
Integer Factorization and Computing Discrete

Logarithms in Maple

Aaron Bradord∗, Michael Monagan∗, Colin Percival∗

Department of Mathematics, Simon Fraser University,
8888 University Drive,

Burnaby, BC, Canada V5A 1S6.
anbradfo@sfu.ca, mmonagan@cecm.sfu.ca, cperciva@irmacs.sfu.ca

1 Introduction

As part of our MITACS research project at Simon Fraser University, we have
investigated algorithms for integer factorization and computing discrete loga-
rithms. We have implemented a quadratic sieve algorithm for integer factor-
ization in Maple to replace Maple’s implementation of the Morrison-Brillhart
continued fraction algorithm which was done by Gaston Gonnet in the early
1980’s. We have also implemented an indexed calculus algorithm for discrete
logarithms in GF(q) to replace Maple’s implementation of Shanks’ baby-step
giant-step algorithm, also done by Gaston Gonnet in the early 1980’s.

In this paper we describe the algorithms and our optimizations made to
them. We give some details of our Maple implementations and present some
initial timings. Since Maple is an interpreted language, see [7], there is room for
improvement of both implementations by coding critical parts of the algorithms
in C. For example, one of the bottle-necks of the indexed calculus algorithm is
finding and integers which are B-smooth. Let B be a set of primes. A positive
integer y is said to be B-smooth if its prime divisors are all in B. Typically B
might be the first 200 primes and y might be a 50 bit integer.

2 Integer Factorization

Starting from some very simple instructions — “make integer factorization faster
in Maple” — we have implemented the Quadratic Sieve factoring algorithm in
a combination of Maple and C (which is accessed via Maple’s capabilities for
external linking). In this section, we shall describe some the design decisions we
made, the reasoning behind them, and some of the optimizations we were able
to make which allowed us to improve performance.

∗This work was supported by the MITACS NCE of Canada.

1

2.1 Maple

The first design decisions we made resulted from the target of speeding up inte-
ger factorization in Maple. While most work in the field of integer factorization
has historically been centered around factoring integers which are as large as pos-
sible — usually involving hundreds of processors and several months — Maple
is typically used interactively and on a single processor, so we concluded that
obtaining good performance for inputs ranging from 50 to 100 digits (which, on
modern systems take time ranging from a few CPU-seconds to a couple of CPU-
days) was of far greater importance than reducing the time needed to factor a
150-digit input. In light of this, we decided to ignore the General Number Field
Sieve in favour of the Quadratic Sieve. While the Quadratic Sieve is asymp-
totically slower than the Number Field Sieve, the constants involved make the
Quadratic Sieve faster up to a break-even point of around 90–135 digits depend-
ing upon the implementations used, and even beyond this point the Quadratic
Sieve falls behind quite slowly.

Our second major design decision was inspired by the use of Maple as a ped-
agogical and research tool. The Quadratic Sieve factoring algorithm consists
of three major steps — sieving to find “relations”; filtering the list of relations
found to make it more manageable; and solving a large sparse linear system
modulo 2 — and all three of these steps are targets of active research. Con-
sequently, we decided to perform as much work as possible in Maple, and to
return the results of each step into Maple before passing it into the next step.
In this manner, we make it easier for students to examine the code in order
to learn how the Quadratic Sieve operates, and even more importantly make it
easier for researchers to “drop in” a replacement for one of the parts if they are
investigating potential improvements. Although Maple is generally significantly
slower than code written directly in C, we shall see later that since most time is
spent executing a relatively small amount of code, it is possible to obtain good
performance while only writing a small portion of the code in C.

2.2 The Sieve

While it is traditional to speak of the Quadratic Sieve, it is grammatically
more accurate to speak of a Quadratic Sieve, since there have been a series
of improvements made to the original concept. The original Quadratic Sieve
developed by Pomerance [10] in 1981, which factored an input N by searching
for values of x such that f(x) = (x +

⌊√
N

⌋
)2 − N is smooth, was quickly

replaced by the Multiple Polynomial Quadratic Sieve [11] (hereafter MPQS),
which takes a series of values a = q2 for primes q, solves b2 ≡ N (mod a), and
then searches for smooth values of f(x) = (ax + b)2 − N . This was revised
further by Alford and Pomerance [1] in the Self-Initializing Quadratic Sieve1

(hereafter SIQS) which takes values a of the form a = q0q1 . . . qr for appropriate

1The Self-Initializing Quadratic Sieve was also independently discovered by Peralta, who
called it the Hypercube Multiple Polynomial Quadratic Sieve.

2

qi and then searches for smooth values of f(x) = (ax+ bi)2 −N for bi equal to
the 2r non-trivially different2 square roots of N modulo a.

Whichever Quadratic Sieve is being used, the sieving takes a similar form.
An array of M bytes is first initialized to zero, then for each prime p less than
a bound B1 (known as the “prime bound”) modulo which N is a quadratic
residue, each position x in the array satisfying f(x) ≡ 0 (mod p) is increased by
log p. These locations are computed from the roots of f(x) modulo p — for each
root α, the values in positions α, α + p, α + 2p, . . . are adjusted. In SIQS, this
initialization cost — computing the roots of f(x) modulo each of the sieving
primes — is amortized over 2r sieving intervals (thus the “Self-Initializing” sieve
would more appropriately be called an “Amortized Initialization Costs” sieve).

In light of our design decision to perform as much computation as possi-
ble within Maple, and also in keeping with the general principle of using the
best available algorithms, we decided to use SIQS, performing the initialization
computations in Maple but sieving each “hypercube” in C.

We also apply the ubiquitous “large prime variation”, with either one or two
large primes, depending upon the size of integer to be factored: Rather than
requiring that f(x) factor completely over the primes less than B1, we permit
it to have one or two prime factors between B1 and a “large prime bound” B2.

2.3 Choosing hypercubes

The choice of the primes qi (and thus the values a) is subject to a number of
considerations:

1. In SIQS, as in MPQS, the value a should be approximately equal to√
8N/M , where M is the length of the sieving interval3. The further

a varies from this value, the larger the average value of f(x) will be at
points within the sieve, with the inevitable result that fewer of the points
within the sieve will be smooth.

2. Since SIQS amortizes the cost of sieve initialization over 2r sieving inter-
vals, larger values of r will reduce the time spent on initialization.

3. On the other hand, each prime q has the effect of reducing the frequency of
smooth values in the sieve. Since N is required to be a quadratic residue
modulo each q, there would normally be two values x mod q for which
x2 −N ≡ 0 (mod q); however, for b2 ≡ N (mod q) there will only be one
value of x mod q for which f(x)q−1 ≡ 0 (mod q).

4. Finally, SIQS can often find the same relation multiple times, which both
decreases the number of useful relations found and adds the additional
complexity of removing such duplicates. If a value 0 ≤ x <

√
2N satisfies

x2 −N ≡ 0 modulo both a = q0 . . . qr and a′ = q′0 . . . q
′
r, then the relation

2Since (−ax− b)2 = (ax + b)2, we can ignore half of the 2r+1 square roots of N modulo a;
this is usually performed by requiring that all the bi are congruent modulo q0.

3Note that some authors use a sieving interval of length 2M , i.e., from −M to M .

3

will be found twice (assuming that both values are taken for a during the
sieving). Naturally, this is almost impossible unless the sets {q0 . . . qr}
and {q′0 . . . q′r} intersect.

While Contini [5] recommends minimizing the number of duplicate relations
found by requiring that the sets {qi} differ by at least two primes, we adopt a
sharply different approach. Fixing q1 . . . qr, we allow q0 to take on, in increasing
order, the primes immediately following the sieving prime bound B1. Since the
number of hypercubes which need to be sieved in order to find enough relations
is typically far less than B1, the values a will remain reasonably close to their
ideal value and the number of duplicate relations will be small. In addition,
since all of the values q0 are above the prime bound B1, any duplicate relation
will contain the relevant q′0 as a “large prime”, making the task of removing
duplicates trivial.

Choosing the primes qi in this manner has a further benefit in reducing the
initialization costs. After fixing q1 . . . qr, we can precompute

α0 =
r∏

i=1

qi

βi = α0q
−1
i ∀1 ≤ i ≤ r

γi =
√
Nβ−1

i mod qi ∀1 ≤ i ≤ r

θi,p = q−1
i mod p ∀1 ≤ i ≤ r, ∀p ∈ P

ψp =
√
Nα−1

0 mod p ∀p ∈ P

where P is the set of primes less than B1 modulo which N is a quadratic residue,
and the notation

√
N mod p means either root of x2 −N mod p.

For each cube, after selecting q0, we then compute

αi = q0βi ∀1 ≤ i ≤ r

φi = γiq
−1
0 mod qi ∀1 ≤ i ≤ r

φ0 =
√
Nα−1

0 mod q0
θ0,p = q−1

0 mod p ∀p ∈ P

and note that a = q0β0, the 2r values of b are

−α0θ0 −
r∑

i=1

diαiφi

where the di each take the values −1 and 1, and the sieving offsets at which
log p must be added are

(φ0 ± ψ0) θ0,p +
r∑

i=1

diθi,pφi.

In this manner, the initialization costs are reduced r-fold beyond those in most
implementations of SIQS.

4

2.4 Sieving optimizations

The first optimization we made to the sieving process itself was to apply the
widely used “small prime variation”. Here we fix a value B0, known as the “small
prime bound”, and instead of sieving using primes less than B0, we compute
the average contribution which will result from such primes. Since small primes
require the most work to be done during sieving, this provides a significant
speedup. In our implementation, however, we differ somewhat from the usual
small prime variation: Instead of merely computing the mean contribution from
small primes, we compute both the mean and standard deviation, and then
attribute to each point in the sieve an estimated small prime contribution equal
to the mean plus 2.5 standard deviations4. In this manner, we reduce the
number of smooth values which are missed due to having above-average numbers
of small divisors.

After the sieving process produces a list of “hits”, we add an optimization
which we believe to be new. Realizing that most points will have fewer small
prime divisors than the above-average value which we earlier attributed to them,
we compute for each point the actual contribution from small primes. Taking
this in combination with the “over-sieve” (the amount by which the sieve thresh-
old was exceeded), we filter the list of hits returned by the sieving and reduce
the number of insufficiently smooth points being considered; this provides a
significant speedup in later steps.

Given this (now much reduced) list of sieve hits, we proceed to trial division:
We divide the values f(x) by each of the sieving primes p in turn, constructing
the factorization of each f(x) into a product of primes less than B1 and possibly
a remaining term which is either a single large prime or the product of two large
primes. In this trial division process, we make another new optimization: Since
we know from the sieving process the sum of the (rounded) logarithms of the
primes dividing f(x), we subtract away the logarithm of each prime as we find
it, and exit the trial division loop once we know that we have found all the
sieving prime divisors. Since the largest prime divisor of f(x) below B1 is on
average about 2

3B1, this “early exit” optimization provides a significant speedup
to the trial factorization step.

Once the trial factoring is complete, we consider the remaining part (if any)
of f(x). If the remaining value is between B1 and q0, we discard the value —
we have a duplicate of a relation which was found in an earlier hypercube. For
values between q0 and B2, we have a relation containing a single large prime.
Values between B2 and B2

1 we discard, since they must reflect a single prime
greater than the large prime bound; and finally values greater than B2

1 are
subjected to a single pseudoprime test, probable primes are discarded, and then
Brent’s variation of the Pollard Rho factoring algorithm [3] is used to split the
value and a relation is constructed containing the two large primes.

4The value 2.5 was chosen based on performance testing.

5

2.5 Cycle counting and relation filtering

In keeping with standard practice, we use the Union-Find algorithm to find
cycles within the large primes. Unlike most implementors, however, we have two
major advantages: First, since all the sieving is performed on the same system,
we can run the Union-Find algorithm while the sieving is ongoing, adding new
relations as they are found; this allows us to stop sieving as soon as we have
enough relations rather than needing to guess when we should stop. Second,
Maple provides very easy to use hash tables, making the implementation far
simpler than it would be in a less powerful language.

Once we have enough relations, we take further advantage of the Union-
Find algorithm to filter the relations. By effectively running the algorithm
backwards, we eliminate all of the relations which contain a large prime but
are not a member of a cycle; this is considerably faster than the more common
approach of repeatedly filtering the list of relations by removing “singletons”
(relations containing a large prime which does not occur in any other relations).

Finally, we make a pass through the relations eliminating any prime which
occurs in only two relations by multiplying those relations together.

2.6 Linear algebra

Once we have a filtered list of relations with more relations than primes involved,
we return to C and apply the block Lanczos algorithm for solving sparse systems
of linear equations modulo 2. Here we do not diverge from the usual approach
at all: For performance reasons, the entire block Lanczos algorithm must be
performed in C5, and we use a block size equal to the machine word-length,
taking advantage of the internal parallelism of bitwise operators.

Once the block Lanczos algorithm completes, we take the solutions returned
in order, multiply together the indicated relations to produce an equation of
the form X2 ≡ Y 2 (mod N), and compute igcd(X − Y , N); when we find a
non-trivial factor, we stop and return it to the user.

2.7 Performance

In order to demonstrated the performance of our code, we consider the values

N = p>(10n/2e) · p>(10n/2−1π)

where p>(x) denotes the smallest prime greater than x; these are n-digit in-
tegers. In Table 1 we show the time taken on a 2.5GHz Apple G5 system by
Maple’s current default integer factoring algorithm, the Morrison-Brillhart al-
gorithm (“maple”), Magma’s integer factorization routine, which spends a short
time searching for small factors using special-purpose factoring algorithms prior

5We found at one point that our C code could solve an entire system of order 2000 in less
time than it took for Maple to compute a single matrix-vector product!

6

to using the Multiple Polynomial Quadratic Sieve (“magma”), our own imple-
mentation (“SIQS”), and Jason Papadopoulos’ “msieve” command-line applica-
tion, which is generally regarded as being the fastest implementation available
of any form of the Quadratic Sieve [9].

n maple magma SIQS msieve n magma SIQS msieve
28 0.72 0.26 0.19 0.15 60 87.73 21.66 14.59
32 2.41 0.38 0.32 0.19 64 204.49 49.90 42.14
36 5.89 0.49 0.47 0.26 68 449.85 92.27 81.39
40 19.60 1.15 0.81 0.51 72 1189.31 226.69 201.47
44 84.83 2.04 1.91 0.63 76 2731.23 425.95 396.17
48 281.29 4.87 2.93 1.33 80 7177.24 1329.67 1329.88
52 1472.33 11.89 5.73 3.18 84 > 104 3339.39 2821.30
56 5136.75 32.34 10.58 6.21 88 > 104 7027.39 5042.18

Table 1: Integer factorization timings (in CPU seconds)

While it is immediately clear that the Morrison-Brillhart algorithm is infe-
rior to the various Quadratic Sieve implementations, we note also that the gap
between Magma’s MPQS implementation and our SIQS reaches a factor of 5,
while our code comes very close to msieve’s performance, confirming that — at
least for large inputs — the cost of performing hypercube initialization in Maple
is ultimately insignificant.

3 Discrete Logarithms

We begin by defining the discrete logarithm problem. Suppose we have a finite
group G and an element α ∈ G of order n and an element β ∈ 〈α〉. The Discrete
Logarithm Problem (DLP) is, given α and β, solve αc = β for the unique integer
c satisfying 0 ≤ c < n. We denote this value, c, as logα(β).

Example 1. Let G be the subgroup of Z101, the integers modulo 101, generated
by α = 2 and suppose β = 14. Here G = 〈α〉 = {1, 4, 16, 64, 54, 14, 56, ...} and
the order of α is 50. In this simple example, the order of α is small, so we may
simply test if αc = β for c from 0 to 50 until we find one that works, in this
case, c = 5.

In a larger group, for example, a group with 2100 elements, this brute force
method, which requires n/2 multiplications in G on average, becomes infeasible.
Although we can do better than O(n) multiplications in general, it turns out
that there are no known algorithms for large subgroups of Zq generated by α
which are polynomial time in log q. It is this difficulty of computing discrete
logarithms in this group, and also the group of points on an elliptic curve, that
is the basis for various modern cryptographic systems, such as the the ElGamal
public key cryptosystem. See [12].

7

3.1 Maple’s mlog command.

Maple’s current method, the numtheory[mlog] command, for solving the DLP
on the multiplicative structure of Zm where m is an integer, employs the fol-
lowing strategy. The method factors m and solves a number of DLPs in Zp for
each prime p dividing m. To solve these smaller problems, Maple implements
the Pohlig-Hellman algorithm, which in turn calls Shanks’ baby-step, giant-step
algorithm as a subroutine. The Pohlig-Hellman algorithm takes advantage of
the factorization of

(p− 1) = Πk
i=1q

ei
i

by solving ei instances of the DLP modulo qi to obtain ci satisfying

β = αci mod qei
i ,

and then applies Chinese remainder theorem to find the value c modulo (p− 1).
For a full description of this algorithm, we refer the reader to the Handbook of
Applied Cryptography [6] or Stinson’s text [12].

To solve the DLPs modulo each prime factor q of (p − 1), Maple currently
implements Shanks’ Baby-Step, Giant-Step method. This method is is anO(

√
q)

method. It is illustrated with the following example in Z101.

Example 2. Suppose q = 101, α = 7 and β = 57. Here α is a primitive element
of Z101 so n = 100. In the first step we build a table of pairs of values. Let
k =

⌈√
q
⌉

= 11 and for i from 1 to k−1 compute values (i, αmi mod q) and sort
them by the second entry. In our example, this table is

i 0 7 4 9 6 3 1 8 5 10 2
αki 1 15 19 29 30 38 51 58 69 65 76

In the second step we compute the discrete logarithm of β as follows. For j
from 0 to k − 1 we test, using binary search, if β × α−j is among the second
entries in the table. For j = 0 we have βα−j = 57, which is not in the table.
Eventually we find for j = 8 we have βα−j = 15, and we see that (7,15) is one
of the entries in the table. We have α11×7 ≡ βα−8 (mod q) and so β ≡ α11×7+8

(mod q) and we have found that logα β = 11× 7 + 8 = 85.

Now let us look at the complexity of the algorithm. Notice that we can compute
the k entries αmi in the table in O(k) = O(

√
q) multiplications in G. The cost

of sorting the table on the second entry using an O(n log n) sorting algorithm
requires O(k log k) = O(

√
q log q) comparisons. In the second step, computing

the βα−j costs one inverse and at most another k = O(
√
q) multiplications and

at most another O(k log k) = O(
√
q log q) comparisons to search the table using

binary search. Thus this algorithm does O(k) = O(
√
q) multiplications in G

and makes O(k log k) = O(
√
q log q) comparisons of elements of G. It also needs

to store O(
√
q) elements of G in the table.

8

This is not a problem for Maple’s current implementation when the prime
factors of (p − 1) are all small, however, when this is not the case, Maple will
take an inordinate amount of resources to compute the desired logarithm. In
the worst case, p is prime and p = 2q + 1 with q also prime. This will force
Maple to construct a table with O(

√
p) entries.

3.2 The Index Calculus Method

As we will see, a better approach would be to use an index calculus method
instead of Shanks’ method when the prime q is ‘large’. The index calculus
method is a randomized algorithm that constructs a database of the logarithms
of ‘small’ primes (say the smallest 50, 100 or 500 primes) and uses this database
to reconstruct the logarithm desired. Returning to our previous example, we
illustrate how the index calculus method works.

Example 3. Recall that we had q = 101, α = 7 and β = 57 where α is of order
n = 100. Let B = {2, 3, 5} be the set of ‘small’ primes (called the factor base).
We calculate logα 2, logα 3, and logα 5 and use these to reconstruct logα β. The
key is to find values of c such that αc mod q is B-smooth (that is, is only divisible
by the primes in B, or, in an abuse of notation, is divisible only by primes less
than or equal to B; in this way, B is an upper bound but can also be thought
of as a set of primes). We choose these values of c at random from [2, q − 2].
Many values of c will work, three of which are c = 25, 30, 61. For these values
we have

α25 = 2× 5 mod q, α30 = 2× 3 mod q, α61 = 2× 52 mod q.

Taking logarithms this yields the system of linear congruences

25 = logα 2 + logα 5 (mod q − 1),

30 = logα 2 + logα 3 (mod q − 1),

61 = logα 2 + 2 logα 5 (mod q − 1).

One now solves this linear system modulo q − 1 = 100 to obtain the unique
solution which is

{logα 2 = 89, logα 3 = 41, logα 5 = 36}.

Now, by finding one value d for which βαd is B-smooth, we can solve for logα β.
One value that works is d = 81. We obtain

βα81 = 2× 3× 5 (mod q).

Again, taking logarithms we have

logα β + 81 = logα 2 + logα 3 + logα 5 (mod q − 1).

Substituting for logα 2, logα 3 and logα 5, and solving for logα β we obtain

logα β = 89 + 41 + 36− 81 = 85 (mod q − 1).

9

3.3 Optimizing the index calculus algorithm.

The limiting factor for this procedure is how quickly we can find a set of con-
gruences that determines a unique solution for the logarithms of the factor base
B. For large q, few choices of c work, so we generally end up spending most
of the time searching for appropriate candidates c. In order to make this task
faster, we might simply increase the size of the factor base B. While this would
certainly guarantee an increase in the probability that a number αc mod q is
B-smooth, we also must keep in mind that in order to uniquely determine a
system of linear congruences, logα p must be involved in at least one congruence
for each p in B. But the larger that we make B, the less likely it is that the
larger primes of B will be divisors of αc mod q. At one extreme B = {2} and
we expect to search O(log2 q) values of c to find αc mod q which is an exact
power of 2. This is no better than Shanks’ method. And at the other extreme,
B contains all primes less than q and we expect to search O(q) values of c to
find the only such value to yield a congruence involving the first prime less than
q. A compromise can be found between these two extremes (a lot closer to the
first one) that will allow us to make significant gains on Shanks’ method for
large q.

In a result from [4], Canfield et al. show that the probability that a number
less than q is B-smooth is asymptotically u−u(1+o(1)) where u = logq B. As well,
the prime number theorem tells us that the number of primes less than B is
asymptotically B/ lnB. Although our choice for B will usually be rather small,
these two equations will at least give us a starting point for choosing what value
we ought to set B for a given q. We must find at least one congruence for each p
in B, and it will take uu(1+o(1)) tries to find c for which αc mod q is B-smooth.
Therefore, we expect to search uu(1+o(1))B/ lnB choices of c before we have
determined our system of congruences. We should, then, seek to minimise this
function over all possible choices of B. The above discussion applies in the limit
that q and B tend to infinity, however, we will be concerned with ‘medium’ sized
values for q and B such as logq < 100 and |B| < 5000. In practice, we compiled
many experiments for different choices of q and B and sought a polynomial
approximation relating log2 q and B.

Once we have chosen our smoothness bound, B, the greatest speed up that
we can get is in formulating a strategy that will allow us to quickly decide
whether a value c will lead us to a value for which αc mod q is B-smooth.
The greatest boon in this was a result presented in [2] for computing discrete
logarithms over GF (2k), though it is straightforward to modify for logarithms
in GF (q) as was done in [8]. We describe the idea.

Consider applying the Extended Euclidean Algorithm (EEA) to the integers
q and y = αc mod q. We will obtain a sequence of triples (ri, si, ti) satisfying

ri = siy + tiq

where the remainders ri decrease in size from q to 1 and the si increase mono-
tonically in magnitude from 0 to an integer of size O(q). The index, k, of i when
ri is first less than |si| will have rk and sk roughly the same length, namely, half

10

the length of q. Taking the above equation modulo q we have

ri ≡ siα
c (mod q)

and hence
logα ri = logα si + c (mod q − 1).

Now instead of checking if y = αc mod q is B-smooth, we check if rk and sk are
simultaneously B-smooth. It turns out that it is much more likely that these
two smaller integers are simultaneously B-smooth than y is. Moreover, we will
usually only have to check one of rk and sk, because if, say, rk is not B-smooth,
then we don’t care about this (rk, sk) pair. Furthermore, the pairs

(rk−2, sk−2), (rk−1, sk−1), and (rk+1, sk+1)

obtained from the Euclidean algorithm will also have integers close to half the
length of q in size.

Note also that the sequence si alternate from positive to negative, and so
one must add the integer −1 to the factor base, B. As well, we don’t need to
continue the EEA past i = k + 1 as we don’t make use of any of those values.
Lastly, note that we don’t need to explicitly compute the ti values.

3.4 Maple Implementation and Timings

The efficiency of the algorithm now depends on how fast we can test if an integer
y is B-smooth. The basic test to see if ri (or si) is B-smooth is to trial-divide
by the primes in B in a loop. However, since large primes are far less likely to
divide the values ri than small primes, we handle these differently. For small
primes in B we use a traditional trial division loop. For the larger primes in
B we perform a gcd calculation with a product of a certain number of them
with whatever is left of ri. If this gcd is 1 then we can skip a bunch of trial
divisions. Through experimentation, we found that taking products of twenty
large primes at a time and computing the gcd with ri produced the best gains.

Lastly, a word on the storage of the system of linear congruences. The con-
gruences will be sparse, having typically O(log ri) non-zero terms, thus we store
the congruences as polynomials rather than in matrix form. Taking advantage
of the sparsity of the system will also allow us to make gains in calculating its
solution.

With all of these tricks to speed up our Maple implementation of the index
calculus algorithm, we find that two thirds of the time is spent on the Euclidean
algorithm step for calculating the (ri, si) pairs. This suggests that there is not
much else we can do to speed up our Maple implementation unless we adopt
another algorithm or code parts of it in C. Below we show timings (in seconds
on a 2.0 GHz AMD 64 bit Opteron) which pit Maple’s current mlog command
against our implementation of the index calculus algorithm for increasing choices
of a prime q having a large prime dividing q − 1 (in fact all choices were with
q = 2p+ 1 with p also prime).

11

dlog2 qe Maple’s mlog Index Calculus
20 0.009 0.17
25 0.038 0.314
30 0.324 0.587
35 2.744 1.632
40 21.539 2.97
45 164.565 4.572
50 1815.272 8.603
55 27978.411 18.345
60 45.756
65 114.607
70 303.185
75 606.303
80 1875.977
85 5278.757
90 9690.946
95 22124.051

Table 2: Discrete logarithm timings (in CPU seconds)

References

[1] W. Alford and C. Pomerance. Implementing the Self-Initializing Quadratic
Sieve on a distributed network in A.J. van der Poorten, I. Shparlinski, and
H.G. Zimmer (eds), “Number theoretic and algebraic methods in computer
science”, pp. 163–174, 1995.

[2] I. F. Blake, R. Fuji-Hara, R. C. Mullin, and S. A. Vanstone. Computing
logarithms in finite fields of characteristic two. SIAM J. Alg. Disc. Methods,
5, pp. 276–285, 1984.

[3] R.P. Brent. An improved Monte Carlo factorization algorithm. BIT 20, pp.
176–184, 1980.

[4] E. R. Canfield, P. Erdos, and C. Pomerance. On a problem of Oppenheim
concerning ‘factorisatio numerorum.’ J. Number Theory, 17, pp. 1–28, 1983.

[5] S.P. Contini. Factoring integers with the Self-Initializing Quadratic Sieve.
MA thesis, University of Georgia, 1997.

[6] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography, CRC Press, 1996. ISBN 0-8493-8523-7

[7] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J.
McCarron, P. DeMarco. Maple 9 Introductory Programming Guide, Waterloo
Maple, 2003. ISBN: 1-894511-43-3.

12

[8] A. M. Odlyzko. Discrete Logarithms: The past and the future. Designs,
Codes, and Cryptography, 19, pp. 129–145, 2000.

[9] J. Papadopoulos. msieve, http://www.boo.net/ jasonp/qs.html.

[10] C. Pomerance. The Quadratic Sieve factoring algorithm. Proc. EURO-
CRYPT ’84, LNCS 209, 169–182, 1985.

[11] R.D. Silverman. The Multiple Polynomial Quadratic Sieve. Math. Comp.
48, pp. 329–339, 1987.

[12] D. R. Stinson. Cryptography: Theory and Practice, CRC Press, 1995. ISBN
0-8493-8521-0

13

