS, however, we
no longer have this monotonic property.

The difference between the degree bound in the iterative
SPS and the recursive SPS, is that in the former we truncate
to the least degree of two polynomials, whereas in the recur-
sive sparse power series case, we may bound by the least
degree of many polynomials. Moreover, we need to know
what degree to bound to at each level of recursion. Proce-
dure SPS4 has an additional parameter, D, which serves as
a bound on the degree.

As before, let f(z) be a product of cyclotomic polynomials.
Let Df be the degree of f(z) and suppose, while we are
in some intermediate step of the computation of Φn(z) or
Ψn(z), that we have the first bDf/2c+ 1 terms of f(z), and
we want next to compute the terms of

g(z) = f(z) · Φm(ze) (or f(z) · Φm(ze)), (3.20)

up to degree bD/2c, for some D ∈ N. D is effectively the
degree of some product of cyclotomic polynomials we will
eventually obtain later at some previous level of recursion.
If we let Dg be the degree of g(z), then when computing g(z)
from f(z) we need only compute terms up to bD∗/2c, where
D∗ = min(D,Dg) (line 3). Thus when we recurse in SPS4,
if Dg < D we lower the degree bound from D to Dg.

To guarantee that we can obtain higher-degree terms when-
ever necessary we impose the following rule: If SPS4 is given
f(z) and is to output g(z), we require that f(z) is truncated
to degree bD′/2c on input, where D′ = min(D,Df), and

117

Procedure SPS4(m, e, λ, Df , D, a) : Multiply a prod-
uct of cylotomic polynomials by Φm(ze) or Ψm(ze)

SPS4: A Recursive Sparse Power Series Algorithm.
Input:

• m, a positive, squarefree odd integer; λ, a boolean;
D ∈ Z, a bound on the degree
• Df , the degree of f(z), a product of cyclotomic

polynomials partially stored in array a. Df is passed
by value.
• An array of integers a = [a(0), a(1), . . .], for which,

given f(z), a(0),a(1), . . . , a(bD′/2c) are the first
bD′/2c+ 1 coefficients of f , where D′ = min(Df , D).
a is passed by reference.

Result:
If λ is true, we compute g(z) = f(z)Φm(ze), otherwise,
we compute g(z) = f(z)Ψm(ze). In either case we
truncate the result to degree bD∗/2c, where
D∗ = min(D,Dg). We write the coefficients of g to
array a, and return the degree of g, Dg.

1 if λ then Df ←− D + φ(m)e
2 else Df ←− D + (m− φ(m))e

3 D∗ ←− min(Dg, D) // D∗ is our new degree bound

4 e∗ ←− e, m∗ ←− m, D∗ ←− D

5 while m∗ > 1 do
6 p←− (largest prime divisor of m∗), m∗ ←− m/p
7 Df ←− SPS4(m∗, e∗, not λ, Df , D

∗, a), e∗ ←− e∗p
8 if not λ then // We have multiplied by Ψm(ze)

return Dg

// Get higher degree terms as needed

9 for bDf/2c+ 1 to bD∗/2c do a(i)←− (−1)Df a(Df − i)

// Divide by (1− zme/p) for p|m
10 for each prime p|m do
11 for i = (me/p) to bD∗/2c do
12 a(i)←− a(i) + a(i−me/p)

// multiply by 1− zme
13 for i = bD∗/2c down to d do
14 a(i)←− a(i)− a(i−me)

return Dg

that g(z) is truncated to degree bD∗/2c on output. Note
that the degree bound on g(z) is always at least the bound
on f(z); it will only increase over the computation of Φn(z).

To calculate the first half of the coefficients of Φn(z), one
would merely set

(a(0), a(1), a(2), . . . , a(φ(n)/2) = (1, 0, 0, . . . , 0)

and call SPS4(n,1,true,0,φ(n), a)). Similarly, to calculate the
first half of Ψn(z) we would call SPS4(n,1,false,0,n−φ(n),a).

3.4.1 Implementing the recursive SPS algorithm
In procedure SPS4 we often need the prime divisors of

input m. It is obviously wasteful to factor m every time

we recurse. To compute Φn(z) or Ψn(z) for squarefree n,
we first precompute the factorization of n and store it in a
global array P = [p1, p2, . . . , pk]. Upon calling SPS4, every
subsequent recursive call will multiply by some (inverse) cy-
clotomic polynomial of index m|n. Our implementation of
the recursive sparse power series algorithm has an additional
argument, B = [b1, b2, . . . , bk], a series of bits, that, given P ,
gives us the factorization of m. We set bi to 1 if pi divides
m, and zero otherwise. For all tractable cases, B can fit in
two bytes and in most practical cases, one byte.

Thus, in the while loop on line 5 in SPS4, we take a copy
of B, call it B∗, and scan it for nonzero bits. Each time we
find a nonzero bit we set that bit to zero, and pass B∗ by
value to the recursive call occuring on line 7 of procedure
SPS4. We continue in this fashion until all the bits of B∗

are set to zero. We similarly scan the bits of B again to
later obtain the prime divisors of n, as is needed on line 10
of procedure SPS4.

We find that the recursive SPS is slightly faster than the it-
erative SPS; however, this improvement is not nearly as sub-
stantial as was the iterative SPS over prior versions. While
the degree bound computing Φn(z) with the recursive SPS
is always less than or equal to that using the iterative SPS,
the recursive structure of the program results in additional
overhead. We could program the recursive SPS iteratively;
however, we would effectively have to create our own stack
to mimic recursion.

4. PERFORMANCE AND TIMINGS
We first provide a visual comparison of the SPS algorithms

computing explicit examples of Φn(z). Figures 1 and 2 show
how the degree bound grows in algorithms SPS1-4 over the
computation of Φn(z) for

n = 43730115 = 3 · 5 · 11 · 13 · 19 · 29 · 37 and

n = 3234846615 = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29.

respectively. In both figures, the horizontal axis represents
how many subterms we have in our intermediate product. As
n = 43730115 has 7 unique prime divisors, there are some
27 − 1 = 127 intermediate products of subterms produced
over the computation, excluding the final result Φn(z). As
the computation of Φn(z) progresses we traverse from left to
right in figures 1 and 2, and the degree bound increases.

We should note that in SPS2-4, the degree bound in each
is at most the degree bound of its predecessor. In figure 1,
we associate the darkest green region with SPS4; the two
darkest green regions with SPS3; the three darkest green
regions with SPS2; and all four green areas represent the
degree bound for SPS. The height of the regions associated
with a version of the SPS algorithm represents its degree
bound at that stage of the computation. Figure 2, in red,
should be interpreted similarly. In the case of SPS the degree
bound is always the constant φ(n)/2.

We think of the area of the regions in figure 1 associated
with a version of the SPS algorithm as a heuristic measure
of its time cost. One could think of the savings of SPS4 over
SPS3, for instance, as the area of the second darkest green
region. The area of the three darker green regions is slightly
over half the area of all four. As such, we expect that SPS2
would take roughly half as much time as SPS. Moreover, by
this measure we expect that SPS3 should be considerably
faster than SPS2, and SPS4 should be marginally faster than
SPS3. This is comparable with our timings in table 1. The

118

Figure 1: Growth of the degree bound over the com-
putation of Φ43730115(z) using SPS1-4

degree bounds in figure 2 show a similar, albeit more clearly
defined shape.

We timed our implementations on a system with a 2.67GHz
Intel Core i7 quad-core processor and 6 GB of memory.
All of our aglorithms are implemented in C and are single-
threaded. Here we time our 64-bit precision implementa-
tions of procedures SPS1-4, each of which check for integer
overflow using inline assembly. Our implementation of al-
gorithm 1 calculates Φn(z) modulo two 32-bit primes and
reconstructs Φn(z) by Chinese remaindering.

Table 1: Time to calculate Φn(z) (in seconds*)
algorithm

n FFT SPS SPS2 SPS3 SPS4
255255 0.40 0.00 0.00 0.00 0.00

1181895 1.76 0.01 0.00 0.00 0.00
4849845 7.74 0.12 0.06 0.02 0.01

37182145 142.37 1.75 0.95 0.23 0.19
43730115 140.62 1.69 0.93 0.23 0.19

111546435 295.19 6.94 3.88 1.45 0.94
1078282205 - 105.61 58.25 12.34 9.29
3234846615 - 432.28 244.44 81.32 49.18

*times are rounded to the nearest hundredth of a second

As the number of distinct prime factors of n plays a signif-
icant role in the cost of computing Φn(z), we list the factors
of n (table 2) and A(n) (table 3) for n appearing in table 1.

For the SPS and SPS4 algorithms, we have implemented,
in addition to the 64-bit version, 8-bit, 32-bit, and 128-bit
precision versions. We do not use GMP multiprecision in-
teger arithmetic. It was easy to implement multiprecision
arithmetic for our specific purpose as we only add and sub-
tract coefficients in the SPS algorithms. We also have a
version of SPS and SPS4 which calculates images of Φn(z)
modulo 32-bit primes, writes the images to the harddisk, and
then reconstruct Φn(z) from the images by way of Chinese
remaindering. This implementation is most useful for Φn(z)

Figure 2: Growth of the degree bound over the com-
putation of Φ3234846615(z) using SPS1-4

Table 2: Factorization of n, for n from table 1
n factorization of n

255255 3 · 5 · 7 · 11 · 13 · 17
1181895 3 · 5 · 11 · 13 · 19 · 29
4849845 3 · 5 · 7 · 11 · 13 · 17 · 19

37182145 5 · 7 · 11 · 13 · 17 · 19 · 23
43730115 3 · 5 · 11 · 13 · 19 · 29 · 37

111546435 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23
1078282205 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29
3234846615 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29

Table 3: A(n) for n from table 1
n height A(n)

255255 532
1181895 14102773
4849845 669606

37182145 2286541988726
43730115 862550638890874931

111546435 1558645698271916
1078282205 8161018310
3234846615 2888582082500892851

which we cannot otherwise fit in main memory.

5. CURRENT WORK
We have implemented the algorithms in this paper to cre-

ate a library of data on the heights and lengths of cyclotomic
polynomials. This data is available at

http://www.cecm.sfu.ca/~ada26/cyclotomic/

A 64-bit implementation of the SPS4 algorithm, written in
C but without overflow check, is also made available at the
website.

We aim to compute the coefficients of Φn(z), for

n = 3 · 5 · 11 · 13 · 19 · 29 · 37 · 43 · 53 = 99660932085.

119

We expect that this cyclotomic polynomial will have very
large height. We have previously verified that

A(n
53

) = 64540997036010911566826446181523888971563 and

A(n
43

) = 67075962666923019823602030663153118803367

are the smallest two examples of k such that A(k) > k4.
Both A(n

53
) and A(n

43
) are greater than 2135.

We previously attempted to compute Φn(z) using an im-
plementation of the SPS algorithm. We computed images
of Φn(z) modulo 32-bit primes. Storing half of Φn(z) to
32-bit precision takes roughly 76 GB of space. We do not
have enough RAM to store these images in main memory,
so we read and wrote intermediate results to the hard disk.
This proved to be slow, as each image required us to make
29 = 512 passes over the hard disk. We computed four im-
ages of Φn(z), after which the hard disk crashed.

In light of the development of the new variants of the SPS
algorithms, we have a new approach to compute Φn(z). We
want to minimize hard disk reads and writes. This is because
performing the computation on the harddisk is appreciably
slower and potentially more error-prone than in memory. We
are limited to 16 GB of RAM. We expect that A(n) < 2320;
that is, 320-bit precision will be sufficient to construct Φn(z).
Towards our aim, let

f(z) = Ψm9(z)Ψm8(z53) (5.1)

where m9 = n
53

= 1, 880, 394, 945 and
m8 = n

43·53
= 43, 730, 115. By (3.11), we have

Φn(z) = f(z)(1− zn/53)−1(1− zn/43)−1Φm8(z43·53). (5.2)

f(z) has degree less than 2.55 · 109. We can compute
images of f(z) modulo 64-bit primes using roughly 10 GB of
RAM, then extract f(z) from its images by way of Chinese
remaindering. After which we will compute the coefficients
of the truncated power series

g(z) =

φ(n)/2X
i=0

c(i)zi,

= f(z)(1− zn/53)−1(1− zn/43)−1 mod zφ(n)/2+1.

(5.3)

This will entail two passes over the hard disk, one per di-
vision by 1 − zn/53 or 1 − zn/43. We produce the coeffi-
cients of g(z) in order of ascending degree during the second
pass of the harddisk. Storing g(z) or Φn(z) at this precision
up to degree φ(n)/2 requires more than 750 GB of storage.
We can reorganize the terms of g(z) in a manner which al-
lows us to compute the coefficients of Φn(z) in memory. For
0 ≤ j < 43 · 53 = 2279, let

gj(z) =
X

0≤i·2279+j≤φ(n)/2

c(i)zi (5.4)

We can construct the gj(z) as we sequentially produce the
terms of g(z). We have that

g(z) =
2278X
j=0

zj · gj(z2279),

and thus by (5.2),

Φn(z) ≡
2278X
j=0

zj · gj(z2279)Φm8(z2279) (mod zφ(n)/2+1).

Thus to produce the first half of the coefficients of Φn(z), it
suffices to compute gj(z) · Φm8(z), for 0 ≤ j < 2279. Each
polynomial has degree less than 2.6 · 106, and can be com-
puted to 320-bit precision with less than a GB of memory.

6. REFERENCES
[1] A. Arnold and M. Monagan. Calculating cyclotomic

polynomials. Submitted to Mathematics of
Computation, available at
http://www.cecm.sfu.ca/~ada26/cyclotomic/.

[2] P. Erdős. On the coefficients of the cyclotomic
polynomial. Bull. Amer. Math. Soc., 52:179–184, 1946.

[3] K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms
for Computer Algebra. Kluwer Academic Publishers,
Boston, 1992.

[4] Y. Koshiba. On the calculations of the coefficients of
the cyclotomic polynomials. Rep. Fac. Sci. Kagoshima
Univ., (31):31–44, 1998.

[5] Y. Koshiba. On the calculations of the coefficients of
the cyclotomic polynomials. II. Rep. Fac. Sci.
Kagoshima Univ., (33):55–59, 2000.

[6] T.D. Noe. Personal communication.

120

