
The Electronic Journal of Mathematics and Technology, Volume X, Number Y, ISSN 1933-2823

Teaching Commutative Algebra and Algebraic Geometry
using Computer Algebra Systems

Michael Monagan
mmonagan@cecm.sfu.ca

Department of Mathematics, Simon Fraser University
Burnaby, BC, V5A 1S6,

CANADA

Abstract

In teaching a mathematics course in commutative algebra and algebraic geometry, we would
like to equip students with a computer algebra system so they can solve problems that they might
encounter in their own research or in industry. The purpose of this paper is to firstly describe how
we use computer algebra in the course that we teach and secondly, to share with the reader a list of
applications which make use of the computer that we have found to be suitable for such a course.

1 Introduction
We have been teaching a mathematics course in Commutative Algebra and Algebraic Geometry at Si-
mon Fraser University since 2006. We use Maple for Gröbner bases computations and applications.
The course has been offered in 2006, 2008, 2010, and 2012 to senior undergraduate students, mostly
mathematics majors, and first year graduate students. The course ran as a 12 week course with two 2
hour lecture periods per week. Enrollment in the course is shown in the following table.

major 2006 2008 2010 2012
mathematics 5 15 11 27
math & computing 0 2 2 2
other 0 4 0 1
graduate 5 6 4 1
total 10 27 21 31

In 2012 we formalized the course as MATH 441 Commutative Algebra and Algebraic Geometry.
We require students to have taken a first course in abstract algebra (in groups or rings and fields)
as a prerequisite, so that students have learned to write proofs. The text we use is Cox, Little, and
O’Shea’s Ideals, Varieties and Algorithms from [5]. This text is unique in its attempt
to integrate the use of computer algebra into the material as well as into the exercises. In addition
to posing exercises that require the use of the computer, the authors develop algorithmic solutions to
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problems in commutative algebra and algebraic geometry in the material. As the authors note, this
brings a classical, constructive approach to the subject, which makes the material more accessible to
undergraduate mathematics students.

The development and application of Gröbner bases in the text plays an analogous role that the
development and application of Gaussian elimination to row-reduce matrices to row Echelone form
plays in a first course in Linear Algebra. Would you teach Linear Algebra without teaching Gaussian
elimination? Probably not. You would not only lose out on concrete applications but you would have
to find alternative proofs to some theorems.

In this paper we wish to share with the reader how we integrate computer algebra into the course.
This requires a careful choice of a textbook which we will consider in more detail in section 2. It also
requires selecting a computer algebra system. We use Maple though other computer algebra systems
with a Gröbner basis facility and graphics facilities could be used.

The main contribution we make in this paper is to describe three applications problems that we
have found are both genuine applications and provide useful training for the student. One is from our
own research in [16] and the other two are from the work of others. These are presented in section 3.

To end the introduction we provide some information about the level of Maple training that we
provide and assessment. We maintain a website for the course where we put assignments and supple-
mentary materials, primarily Maple worksheets and papers at MATH 441.

1.1 Maple Training
Our university has a campus wide site license for Maple. Maple is available on desktop computers in
assignment labs, the library, and on our department’s computers and is thus generally accessible. Our
mathematics majors have already used Maple in a previous second year course. For students who have
not used Maple before, or who would like a refresher, we give them a one hour hands-on tutorial in a
lab setting and point them to Maple worksheet which has examples of all the Maple commands that
we will use in the course. Subsequent Maple training is provided by in-class demos and handouts of
Maple worksheets. We have found that this is sufficient Maple training for most students. However,
having said that, students do get stuck with Maple. Maple problems are resolved after class or in
office hours and require the instructor to be able to examine a student’s Maple worksheet. We found
that Email is not a good medium for resolving problems with Maple. I encourage students to bring
their Maple worksheet to my office on a memory stick where I can open it and work with the student.

1.2 Assessment
Undergraduate students were asked to complete six assignments worth 10% of the course grade each
and a final exam worth 40% of the course grade. About 25% of the assignment problems are done in
Maple. The rest are traditional pencil and paper exercises including proofs. Graduate students were
also given a course project and approximately one additional exercise per assignment. Because we
wanted to have problems which required computation on the final exam, we ran the final exam as a 24
hour take home final. Students had access to the textbook, their notes, and other course materials for
the final exam. The final exam consisted of 10 questions, Maple was needed for 31

3
questions worth

36% of the marks and could be used to check answers to 2 questions.
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2 Course Content
In constructing the course outline, faculty listed the following topics as possible topics for a first
course in commutative algebra and algebraic geometry.

• affine varieties and ideals in polynomial rings,
• the Hilbert basis theorem, Hilbert’s Nullstellensatz,
• the elimination theorem, solving equations, and resultants,
• Zariski topology, singular points, genus of a curve,
• irreducible varieties, prime ideals, maximal ideals,
• quotient rings and rational maps,
• dimension, Bezout’s theorem,
• projective varieties.
• Gröbner bases, Buchberger’s algorithm, and applications.

We think students taking a course in commutative algebra and algebraic geometry should be equipped
to do computations in the area, hence, Gröbner bases need to be covered. Whether the student goes
on to grad school to do research in this area, or gets a job in industry, he or she will probably need
to do computations at some point. Even if the student becomes a teacher, being able to use a tool
like Maple will be invaluable, even if it is only to graph surfaces and solve equations. We provide
instruction for doing the following in Maple. The main capabilities of Maple that we use include

• tools for graphing curves and surfaces,
• factoring polynomials and computing roots of polynomials,
• the Groebner package for computing Gröbner bases and related operations,
• the PolynomialIdeals package for ideal theoretic computations, e.g., computing the ideal

quotient, intersection, and computing the prime components of the radical of an ideal.

2.1 Textbooks
The number of textbooks which cover Gröbner bases is steadily increasing. Early texts were mostly
at the graduate level. They focused on developing the theory of Gröbner bases, describing Buch-
berber’s algorithm for computing them, and showing applications in various areas of mathematics.
These include Adams and Loustaunau [1], Becker and Weispfenning [2], Cox, Little, and O’Shea
[6], Schenck [12], and Vasconcelos [15]. These texts are not suitable for an undergraduate course in
commutative algebra and algebraic geometry. The material is either too advanced or the focus is too
heavy on computation.

There are now several undergraduate texts in algebra which include substantial introductions to
Gröbner bases such as Reilly [11], Fraleigh [8], and Lauritzen [10]. But these texts do not integrate the
application of Gröbner bases into the material in a substantive way and there are few, if any computer
based exercises. We need a commutative algebra and algebraic geometry text which integrates the
use of Gröbner bases and the use of the computer. The only text that we know of that achieves this is
Cox, Little and O’Shea’s Ideals, Varieties and Algorithms. So this is the text that we use.
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2.2 Gröbner bases
For the reader who is not familiar with Gröbner bases we develop an example to illustrate some
applications. Gröbner bases were discovered by Bruno Buchberger in [4]. He named them after
his Ph.D. supervisor. Buchberger gave an algorithm for computing them which is now known as
Buchberger’s algorithm. Consider the following system of 3 equations in 3 unknowns x, y, z over R.

S = {x2 + y2 + z2 = 1, xy + yz + zx = 1, xyz = 1}.

Let I be the corresponding ideal, that is,

I = 〈x2 + y2 + z2 − 1, xy + yz + zx− 1, xyz − 1〉.

A Gröbner basis for I is a basis for I that depends on how we order monomials. The simplest
monomial ordering is lexicographical or alphabetical order. In lexicographical order, with x > y > z,
the terms of the polynomial

f = xyz2 + xy2z + x2y

are ordered as x2y > xy2z > xyz2 corresponding to the alphabetical ordering xxy < xyyz < xyzz
and hence we would write the polynomial as

f = x2y + xy2z + xyz2

showing x2y as the leading term of f . There are many characterizations for a Gröbner basis for a
given ideal I and monomial ordering >. The following one captures a key property of Gröbner bases.

Definition 1 Let I = 〈f1, f2, . . . , fs〉 be an ideal in a polynomial ring k[x1, x2, . . . , xn] for some field
k. Let G = {g1, g2, . . . , gt} be a set of polynomials and let < be any monomial ordering. Then G is a
Gröbner basis for I wrt < if the remainder of f divided by G is 0 if and only if f ∈ I .

Note, the monomial ordering fixes the leading terms of the divisor and dividend in the division algo-
rithm and the definition automatically forces G to be a basis for I . The unique reduced Gröbner basis
for our example I is given by

G = { x + y − z5 − z4 + z3 + 3 z2 + z + 1,
y2 − yz5 − yz4 + yz3 + 3 yz2 + yz + y − z5 + z3 + 2 z2 − z + 2,
z6 − z4 − 2 z3 + z2 − 2 z + 1}

where the leading terms x, y2, and z6 are highlighted in blue. It was obtained by imposing that each
polynomial g ∈ G additionally satisfies (i) it is monic and (ii) no term in g is divisible by the leading
terms of the other polynomials in G.

A Maple worksheet showing how to compute this Gröbner basis is available at Groebner.mw
along with a .pdf version at Groebner.pdf. Now the zeroes of the polynomials in G are the same as
those of the original system (the main application of Gröbner bases). Notice how the polynomials in
G progressively eliminate variables and tell us how to solve the original polynomial system by back
substitution. This follows more generally from the following elimination theorem.

Theorem 2 If > is lexicographical order with x1>x2>. . .>xn and G is a Gröbner basis for I wrt >
then G∩k[xi, xi+1, . . . xn] is a Gröbner basis for (the ideal) I∩k[xi, xi+1, . . . xn] wrt > for 1 ≤ i ≤ n.
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3 Applications
It is easy to give the students “routine” exercises in which they need to compute a Gröbner basis
and do something with it. What we really need is applications which force the student do more
than just follow a recipe. Three applications that we have found to be valuable are described in this
section. We spend the last two weeks focused on applications. Many of our students have said in
the course evaluation that these problems were the most interesting and useful part of the course.
Another valuable aspect of these applications is that the student is asked to read a research paper and,
by implementing some of the ideas, be forced to understand the results in the paper, and secondly, by
reproducing some of the computational results, be able to check results in the paper.

3.1 Circle Packing Problems
Consider the problem of putting n points in the unit square maximizing their separating distance m.
Figure 1 shows the optimal packing for n = 6 points P1, P2, . . . , P6. This problem is equivalent to
the problem of packing n disks in the unit square maximizing their radius r. Again, see Figure 1. The
relationship between the two is r = m

2(m+1)
.

Figure 1: Optimal packing for n = 6 circles in the unit square.

For n = 10, the problem has a long history with optimal solution being quite difficult to find.
Figure 2 shows a sequence of successively better packings for n = 10. The last one is the optimal
one. It was found by Würtz, Monagan and Peikert in [16]. Note, the bottom left circle does not touch
the x axis which is indicated by the lack of a bold dash.

For our course we assume we are given a packing and we want to determine r and m. That is, we
are given which disks touch the boundary of the unit square, which disks touch each other, and which
disks are free, and we want to determine r or m. We will determine m using the inner square rather
than r using the outer square because the equations are simpler.
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m = 0.41953 m = 0.42013 m = 0.42118 m = 0.42129

Figure 2: Packings for n = 10 circles. The last is the optimal one.

We outline the procedure for n = 6. Referring back to Figure 1, given co-ordinates (xi, yi) for the
n points Pi, we have simple boundary conditions, e.g. x1 = y1 = 0. For each two disks that touch we
apply Pythagoras’ theorem to obtain e.g. (x6 − x1)

2 + (y6 − y1)
2 = m2. Next we can obtain simpler

relations from any symmetry present in the packing, e.g. y3 = y5. We construct the ideal

I = 〈x1, y1, (x6 − x1)
2 + (y6 − y1)

2 −m2, y3 − y5, . . . 〉

and compute I∩Q[m] using the elimination theorem using the appropriate Gröbner basis computation.
This we hope will give us the minimal polynomial for m.

Many things can go wrong. First we can easily input equations incorrectly for larger n. In this
regard, it is helpful if the student is instructed to write a little Maple procedure P (a, b) which generates
the equation (xb − xa)

2 + (yb − ya)
2 − m2 automatically. Second is degeneracy. We may think,

since there are 13 unknowns x1, ..., x6, y1, ..., y6 and m, that any 13 equations will do. However,
this is usually not the case in real applications. For example, when we first solved this problem, we
constructed the following system which has a degeneracy.

{x1 = 0, y1 = 0, x2 = 1, y2 = 0, x3 = 1, x5 = 0, y4 = 1, y3 = y5, x4 = 1/2, x6 = 1/2,

(x6 − x1)
2 + (y6 − y1)

2 = m2, (x6 − x5)
2 + (y6 − y5)

2 = m2, (x4 − x5)
2 + (y4 − y5)

2 = m2}

Using Gröbner bases to eliminate xi, yi we obtain 144m4 − 232m2 + 65 = 0. This polynomial
factors as 4m2 − 5 = 0 and 36m2 − 13 = 0. The latter is the correct solution with m = 0.601. The
former with m = 1.118 is a degenerate solution which arises because it allows P2 to be on top of P3,
P5 to be on top of P1 and P6 to be on top of P4.

A Maple worksheet for the computations that illustrates the degenerate case mentioned here may
be found at Scattering.mw. A .pdf file for the worksheet may be found at Scattering.pdf.

Dealing with and explaining degeneracy is a very good exercise for the student. Another typical
degeneracy is m = 0. It is often useful to impose a priori that m 6= 0. How do we do this alge-
braically? We include 1−mt = 0 for a dummy variable t as an equation. In this way students learns
the value of the “tricks of the trade”.

For the assignment we ask the students to compute the minimal polynomial for four packings for
n = 10 from [16] shown in Figure 2. Here it becomes necessary that the student identify symmetry
in the packing as otherwise the Gröbner basis computation will take a very long time.
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Another thing that can go wrong is that in real papers, there are errors and students need to learn
to detect and correct them. In particular, in the third packing shown in Figure 2, the middle two disks
should be touching each other.

3.2 Automatic Theorem Proving in Geometry
Chapter 6 of [5] is devoted to presenting two main applications. The first is the use of Gröbner bases
in robotics. The second is the use of Gröbner bases to proving theorems in geometry. Of these two,
we prefer the application to theorem proving. Not only is it the more interesting, but it is also richer
in terms of application problems that students can reasonably attempt. For more information about
proving theorems in algebraic geometry we refer the reader to [3, 14, 13] for the 2006, 2008, and
2010 proceedings of Automated Deduction in Geometry. An early reference is Kuntzler and Stifter
[9]. To illustrate how this is done we follow the first example from Chapter 6 of [5]. Figure 3 shows
a parallelogram ABCD.

u
A=(0,0)

u
B = (u1, 0)

uC = (u2, u3) uD = (x1, y1)

uN = (x2, y2)
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Figure 3: A parallelogram ABCD.

Let N be the intersection of the diagonal bisectors AD and BC. The theorem says that N is the
midpoint of AD and BC. To prove the theorem we fix co-ordinates of the points A, B, C, D and N
and write down equations. To simplify the equations, and the resulting Gröbner basis computation,
we deliberately place the parallelogram with A at origin and B on x axis so that three co-ordinates
are 0. The parameters u1, u2, u3 complete the specification of the parallelogram. The variables x1, y1

and x2, y2 are fixed by the parameters, that is, they are functions of them that we will solve for. Thus
there are 4 unknowns so we need 4 equations h1 = 0, h2 = 0, h3 = 0, h4 = 0 which can be obtained
by asserting that (i) AC is parallel to BD, (ii) AB is parallel to CD, and N is at the the intersection
of AC and BD which we impose by requiring (iii) N is on the line segment AD and (iv) N is on the
line segment BC.

Now the theorem says that N is midpoint of AD and BC. How do we encode this? The text
suggests requiring the lengths of AN and ND to be equal and the lengths BN and NC to be equal.
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To avoid square roots, we work with the square of the lengths. This leads to two quadratic equations
x2

2 + y2
2 = (x1 − x2)

2 + (y1 − y2)
2 and (x2 − u2)

2 + (y2 − u3)
2 = (x2 − u1)

2 + y2
2 . One of the

things we want to teach the student is that linear equations lead to much simpler computations than
quadratic equations. So a better way to impose that N is at the midpoint of AD is to require that the
vectors N − A = (D − A)/2. From this we obtain two linear equations (x2 − 0) = (x1 − 0)/2 and
(y2− 0) = (y1− 0)/2. We express the theorem as two polynomial consequences g1 = x2− x1/2 and
g2 = y2 − y1/2.

To prove the theorem, we could solve the four equations h1 = 0, h2 = 0, h3 = 0, h4 = 0 to
obtain solutions for x1, y1, x2, y2 as functions of u1, u2, u3 and then check that g1(x1, x2, y1, y2) = 0
and g2(x1, x2, x3, x4) = 0. But explicitly solving equations may lead to nasty radicals, though not
for this example. We proceed as follows. We want to check that g1 and g2 vanish on the variety
V(h1, h2, h3, h4). Over C this is equivalent to checking if g1, g2 are in the radical of the ideal I =
〈h1, h2, h3, h4〉. Or is it? Here is a key point. We want to consider the ideal I in the polynomial ring
R(u1, u2, u3)[x1, y1, x2, y2] and not in the polynomial ring R[u1, u2, u3, x1, y1, x2, y2] because if we
use the former we have the ideal 〈u3x2 − u1u3〉 = 〈x2 − u1〉 which corresponds to canceling out u3

in the equation u3x2 = u3u1 which we want to allow.
How do we test if g1, g2 ∈

√
I , the radical of I? Note, if we can show that g1, g2 ∈ I then

this implies g1, g2 ∈
√

I but the reverse is not necessarily true. The procedure to test for radical
membership is as follows. Let J = 〈I, 1− tg1〉 for a dummy variable t. Then g1 is in

√
I if and only

if J = 〈1〉 over R(u1, u2, u3)[x1, y1, x2, y2, t]. So it suffices to simply check that a reduced Gröbner
basis for J is {1}. Herein lies a trap for the student. If the student makes a mistake in the equations
such that I = 〈1〉, which is easy to do, then every polynomial g will be in the radical of 〈1〉! It is
better to first compute a Gröbner basis for I and look at it, to check that it is not {1}, then test if
g1, g2 ∈ I and if not, apply the radical membership test.

An obvious question is, which theorems in geometry can be solved automatically following the
procedure outlined. Another issue that we did not explore is that there are examples of geometric
theorems which are true over R (e.g. true in the plane) but not true over C. Our tests for ideal
membership and radical membership using Gröbner bases implicitly work over C.

A Maple worksheet of the parallelogram problem from CLO may be found at AutoGeo.mw. A
.pdf file for the worksheet may be found at AutoGeo.pdf.

3.3 Hilbert’s Nullstellensatz and Graph Coloring
Let G be a graph on n vertices and m edges. Recall that G is k-colorable if we can assign each
vertex in G to one of k colors in such a way that no two adjacent vertices have the same color. It
is well known that the problem is NP−complete for k ≥ 3 in general. The problem of testing if G
is k-colorable can be formulated as testing whether a polynomial system has a solution over C. For
example, consider the wheel graphs W3 and W4 shown in Figure 4.

Suppose k = 3 and we use colors red, green and blue. Observe that W3 is not 3-colorable because
vertices 0, 1, and 2 form a triangle and so require 3 distinct colors. Hence vertex 3 needs a 4’th color.
Graph W4 is 3-colorable; assign vertex 0 green, vertices 2 and 4 red, and vertices 1 and 3 blue as
shown in Figure 3.
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Figure 4: Wheel graphs W3 and W4.

The construction of the polynomial system is as follows. For each vertex v in G equate xk
v = 1.

This equation has k roots over C, namely the k roots of unity. The k roots of unity represent the
possible colors of the vertices. Thus the system

C = {xk
1 − 1 = 0, xk

2 − 1 = 0, . . . , xk
n − 1 = 0}

encodes all colorings of G with no edges. Now if u, v is an edge in G, we want to constrain G so that
vertices u and v have different colors. We do this by adding the equation xk

u−xk
v

xu−xv
= 0. Thus for W3 we

obtain the polynomial system

S = {x3
0 = 1, x3

1 = 1, x3
2 = 1, x3

3 = 1, x2
0 + x0x1 + x2

1 = 0, x2
0 + x0x2 + x2

2 = 0,

x2
0 + x0x3 + x2

3 = 0, x2
1 + x1x2 + x2

2 = 0, x2
1 + x1x3 + x2

3 = 0, x2
2 + x2x3 + x2

3 = 0}.
Thus we construct a system S with n + m equations in n unknowns such that G is k-colorable

if and only if S has solutions, that is, the variety V(S) is not empty over Cn. Equivalently, G is k-
colorable if and only if the ideal I = I(S) is not 〈1〉. It is now straight forward to compute a Gröbner
basis for I and check if 1 ∈ I .

In [7], de Loera, Lee, Malkin and Margulies develop an alternative approach based on the Nullstel-
lensatz. The Nullstellensatz says V(S) is not-empty over C⇐⇒ 1 ∈ I . Letting I = 〈f1, f2, ..., fn+m〉,
if 1 ∈ I then ∃ polynomials h1, h2, . . . hn+m ∈ Q[x0, x1, ..., xn] satisfying

1 = h1f1 + h2f2 + . . . hn+mfn+m. (1)

The idea of the method is to try to find the polynomials h1, h2, ..., hn+m satisfying (1) by trying
polynomials with unknown coefficients of total degree d = 1 then d = 2 then d = 3, etc., up to some
bound. Equating coefficients in x0, x1, ..., xn in (1) leads to a system of linear equations over Q. If
this system has a solution then G is not k-colorable and we say the polynomials h1, h2, ..., hn+m are
a certificate of the non-colorability of G.

Students can try this on familiar graphs e.g. the Petersen graph, a graph with 10 vertices and 15
edges, hence 25 equations to see how big d is. The smallest value of d for which a certificate exists
is a measure of the difficulty of the graph. The authors prove that instead of solving the linear system
over Q we can solve over the finite field Fp instead for any prime p which does not divide k. In
particular, to test for 3-colorability, we can work over F2 which greatly simplifies the arithmetic. But
more significantly, they discovered that the degree d of the certificates is often reduced significantly.
For W3 it is reduced from 4 to 1. This is lovely connection between algebra and graph theory, between
the Nullstellensatz and graph 3-colorability. Many students liked this application.

A Maple worksheet exploring these computations for W3 may be found at GraphCol.mw. A .pdf
file for the worksheet may be found at GraphCol.pdf.
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