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ABSTRACT
Given a sparse polynomial 𝑎 ∈ Z[𝑥1, · · · , 𝑥𝑛] represented by a

black box, we aim to find its factors in the sparse representation.

The authors have previously developed an efficient algorithm for

the monic and square-free case. In this work, we contribute a new

algorithm that also handles the non-monic, non-square-free and

non-primitive cases. We give a worst case complexity analysis with

failure probabilities. The required number of probes to the black

box in our algorithm is much less than the previously best known

algorithm by Rubinfeld and Zippel in 1994. We have also imple-

mented our new algorithm in Maple with all major subroutines in

C. Our benchmarks show that our algorithm is much faster than

the current best determinant and factorization algorithms in Maple

and Magma.
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1 INTRODUCTION
The black box representation of a polynomial 𝑓 ∈ Z[𝑥1, ..., 𝑥𝑛]
is one of the most space efficient implicit representations [13]. It

is a program which accepts a prime 𝑝 and an evaluation point

𝛼𝛼𝛼 ∈ Z𝑛𝑝 and outputs 𝑓 (𝛼𝛼𝛼) mod 𝑝 (Figure 1). On the other hand,

the sparse representation of 𝑓 is explicit. It consists of a list of

coefficients 𝑐𝑘 ≠ 0, 𝑐𝑘 ∈ Z and exponents (𝑒𝑘1
, · · · , 𝑒𝑘𝑛 ) such that

𝑓 =
∑𝑡
𝑘=1

𝑐𝑘 ·𝑥
𝑒𝑘

1

1
· · · 𝑥𝑒𝑘𝑛𝑛 , where 𝑡 is the number of non-zero terms

of 𝑓 (Chap. 16 of [7]).

α1

α2

αn

f(α1, ..., αn) mod p

p

...

Figure 1: 𝑓 ∈ Z[𝑥1, ..., 𝑥𝑛] represented by a black box.
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Given a sparse polynomial 𝑎 ∈ Z[𝑥1, · · · , 𝑥𝑛] represented by

a black box, we aim to compute its factors in the sparse repre-

sentation. An example is to factor the determinant of a matrix

𝐴 with multivariate polynomial entries. Usually the factors of

𝑎 = det𝐴 ∈ Z[𝑥1, . . . , 𝑥𝑛] have a lot fewer terms than 𝑎. We save

the memory space needed to store 𝑎 in its sparse representation, as

well as the cost of evaluating 𝑎 at each Hensel lifting step [5].

In 1990, Kaltofen and Trager [13] contributed the first black box

factorization algorithm for multivariate polynomials with coeffi-

cients in a field. Their algorithm first computes the black boxes of

the factors, then the sparse representation of the factors can be re-

covered using sparse polynomial interpolation. Early references for

sparse polynomial interpolation include [1, 14, 33]. For a recent bib-

liography we refer the reader to Roche [24]. Then in 1994, a simpler

algorithm for factoring polynomials in Z[𝑥1, · · · , 𝑥𝑛] is presented
by Rubinfeld and Zippel [25]. Instead of using bivariate transfor-

mations to compute black boxes of the factors in [13], Rubinfeld

and Zippel’s algorithm uses simple evaluations for each variable

𝑥2, · · · , 𝑥𝑛 . We refer the algorithms described above as Approach I,

shown in Figure 2.

Figure 2 shows another two ways to compute the factors of 𝑎

in the sparse representation. Approach 0 is the least efficient as it

first interpolates the sparse representation of 𝑎 and then factors

it using a sparse Hensel lifting algorithm, e.g. Algorithm CMSHL

[4]. In 2022, the authors contributed Approach II [5] which com-

putes the factors in the sparse representation directly by a modified

CMSHL algorithm. It works only for the monic and square-free

case. Approach II is the most efficient of the three. It outperforms

Approach I as it requires less number of probes to the black box

than Approach I [5]. We shall give a more rigorous complexity

analysis in Section 4.

In this work, we present the following new contributions. First,

we give a new black box factorization algorithm that also handles

the non-monic, non-square-free, and non-primitive polynomial in-

put 𝑎 ∈ Z[𝑥1, · · · , 𝑥𝑛]. Second, we implemented our new algorithm

in Maple with all major subroutines in C and tested on a variety

of problems. We compared our timings with Maple and Magma’s

current best determinant and factorization algorithms and our al-

gorithm is much faster. We also give a detailed complexity analysis

with failure probabilities. We show that the number of probes to the

black box required in our algorithm is much less than the algorithm

in [25] (the best known algorithm for Approach I).

If the input polynomial 𝑎 is in the sparse representation and is

non-monic, two methods are known to pre-compute the leading co-

efficients of the factors. One is Wang’s leading coefficient correction
[28], and the other is by Kaltofen [11]. However, in our algorithm,

we do not need to pre-compute the coefficients of the factors. In

order to obtain the correct leading coefficients of the factors, we

https://doi.org/10.1145/3597066.3597119
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scale the bivariate images at each Hensel lifting step to match their

leading coefficients with the input factors.

This paper is organized as follows. Section 2 provides a detailed

description of our algorithm CMSHL and a proof of correctness.

Section 3 presents our implementation results with two timing

benchmarks. Section 4 gives a worst case complexity analysis with

failure probabilities of our new algorithm, and a comparison of

the number of probes to the black box in our algorithm with the

algorithm in [25]. Section 5 is conclusion and future work.

ααα ∈ Zn
p

p

a ∈ Z[x1, ..., xn] f1, ..., fr ∈ Z[x1, ..., xn]

Sparse

Rubinfeld and Zippel (1994)

Algorithm CMSHL

Chen and Monagan (2020)

Black boxes of the factors

Approach I: Approach II:Approach 0:

· · ·

Sparse Representation Sparse Representation

Black box representation of a

Interpolation
Sparse
Interpolation

Figure 2: Factorize 𝑎 ∈ Z[𝑥1, ..., 𝑥𝑛] represented by a black box.

2 ALGORITHM CMSHL: NON-MONIC CASE
The following steps are performed by our new algorithm. First, we

choose a large prime 𝑝 (e.g. 𝑝 = 2
62 − 57) and a positive integer �̃�

with �̃� < 𝑝 . Then, an evaluation point 𝛼𝛼𝛼 = (𝛼2, · · · , 𝛼𝑛) ∈ Z𝑛−1

is chosen randomly from [1, �̃� − 1]𝑛−1
and 𝑎(𝑥1,𝛼𝛼𝛼) is factored

over Z. Since we have a modular black box B, in order to compute

𝑎(𝑥1,𝛼𝛼𝛼) ∈ Z[𝑥1], we used Chinese remaindering with different

primes to get the coefficients of 𝑎(𝑥1,𝛼𝛼𝛼) in Z.
By Hilbert’s irreducibility theorem [9], the pattern of the irre-

ducible factors remains the same with high probability.

Let 𝑃 ∈ Z[𝑥1, · · · , 𝑥𝑛] be an irreducible polynomial in Z. We call

a point (𝛼2, · · · , 𝛼𝑛) ∈ Z𝑛−1 Hilbertian if 𝑃 (𝑥1, 𝛼2, · · · , 𝛼𝑛) remains

irreducible [16]. The sharpest result on a bound for the number of

non-Hilbertian points of 𝑃 (𝑥1, · · · , 𝑥𝑛) was obtained by Cohen [6],

stated in [25]:

Proposition 2.1. Let 𝑅(𝑑, 𝑛, �̃� ) be the number of non-Hilbertian
points (𝛼2, · · · , 𝛼𝑛) ∈ Z𝑛−1 with 0 ≤ 𝛼𝑖 < �̃� (�̃� ∈ Z+) for an
irreducible polynomial 𝑃 (𝑥1, · · · , 𝑥𝑛) of degree 𝑑 . Then,

𝑅(𝑑, 𝑛, �̃� ) < 𝑐 (𝑑)�̃�𝑛−3/2
log(�̃� ), (1)

where 𝑐 depends only on the degree of the irreducible polynomial.

It is conjectured in [25] that 𝑐 (𝑑) < 𝑐1𝑑
𝑐2

for some absolute

constants 𝑐1, 𝑐2. We can see that lim
�̃�→∞ 𝑅(𝑑, 𝑛, �̃� )/�̃�𝑛−1 = 0.

Thus, a sufficiently large �̃� ensures a very low failure probability.

Now, let the factorization of 𝑎 over Z be of the form

𝑎 = ℎ𝑓
𝑒1

1
𝑓
𝑒2

2
· · · 𝑓 𝑒𝑟𝑟 ∈ Z[𝑥1, · · · , 𝑥𝑛], (2)

where deg(𝑓𝜌 , 𝑥1) > 0, 𝑓𝜌 is irreducible over Z (1 ≤ 𝜌 ≤ 𝑟 ) with

sgn(𝑓𝜌 ) = 1, i.e. lcoeff(𝑓𝜌 ) > 0 and ℎ = cont(𝑎, 𝑥1) ∈ Z[𝑥2, · · · , 𝑥𝑛]
is the content of 𝑎 in 𝑥1 (not necessarily factored at this stage).

Then, with high probability (w.h.p.),

𝑎(𝑥1,𝛼𝛼𝛼) = ˆℎ ˆ𝑓1
𝑒1

ˆ𝑓2
𝑒2 · · · ˆ𝑓𝑟

𝑒𝑟 ∈ Z[𝑥1], (3)

where
ˆ𝑓𝜌 (𝑥1,𝛼𝛼𝛼) := (1/_𝜌 ) 𝑓𝜌 (𝑥1,𝛼𝛼𝛼) for some constant _𝜌 ∈ Z (1 ≤

𝜌 ≤ 𝑟 ) and ˆ𝑓𝜌 is irreducible in Z[𝑥1] with sgn( ˆ𝑓𝜌 ) = 1. Thus,

ˆℎ(𝛼𝛼𝛼) = _ℎℎ(𝛼𝛼𝛼) ∈ Z with _ℎ =
∏𝑟

𝜌=1
_
𝑒𝜌
𝜌 ∈ Z.

More explicitly,

𝑎(𝑥1,𝛼𝛼𝛼) = ℎ(𝛼𝛼𝛼) 𝑓1 (𝑥1,𝛼𝛼𝛼)𝑒1 · · · 𝑓𝑟 (𝑥1,𝛼𝛼𝛼)𝑒𝑟

= ℎ(𝛼𝛼𝛼)
(
_1

ˆ𝑓1 (𝑥1,𝛼𝛼𝛼)
)𝑒1

· · ·
(
_𝑟 ˆ𝑓𝑟 (𝑥1,𝛼𝛼𝛼)

)𝑒𝑟
w.h.p. (4)

= ℎ(𝛼𝛼𝛼) ©«
𝑟∏

𝜌=1

_
𝑒𝜌
𝜌
ª®¬︸            ︷︷            ︸

ˆℎ (𝛼𝛼𝛼 )

ˆ𝑓1 (𝑥1,𝛼𝛼𝛼)𝑒1 · · · ˆ𝑓𝑟 (𝑥1,𝛼𝛼𝛼)𝑒𝑟 .

The evaluation point𝛼𝛼𝛼 alsomust satisfy theweak SHL assumption
[4, 21] for each factor at every Hensel lifting step. The following

Lemma from [4] is essential for our algorithm to succeed w.h.p.

Lemma 2.2. Let 𝑓 ∈ Z𝑝 [𝑥1, · · · , 𝑥 𝑗 ] and 𝛼 𝑗 be a randomly chosen

element in Z𝑝 . Let 𝑓 =
∑𝑑𝑓𝑗
𝑖=0

𝜎𝑖 (𝑥1, · · · , 𝑥 𝑗−1) (𝑥 𝑗 −𝛼 𝑗 )𝑖 where 𝑑 𝑓𝑗 =
deg(𝑓 , 𝑥 𝑗 ). Then

Pr[Supp(𝜎𝑖 ) ⊈ Supp(𝜎0)] ≤ |Supp(𝜎𝑖 ) |
𝑑 𝑓𝑗

𝑝 − 𝑑 𝑓𝑗 + 𝑖
for 1 ≤ 𝑖 ≤ 𝑑 𝑓𝑗 ,

where |Supp(𝜎𝑖 ) | denotes the number of monomials in 𝜎𝑖 .

The assumption that Supp(𝜎𝑖 ) ⊈ Supp(𝜎0) for 1 ≤ 𝑖 ≤ 𝑑 𝑓𝑗 is

called the weak SHL assumption [4, 21].

Now we define the square-free part of the polynomial 𝑎 as

Definition 2.3.

sqf(𝑎) :=

𝑟∏
𝜌=1

𝑓𝜌 =
𝑎

gcd(𝑎, 𝜕𝑎/𝜕𝑥1)
∈ Z[𝑥1, · · · , 𝑥𝑛] . (5)

Thus, w.h.p.,

sqf(𝑎) =
𝑟∏

𝜌=1

_𝜌

𝑟∏
𝜌=1

ˆ𝑓𝜌 (𝑥1, · · · , 𝑥𝑛) ∈ Z[𝑥1, · · · , 𝑥𝑛], (6)

where 𝑟 is the number of factors in sqf(𝑎), and ˆ𝑓𝜌 (𝑥1, · · · , 𝑥𝑛) ∈
Q[𝑥1, · · · , 𝑥𝑛] if |_𝜌 | > 1.

Let 𝑎 𝑗 := 𝑎(𝑥1, · · · , 𝑥 𝑗 , 𝛼 𝑗+1, · · · , 𝛼𝑛) mod 𝑝 . Let ˆ𝑓𝜌,1 := ˆ𝑓𝜌 (𝑥1,𝛼𝛼𝛼)
mod 𝑝 . Define ˆ𝑓𝜌,𝑗 := ˆ𝑓𝜌 (𝑥1, · · · , 𝑥 𝑗 , 𝛼 𝑗+1, · · · , 𝛼𝑛) mod 𝑝 for 2 ≤
𝑗 ≤ 𝑛 (to be computed). Let B denote the black box representation

of the polynomial 𝑎. The input and output to our new algorithm

CMSHL for the non-monic and non-square-free case is:

• Input: A prime 𝑝 , the black box B, 𝛼𝛼𝛼 ∈ Z𝑛−1
, deg(𝑎, 𝑥 𝑗 )

(1 ≤ 𝑗 ≤ 𝑛) (pre-computed),
ˆ𝑓𝜌,1 ∈ Z𝑝 [𝑥1] (1 ≤ 𝜌 ≤ 𝑟 ) s.t.

(i) gcd( ˆ𝑓𝑘,1,
ˆ𝑓𝑙,1) = 1 for 𝑘 ≠ 𝑙 in Z𝑝 [𝑥1],

(ii) sqf(𝑎(𝑥1,𝛼𝛼𝛼)) =
∏𝑟

𝜌=1
_𝜌

∏𝑟
𝜌=1

ˆ𝑓𝜌,1 mod 𝑝.

• Output:
ˆ𝑓𝜌,𝑛 ∈ Z𝑝 [𝑥1, · · · , 𝑥𝑛] (1 ≤ 𝜌 ≤ 𝑟 ) s.t.

(i) sqf(𝑎(𝑥1, · · · , 𝑥𝑛)) =
∏𝑟

𝜌=1
_𝜌

∏𝑟
𝜌=1

ˆ𝑓𝜌,𝑛 mod 𝑝,

Or FAIL.

Algorithm CMSHL lifts
ˆ𝑓𝜌,1 (𝑥1) to ˆ𝑓𝜌,2 (𝑥1, 𝑥2) then lifts

ˆ𝑓𝜌,2 (𝑥1, 𝑥2)
to

ˆ𝑓𝜌,3 (𝑥1, 𝑥2, 𝑥3) etc. After the jth Hensel lifting step (see Algorithm
1), sqf(𝑎 𝑗 ) =

∏𝑟
𝜌=1

_𝜌
∏𝑟

𝜌=1

ˆ𝑓𝜌,𝑗 mod 𝑝 and
ˆ𝑓𝜌,𝑗 (𝑥 𝑗 = 𝛼 𝑗 ) = ˆ𝑓𝜌,𝑗−1
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mod 𝑝 . At the end, sqf(𝑎𝑛) =
∏𝑟

𝜌=1
_𝜌

∏𝑟
𝜌=1

ˆ𝑓𝜌,𝑛 mod 𝑝 . (Proof of

correctness is given in Sect. 2.3.)

After the last Hensel lifting step, rational number reconstruction

is performed on the coefficients of
ˆ𝑓𝜌,𝑛 for 1 ≤ 𝜌 ≤ 𝑟 to get the

integer coefficients of the factors 𝑓𝜌 in Z.
More detailed, suppose

𝑓𝜌 =

#𝑓𝜌∑︁
𝑘=1

𝑐𝑘𝑀𝑘 ∈ Z[𝑥1, · · · , 𝑥𝑛],

where 𝑐𝑘 ∈ Z (to be determined),𝑀𝑘 ’s are the monomials of 𝑓𝜌 and

#𝑓𝜌 is the number of terms in 𝑓𝜌 . After the last Hensel lifting step,

we have computed
ˆ𝑓𝜌,𝑛 =

∑#𝑓𝜌

𝑘=1
𝑐𝑘𝑀𝑘 ∈ Z𝑝 [𝑥1, · · · , 𝑥𝑛]. Thus,

ˆ𝑓𝜌,𝑛 =

#𝑓𝜌∑︁
𝑘=1

𝑐𝑘𝑀𝑘 ≡
1

_𝜌
𝑓𝜌 mod 𝑝 ≡

#𝑓𝜌∑︁
𝑘=1

𝑐𝑘

_𝜌
𝑀𝑘 mod 𝑝.

Thus, we use rational number reconstruction to obtain _𝜌 and 𝑐𝑘
from 𝑐𝑘 ≡ 𝑐𝑘

_𝜌
mod 𝑝 (1 ≤ 𝑘 ≤ #𝑓𝜌 ).

To recover the factors of the content we construct a black box C
for the content. First, we construct a black box F as the product of the
factors found, i.e. F(𝑥1, · · · , 𝑥𝑛) =

∏𝑟
𝜌=1

𝑓𝜌 . Then C(𝑥2, · · · , 𝑥𝑛) =
B(𝛼, 𝑥2, · · · , 𝑥𝑛)/F(𝛼, 𝑥2, · · · , 𝑥𝑛) for 𝛼 chosen at random from Z𝑝 .
Then we use our black box algorithm to get the factors of C recur-

sively. The black box C returns FAIL if F evaluates to 0 in which

case we need to restart with a different 𝛼 .

Example 2.4. Consider 𝑎 = 𝑓1 𝑓2 ∈ Z[𝑥1, · · · , 𝑥4] where

𝑓1 = (2𝑥2

2
𝑥3

3
+ 4)𝑥8

1
+ (4𝑥2

2
𝑥3

3
+ 22𝑥2

2
𝑥3

4
+ 1452𝑥2

2
𝑥4)𝑥1+𝑥2

2
𝑥3𝑥4−4𝑥3,

𝑓2 = (3𝑥2 + 39𝑥4 + 3𝑥3)𝑥8

1
+ (5𝑥2𝑥

2

3
𝑥4 + 33𝑥2𝑥3𝑥

2

4
)𝑥2

1
− 363𝑥2

4
+ 44.

In this case, ℎ = 1 (𝑎 has no content in 𝑥1, neither integer content)

and sqf(𝑎) = 𝑎. Let 𝛼𝛼𝛼 = (2, 3, 9),

𝑎(𝑥1,𝛼𝛼𝛼) = 80520𝑥16

1
+ 3706560𝑥10

1
+ · · · − 3430775304𝑥1 − 2818464

= 4︸︷︷︸
_1

(55𝑥8

1
+ 29214𝑥1 + 24)︸                      ︷︷                      ︸

ˆ𝑓1

(366𝑥8

1
+ 16848𝑥2

1
− 29359)︸                             ︷︷                             ︸

ˆ𝑓2

= 𝑓1 (𝑥1,𝛼𝛼𝛼) 𝑓2 (𝑥1,𝛼𝛼𝛼) .

We have _1 = 4 and _2 = 1, thus 𝑓1 (𝑥1,𝛼𝛼𝛼) = _1
ˆ𝑓1 = 4

ˆ𝑓1 and

𝑓2 (𝑥1,𝛼𝛼𝛼) = ˆ𝑓2. The input to algorithm CMSHL is 𝑝 = 2
31 − 1, 𝛼𝛼𝛼 , the

black box B, ˆ𝑓𝜌,1 = ˆ𝑓𝜌 mod 𝑝 (𝜌 = 1, 2).

After the 1
st
(denoted as the 2

nd
) Hensel lifting step (a bivariate

Hensel lift only), the algorithm outputs
ˆ𝑓𝜌,2 ∈ Z𝑝 [𝑥1, 𝑥2] (𝜌 = 1, 2)

s.t. 𝑎2 = sqf(𝑎2) = (_1_2) ˆ𝑓1,2 ˆ𝑓2,2 with

ˆ𝑓1,2 = (1073741837𝑥2

2
+ 1)𝑥8

1
+ 1073749127𝑥2

2
𝑥1 + 1610612742𝑥2

2

+ 2147483644,

ˆ𝑓2,2 = (3𝑥2 + 360)𝑥8

1
+ 8424𝑥2𝑥

2

1
+ 2147454288.

After the 3
rd

Hensel lifting step,

ˆ𝑓1,3 = (1073741824𝑥2

2
𝑥3

3
+ 1)𝑥8

1
+ (𝑥2

2
𝑥3

3
+ 1073749100𝑥2

2
)𝑥1

+ 536870914𝑥2

2
𝑥3 + 2147483646𝑥3,

ˆ𝑓2,3 = (3𝑥2 + 3𝑥3 + 351)𝑥8

1
+ (45𝑥2𝑥

2

3
+ 2673𝑥2𝑥3)𝑥2

1
+ 2147454288.

The last Hensel lifting step outputs
ˆ𝑓𝜌,4 (𝜌 = 1, 2) s.t. 𝑎4 = sqf(𝑎4) =

(_1_2) ˆ𝑓1,4 ˆ𝑓2,4 with

ˆ𝑓1,4 = (1073741824𝑥2

2
𝑥3

3
+ 1)𝑥8

1
+ (𝑥2

2
𝑥3

3
+ 1073741829𝑥2

2
𝑥3

4

+ 363𝑥2

2
𝑥4)𝑥1 + 536870912𝑥2

2
𝑥3𝑥4 + 2147483646𝑥3

ˆ𝑓2,4 = (3𝑥2 + 39𝑥4 + 3𝑥3)𝑥8

1
+ (5𝑥2𝑥

2

3
𝑥4 + 33𝑥2𝑥3𝑥

2

4
)𝑥2

1

+ 2147483284𝑥2

4
+ 44.

Now, we notice that 4
ˆ𝑓1,4 mod 𝑝 = 𝑓1 and

ˆ𝑓2,4 mod 𝑝 = 𝑓2 (mod

is taken in the symmetric range). The values for _1, _2 are still

unknown, so we perform rational number reconstruction on coeffi-

cients of
ˆ𝑓𝜌,4 to find _𝜌 and hence get the true factors 𝑓𝜌 (𝜌 = 1, 2).

In Maple, we do the following for the first factor (similarly for the

second factor):

> iratrecon(f_hat[1,4],p);

ff1 :=
1

2

𝑥2

2
𝑥8

1
𝑥3

3
+ 𝑥8

1
+ 𝑥1𝑥

2

2
𝑥3

3
+ 11

2

𝑥2

2
𝑥1𝑥

3

4
+ 363𝑥2

2
𝑥1𝑥4

+ 1

4

𝑥2

2
𝑥3𝑥4 − 𝑥3

_1 is the least common multiple of the denominators of coefficients

of ff1. Multiply ff1 by _1, we get the true factor 𝑓1 ∈ Z[𝑥1, · · · , 𝑥𝑛]:
> f[1] := numer(ff[1]);

f1 := 2𝑥2

2
𝑥8

1
𝑥3

3
+ 4𝑥8

1
+ 4𝑥1𝑥

2

2
𝑥3

3
+ 22𝑥2

2
𝑥1𝑥

3

4
+ 1452𝑥2

2
𝑥1𝑥4

+ 𝑥2

2
𝑥3𝑥4 − 𝑥3

Note: iratrecon could return FAIL. If we use Wang’s Euclidean

algorithm for rational reconstruction [29], to guarantee the correct

answer, we need

2_𝜌
𝑟

max

𝜌=1

∥ 𝑓𝜌 ∥∞ < 𝑝 (7)

for all 1 ≤ 𝜌 ≤ 𝑟 , where ∥ 𝑓𝜌 ∥∞ is the max-norm of the factor

𝑓𝜌 ∈ Z[𝑥1, · · · , 𝑥𝑛]. Form various examples we tested, _𝜌 ≪ 𝑝 .

For our benchmarks, we used 𝑝 = 2
62 − 57. If 𝑝 is not big enough

to recover 𝑎 ∈ Z[𝑥1, · · · , 𝑥𝑛], we can simply use larger and larger

primes, e.g. 𝑝2 > 𝑝2

1
, 𝑝3 > 𝑝2

2
, etc. until the algorithm succeeds.

The j
th

Hensel lifting step of algorithm CMSHL for the non-

monic and non-square-free case is shown in Algorithm 1. The key

idea to our non-monic algorithm is to interpolate the square-free

part of the bivariate images of 𝑎 and then use them to perform

non-monic bivariate Hensel lifts. In step 12–14, a square-free image

of 𝑎, sqf((𝑎(𝑥1, 𝑌𝑘 , 𝑥 𝑗 )), is computed probabilistically via a bivariate

gcd computation and a division (correct up to a constant). The

content of 𝑎(𝑥1, 𝑌𝑘 , 𝑥 𝑗 ) in 𝑥1 has also been removed. Step 15 then

makes 𝐴𝑠 𝑓 monic, i.e. lc(sqf(𝑎(𝑥1, 𝑌𝑘 , 𝑥 𝑗 )), 𝑥1) becomes monic in

𝑥 𝑗 . Step 16 evaluates the input factors to get a univariate image

ˆ𝑓𝜌,𝑗−1 (𝑥1, 𝑌𝑘 ). Then at step 19, a non-monic bivariate Hensel lift

(BHL) is performed, so we get a bivariate image of the factors,

ˆ𝑓𝜌,𝑗 (𝑥1, 𝑌𝑘 , 𝑥 𝑗 ). After obtaining 𝑠 bivariate images of the factors (𝑠

is defined in step 7 in Algorithm 1), we use them to recover the

factor
ˆ𝑓𝜌,𝑗 ∈ Z𝑝 [𝑥1, · · · , 𝑥 𝑗 ] via Vandermonde solves at step 25.

Our algorithm also features that every major subroutine is par-

allelizable. In our benchmarks, the bottleneck is probes to the black

box which involves evaluations of polynomials at multiple points.

This could be done in parallel to speed up the computation.
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Algorithm 1 CMSHL: Hensel lifting 𝑥 𝑗 (non-monic).

1: Input: A prime p, 𝛼j ∈ Zp, the black box B, di = deg(a, xi)
(1 ≤ i ≤ n), f̂𝜌,j−1 ∈ Zp [x1, · · · , xj−1] (1 ≤ 𝜌 ≤ r) s.t.
sqf(aj (xj = 𝛼j)) =

∏r
𝜌=1 _𝜌

∏r
𝜌=1 f̂𝜌,j−1 with j > 2.

2: Output: f̂𝜌,j ∈ Zp [x1, · · · , xj] (1 ≤ 𝜌 ≤ r) s.t.
sqf(aj) =

∏r
𝜌=1 _𝜌

∏r
𝜌=1 f̂𝜌,j and f̂𝜌,j (xj=𝛼j) = f̂𝜌,j−1;

Otherwise, return FAIL.

3: Let f̂𝜌,j−1 =
∑df𝜌
i=0 𝜎𝜌,i (x2, ..., xj−1)x

i
1 (1 ≤ 𝜌 ≤ r)

where 𝜎𝜌,i =
∑s𝜌,i
k=1 c𝜌,ikM𝜌,ik with M𝜌,ik the monomials in 𝜎𝜌,i

and df𝜌 = deg(f̂𝜌,j−1, x1).
4: Pick 𝛽𝛽𝛽 = (𝛽2, · · · , 𝛽j−1) ∈ Zj−2p at random.

5: Evaluate (for 1 ≤ 𝜌 ≤ 𝑟 ):

S𝜌 = {S𝜌,i = {m𝜌,ik = M𝜌,ik (𝛽𝛽𝛽), 1 ≤ k ≤ s𝜌,i}, 0 ≤ i ≤ df𝜌 }.
6: if any |S𝜌,i | ≠ s𝜌,i then return FAIL end if
7: Let s be the maximum of s𝜌,i.
8: for k from 1 to s do
9: Let Yk = (x2 = 𝛽k2 , · · · , xj−1 = 𝛽kj−1).
10: Ak ← aj (x1, Yk, xj) ∈ Zp [x1, xj]. // via probes to B and dense

interpolation . . . . . . . O(𝑠 (𝑑2

1
𝑑 𝑗 + 𝑑1𝑑

2

𝑗
+ 𝑑1𝑑 𝑗C(probe B)))

11: if deg(𝐴𝑘 , 𝑥1) ≠ 𝑑1 then return FAIL end if
12: gk ← gcd(Ak, 𝜕Ak

𝜕x1 ) mod p. . . . . . . . . . . . O(𝑠 (𝑑2

1
𝑑 𝑗 + 𝑑1𝑑

2

𝑗
))

13: if deg(gk, x1) ≠ d1 −
∑r

𝜌=1 df𝜌 then return FAIL end if
14: Asf ← quo(Ak, gk) mod p.
15: Asfm ← Asf/(lc(lc(Asf , x1), xj)) mod p.
16: F𝜌,k ← f̂𝜌,j−1 (x1, Yk) ∈ Zp [x1] for 1 ≤ 𝜌 ≤ r.
17: if any deg(F𝜌,k) < df𝜌 (for 1 ≤ 𝜌 ≤ r) then return FAIL

end if
18: if gcd(F𝜌,k, F𝜙,k) ≠ 1 for any 𝜌 ≠ 𝜙 (1 ≤ 𝜌, 𝜙 ≤ r) then

return FAIL end if
19: f̂𝜌,k ← BivariateHenselLift(Asfm (x1, xj), F𝜌,k (x1), 𝛼j, p).

. . . . . . . . . . . . . . . . O(𝑠 ( ˜𝑑1
˜𝑑2

𝑗
+ ˜𝑑2

1

˜𝑑 𝑗 )) ⊆ O(𝑠 (𝑑1𝑑
2

𝑗
+ 𝑑2

1
𝑑 𝑗 ))

20: end for
21: Let f̂𝜌,k =

∑t𝜌
l=1 𝛼𝜌,kl�̃�𝜌,𝑙 (x1, xj) ∈ Zp [x1, xj] for 1 ≤ k ≤ s

where t𝜌 = #̂f𝜌,k, for 1 ≤ 𝜌 ≤ r.
22: for 𝜌 from 1 to r do
23: for l from 1 to t𝜌 do
24: i← deg(�̃�𝜌,𝑙 , x1).
25: Solve the linear system{∑s𝜌,i

k=1m
t
𝜌,ikc𝜌,lk = 𝛼𝜌,tl for 1 ≤ t ≤ s𝜌,i

}
for c𝜌,lk.

26: end for . . . . . . . . . . . . . . . . . . . . . . . . . . O(𝑠 ˜𝑑 𝑗 (
∑𝑟

𝜌=1
#

ˆ𝑓𝜌,𝑗−1))

27: f̂𝜌,j ←
∑t𝜌
l=1

(∑s𝜌,i
k=1 c𝜌,lkM𝜌,ik (x2, ..., xj−1)

)
�̃�𝜌,𝑙 (x1, xj).

28: end for
29: Pick 𝛽𝛽𝛽 = (𝛽2, · · · , 𝛽j) ∈ Zj−1p at random.

30: A𝛽𝛽𝛽 ← sqf(aj (x1, 𝛽𝛽𝛽)) mod p // via probes to B, interpolation,
and sqrfree compt.

31: if f̂𝜌,j (x1, 𝛽𝛽𝛽) | A𝛽𝛽𝛽 and deg(f̂𝜌,j (x1, 𝛽𝛽𝛽)) = df𝜌 for 1 ≤ 𝜌 ≤ r then
return f̂𝜌,j for 1 ≤ 𝜌 ≤ r
else return FAIL end if

2.1 The non-monic bivariate Hensel lift (BHL)
in the jth Hensel lifting step of CMSHL

The non-monic bivariate Hensel lift (step 19 of Algorithm 1) has

the following input and output:

• Input: A prime 𝑝 , 𝛼 𝑗 ∈ Z𝑝 , monic(sqf(𝑎(𝑥1, 𝑌𝑘 , 𝑥 𝑗 )) = 𝐴sfm

(step 15),
ˆ𝑓𝜌,𝑗−1 (𝑥1, 𝑌𝑘 ) (1 ≤ 𝜌 ≤ 𝑟 ) (step 16) s.t.

(i) gcd( ˆ𝑓𝜌,𝑗−1 (𝑥1, 𝑌𝑘 ), ˆ𝑓𝜙,𝑗−1
(𝑥1, 𝑌𝑘 )) = 1 for 𝜌 ≠ 𝜙,

(ii) 𝐴sfm (𝑥 𝑗 = 𝛼 𝑗 ) = b
∏𝑟

𝜌=1

ˆ𝑓𝜌,𝑗−1 (𝑥1, 𝑌𝑘 ) mod 𝑝, b ∈ Z𝑝 .
• Output:

ˆ𝑓𝜌,𝑗 (𝑥1, 𝑌𝑘 , 𝑥 𝑗 ) (1 ≤ 𝜌 ≤ 𝑟 ) s.t.

(i) 𝐴sfm = b
∏𝑟

𝜌=1

ˆ𝑓𝜌,𝑗 (𝑥1, 𝑌𝑘 , 𝑥 𝑗 ) mod 𝑝, b ∈ Z𝑝 ,
(ii)

ˆ𝑓𝜌,𝑗 (𝑥1, 𝑌𝑘 , 𝑥 𝑗 ) (𝑥 𝑗 = 𝛼 𝑗 ) = ˆ𝑓𝜌,𝑗−1 (𝑥1, 𝑌𝑘 ) (1 ≤ 𝜌 ≤ 𝑟 ),

Or FAIL.

In the above, monic(.) means to make the lc(sqf(𝑎(𝑥1, 𝑌𝑘 , 𝑥 𝑗 )), 𝑥1)

monic in 𝑥 𝑗 . Also, we have b = (∏𝑟
𝜌=1

_𝜌 )/𝑙𝑐𝐴𝑠𝑓 ∈ Z𝑝 , where
𝑙𝑐𝐴𝑠𝑓 := lc(lc(sqf(𝑎(𝑥1, 𝑌𝑘 , 𝑥 𝑗 ), 𝑥1), 𝑥 𝑗 ).

Notice that the output of BHL
ˆ𝑓𝜌,𝑗 (𝑥1, 𝑌𝑘 , 𝑥 𝑗 ) satisfies

ˆ𝑓𝜌,𝑗 (𝑥1, 𝑌𝑘 , 𝑥 𝑗 ) (𝑥 𝑗 = 𝛼 𝑗 ) = ˆ𝑓𝜌,𝑗−1 (𝑥1, 𝑌𝑘 ) (1 ≤ 𝜌 ≤ 𝑟 ).

Thus, when evaluating the output bivariate factors
ˆ𝑓𝜌,𝑗 (𝑥1, 𝑌𝑘 , 𝑥 𝑗 )

at 𝑥 𝑗 = 𝛼 𝑗 , their leading coefficients equal the leading coefficients

of the input factors
ˆ𝑓𝜌,𝑗−1 (𝑥1, 𝑌𝑘 ). The correct return of the leading

coefficients from BHL ensures that we have the correct leading

coefficients after each Hensel lifting step of CMHSL, i.e.
ˆ𝑓𝜌,𝑗 ∈

Z𝑝 [𝑥1, · · · , 𝑥 𝑗 ] satisfies

ˆ𝑓𝜌,𝑗 (𝑥 𝑗 = 𝛼 𝑗 ) = ˆ𝑓𝜌,𝑗−1 (1 ≤ 𝜌 ≤ 𝑟 ) .

We have modified the monic BHL algorithm developed by Mon-

agan and Paluck in 2022 [23] to handle the non-monic case. It has a

cubic cost of 𝑂 (𝑑1𝑑
2

𝑗
+ 𝑑2

1
𝑑 𝑗 ). Pseudocode for non-monic bivariate

Hensel lifting is shown in Algorithm 2.

There is a potential issue when 𝛾 (𝑦) = lc(𝑎, 𝑥) has a high de-

gree. Thus after step 3 of Algorithm 2, 𝑎(𝑥,𝑦) ← 𝛾 (𝑦)𝑟−1𝑎(𝑥,𝑦)
has a high degree in 𝑦. This happens especially when the number

of factors is large. In such case, we could implement a recursive

algorithm to break down the factors into a binary tree for bivariate

Hensel lifts.

2.2 Pre-computing the degrees of 𝑎
Our algorithm CMSHL requires deg(𝑎, 𝑥 𝑗 ) (1 ≤ 𝑗 ≤ 𝑛) to be pre-

computed as input. We do the following steps to compute deg(𝑎, 𝑥 𝑗 )
with high probability (w.h.p.):

• Pick 𝛼𝛼𝛼 = (𝛼1, · · · , 𝛼 𝑗−1, 𝛼 𝑗+1, · · · , 𝛼𝑛) ∈ Z𝑝𝑛−1
.

• Define 𝑔(𝑣) := 𝑎(𝛼1, · · · , 𝛼 𝑗−1, 𝑣, 𝛼 𝑗+1, · · · , 𝛼𝑛) mod 𝑝 .

• Interpolate 𝑔(𝑣) w.h.p. as follows:
for 𝑘 from 1 do

Pick 𝛽𝑘 ∈ Z𝑝 at random.

𝑏𝑘 ←B( [𝛼1, · · · , 𝛼 𝑗−1, 𝛽𝑘 , 𝛼 𝑗−1, · · · , 𝛼𝑛], 𝑝).
ℎ𝑘 (𝑣) ← interp([𝛽1, · · · , 𝛽𝑘 ], [𝑏1, · · · , 𝑏𝑘 ]) mod 𝑝 .

if ℎ𝑘 (𝑣) = ℎ𝑘−1
(𝑣) then break end if

end for
ℎ ← ℎ𝑘
if ℎ = 0 return −1 else return deg(ℎ, 𝑣) end if
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Algorithm 2 Non-monic bivariate Hensel lifting - cubic cost.

1: Input: A prime p, 𝛼 ∈ Zp, a ∈ Zp [x, y] where a is primitive in

x and lcoeff(lcoeff(a, x), y) = 1, f𝜌,0 ∈ Zp [x] for 1 ≤ 𝜌 ≤ r s.t.
(i) gcd(fk,0, fl,0) = 1 for k ≠ l,
(ii) a(y = 𝛼) = b

∏r
𝜌=1 f𝜌,0, b ∈ Z𝑝 .

2: Output: f𝜌 ∈ Zp [x, y] s.t.
(i) a = b

∏r
𝜌=1 f𝜌 ,

(ii) f𝜌 (y = 𝛼) = f𝜌,0.
Or FAIL.

3: 𝛾 (y) ← lc(a, x) ∈ Zp [y];
a(x, y) ← 𝛾 (y)r−1a(x, y) ∈ Z𝑝 [𝑥,𝑦].

4: f𝜌,0 ← 𝛾 (y)·monic(f𝜌,0 (x)) mod (y − 𝛼) ∈ Z𝑝 [𝑥] (1 ≤ 𝜌 ≤ r).
5: dx← deg(a, x); dy← deg(a, y); df𝜌,0 ← deg(f𝜌,0, x).
6: M←∏r

𝜌=1 f𝜌,0 ∈ Z𝑝 [𝑥].
7: for 𝜌 from 1 to r do f𝜌 ← f𝜌,0;M𝜌 ← M/f𝜌,0 end for
8: for k from 0 to dy do
9: 𝛾k ← coeff(𝛾, (y − 𝛼)k).
10: for 𝜌 from 1 to r do Tf𝜌,k ← 𝛾kxdf𝜌,0 end for
11: end for
12: for k from 1 to dy do
13: ack ← coeff(a, (y − 𝛼)k).
14: Δ𝑘← coeff(

∏r
𝜌=1 f𝜌 , (y − 𝛼)k). // via eval and interpolation.

15: 𝛿𝑘←
∑r

𝜌=1 Tf𝜌,k ·M𝜌 .

16: ck ← ack−Δ𝑘−𝛿k.
17: if

∑r
𝜌=1 deg(f𝜌 , y) = dy and ck ≠ 0 return FAIL end if

18: if ck ≠ 0 then
19: Solve

∑r
𝜌=1

¯𝑓𝜌,𝑘M𝜌 = ck for ¯𝑓𝜌,𝑘∈ Zp [x]
with deg( ¯𝑓𝜌,𝑘 , x) < deg(f𝜌,0, x) for 1 ≤ 𝜌 ≤ r.

20: for 𝜌 from 1 to r do
21: f𝜌,k ← Tf𝜌,k+ ¯𝑓𝜌,𝑘 ; f𝜌 ← f𝜌 + f𝜌,k (y − 𝛼)k.
22: end for
23: end if
24: end for
25: if

∑r
𝜌=1 deg(f𝜌 , y) ≠ dy then return FAIL end if

26: for 𝜌 from 1 to r do
27:

˜𝑓𝜌← primpart(f𝜌 (x, y), x)). // lc(lc( ˜𝑓𝜌 , x), y) = 1.
28: lceval ← lc(

˜𝑓𝜌 (x, y), x) (y = 𝛼); [ ← lc(f𝜌,0, x)/lceval.
29: f𝜌 ← [ ˜𝑓𝜌 .

30: end for
31: return f𝜌 for 1 ≤ 𝜌 ≤ r.

Note:ℎ(𝑣) does not necessarily equal to𝑔(𝑣). We have the following

failure probability.

Proposition 2.5. Suppose deg(𝑎, 𝑥 𝑗 ) = deg(𝑎 mod 𝑝, 𝑥 𝑗 ). Then,

Pr[deg(ℎ, 𝑣) ≠ deg(𝑎, 𝑥 𝑗 )] ≤
deg(𝑎, 𝑥 𝑗 )2 + deg(𝑎) − deg(𝑎, 𝑥 𝑗 )

𝑝
,

where deg(𝑎) is the total degree of 𝑎.

Proof: By Schwartz-Zippel lemma [26, 31], details omitted. □

To obtain a total degree bound of 𝑎, in the case of computing the

determinant of an 𝑁 × 𝑁 matrix 𝐴, where det(𝐴) ∈ Z[𝑥1, · · · , 𝑥𝑛],
we can get the maximum total degree of each row (or column) of 𝐴,

i.e. max
𝑁
𝑗=1
(deg(𝐴𝑖 𝑗 )) where 𝐴𝑖 𝑗 ∈ Z[𝑥1, · · · , 𝑥𝑛]. A total degree

bound is given by

𝑁∑︁
𝑖=1

𝑁
max

𝑗=1

(deg(𝐴𝑖 𝑗 )) .

2.3 Correctness of CMSHL
We need the following Proposition to prove Theorem 2.7.

Proposition 2.6. The output factors 𝑓𝜌 ∈ Z𝑝 [𝑥,𝑦] (1 ≤ 𝜌 ≤ 𝑟 )
from Algorithm 2 (non-monic BHL) are uniquely determined.

Proof. The multi-term Diophantine equation (step 19) gives

unique solutions
¯𝑓𝜌,𝑘 with deg( ¯𝑓𝜌,𝑘 , 𝑥) < deg(𝑓𝜌,0, 𝑥) (Theorem 2.6

in [8]). By construction in step 21, 𝑓𝜌,𝑘 = 𝛾𝑘𝑥
𝑑𝑓𝜌,0 + ¯𝑓𝜌,𝑘 , where

𝛾𝑘𝑥
𝑑𝑓𝜌,0

is the leading term of 𝑓𝜌,𝑘 . Thus, the leading coefficients of

𝑓𝜌,𝑘 do not change, and the solution 𝑓
(𝑘+1)
𝜌 = 𝑓𝜌,0 + 𝑓𝜌,1 (𝑦 − 𝛼) +

· · · + 𝑓𝜌,𝑘 (𝑦 − 𝛼)𝑘 obtained at the 𝑘th iteration (step 21) is uniquely

determined.

Since lc(lc(𝑎, 𝑥), 𝑦) = 1, for each
˜𝑓𝜌 = primpart(𝑓𝜌 (𝑥,𝑦), 𝑥)),

lc(lc(
˜𝑓𝜌 , 𝑥), 𝑦) = 1 and

˜𝑓𝜌 ’s (1 ≤ 𝜌 ≤ 𝑟 ) are also uniquely deter-

mined. This means

𝑎 =

𝑟∏
𝜌=1

˜𝑓𝜌 ∈ Z𝑝 [𝑥,𝑦] . (8)

By evaluating (8) at 𝑦 = 𝛼 , we get

𝑎 |𝑦=𝛼 = ˜𝑓1 ˜𝑓2 · · · ˜𝑓𝑟 |𝑦=𝛼 = b 𝑓1,0 𝑓2,0 · · · 𝑓𝑟,0 ∈ Z𝑝 [𝑥] .

Since Z𝑝 [𝑥] is a UFD, there exists [𝜌 ∈ Z𝑝 (1 ≤ 𝜌 ≤ 𝑟 ) s.t. ˜𝑓𝜌 (𝑦 =

𝛼) = (1/[𝜌 ) 𝑓𝜌,0 (1 ≤ 𝜌 ≤ 𝑟 ).

Define 𝑓𝜌 := [𝜌 ˜𝑓𝜌 (𝑥,𝑦) (1 ≤ 𝜌 ≤ 𝑟 ). Since Z𝑝 [𝑥,𝑦] is also a UFD,

𝑎 =

𝑟∏
𝜌=1

˜𝑓𝜌 =

∏𝑟
𝜌=1

𝑓𝜌∏𝑟
𝜌=1

[𝜌
= b

𝑟∏
𝜌=1

𝑓𝜌 ∈ Z𝑝 [𝑥,𝑦],

where b = 1/(∏𝑟
𝜌=1

[𝜌 ), and 𝑓𝜌 ’s are uniquely determined. □

Theorem 2.7. Let sqf(𝑎 𝑗 ) = sqf(𝑎(𝑥1, · · · , 𝑥 𝑗 , 𝛼 𝑗+1, · · · , 𝛼𝑛))mod
𝑝 ∈ Z𝑝 [𝑥1, · · · , 𝑥 𝑗 ]. Let 𝑟 be the number of square-free factors of
𝑎 ∈ Z[𝑥1, · · · , 𝑥𝑛] and Λ =

∏𝑟
𝜌=1

_𝜌 ∈ Z. Let ˆ𝑓𝜌,𝑗 ∈ Z𝑝 [𝑥1, · · · , 𝑥 𝑗 ]
be the output factors after the jth Hensel lifting step of CMHSL (Al-
goirhtm 1). Then,

sqf(𝑎 𝑗 ) = Λ
𝑟∏

𝜌=1

ˆ𝑓𝜌,𝑗 mod 𝑝, (9)

for all 1 ≤ 𝑗 ≤ 𝑛.

Proof. We want to show that (9) is satisfied for each 𝑗 (1 ≤ 𝑗 ≤
𝑛). The first Hensel lifting step ( 𝑗 = 1) is the initial input, and (9) is

satisfied. For 𝑗 = 2, it is a bivariate Hensel lift, and from Proposition

2.6, (9) is satisfied.

Suppose (9) is satisfied at the beginning of Hensel lifting step 𝑗 ,

i.e. (9) is satisfied for 𝑗 − 1. Before each bivariate Hensel lift,

sqf(𝑎 𝑗 (𝑥1, 𝑌𝑘 , 𝛼 𝑗 )) = Λ
∏

ˆ𝑓𝜌,𝑗−1 (𝑥1, 𝑌𝑘 ) mod 𝑝

⇒ monic(sqf(𝑎 𝑗 (𝑥1, 𝑌𝑘 , 𝛼 𝑗 ))) = Λ/𝑙𝑐𝐴𝑠𝑓
∏

ˆ𝑓𝜌,𝑗−1 (𝑥1, 𝑌𝑘 ) mod 𝑝.
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And after each BHL, Proposition 2.6 ensures unique
ˆ𝑓𝜌 𝑗
’s s.t.

monic(sqf(𝑎 𝑗 (𝑥1, 𝑌𝑘 , 𝑥 𝑗 ))) = Λ/𝑙𝑐𝐴𝑠𝑓
∏

ˆ𝑓𝜌,𝑗 (𝑥1, 𝑌𝑘 , 𝑥 𝑗 ) mod 𝑝

⇒ sqf(𝑎 𝑗 (𝑥1, 𝑌𝑘 , 𝑥 𝑗 )) = Λ
∏

ˆ𝑓𝜌,𝑗 (𝑥1, 𝑌𝑘 , 𝑥 𝑗 ) mod 𝑝.

After all bivariate Hensel lifts, Vandermonde solves give unique

solutions for coefficients 𝑐𝜌,𝑙𝑘 to recover
ˆ𝑓𝜌,𝑗 . Therefore,

sqf(𝑎 𝑗 ) = Λ
𝑟∏

𝜌=1

ˆ𝑓𝜌,𝑗 mod 𝑝.

□

3 IMPLEMENTATION RESULTS
Before presenting the complexity analysis, we would like to show

our timing benchmarks. We have made a hybrid Maple + C im-

plementation to our new algorithm. The main program is coded

in Maple with major subroutines coded in C. The following sub-

routines in each Hensel lifting step are coded in C to speed up the

computation:

• Step 10: Probes to the black box B and dense interpolation,

• Step 16: Evaluations of the factors
ˆ𝑓𝜌,𝑗−1,

• Step 19: Non-monic bivaraite Hensel lifts,

• Stpe 25: Vandermonde solves.

For step 10, the matrix 𝐴 is converted to a list of polynomials to

be passed into a C program for evaluations (BB eval). After evaluat-

ing each polynomial entry, another C program is called to calculate

its determinant in Z𝑝 (BB det). To compute 𝐴𝑘 = 𝑎 𝑗 (𝑥1, 𝑌𝑘 , 𝑥 𝑗 ), we
acquire 𝑂 (𝑑1𝑑 𝑗 ) such evaluations and then perform dense interpo-

lations to get this bivariate image.

For step 16, we evaluate the polynomials
ˆ𝑓𝜌,𝑗−1 using two arrays

for each factor. One array stores the coefficients of
ˆ𝑓𝜌,𝑗−1 in 𝑥1,

the other array stores its monomial evaluations. This enables us to

make use of the previous evaluation points, since our evaluation

points (𝛽𝑘
2
, · · · , 𝛽𝑘

𝑗−1
) are simply powers of the 𝛽𝑖 ’s. For details of

this step, see also [5].

Step 19 uses the new cubic bivariate Hensel lifting (BHL) algo-

rithm developed by Monagan and Paluck [23] in 2022. One multi-

factor BHL costs 𝑂 (𝑑1𝑑
2

𝑗
+ 𝑑2

1
𝑑 𝑗 ) arithmetic operations in Z𝑝 .

The Vandermonde solves in step 25 use the classical algorithm

of Zippel [33]. It does 𝑂 (𝑠2

𝜌,𝑖
) arithmetic operations in Z𝑝 .

3.1 Benchmarks
We present two timing benchmarks. All timings were obtained

on 2 Intel Xeon E5-2660 8 core CPUs with 64 GB RAM. We used

𝑝 = 2
62 − 57 and �̃� = 4001.

The first benchmark presents timings to compute the determi-

nants of matrices 𝐵𝑛 , where each 𝐵𝑛 consists of four factors. For

example, 𝐵4 is of size 8 × 8 and it has 4 variables:

𝐵4 =



𝑢𝑣𝑤 𝑣 𝑢𝑣𝑤 + 𝑣 +𝑤 ... 𝑢𝑣𝑤 + 𝑣
𝑣 𝑢𝑣𝑤 𝑢𝑣𝑤 + 2𝑣 ... 𝑢𝑣𝑤 + 𝑣
𝑤 𝑣 𝑢𝑣𝑤 + 𝑣 +𝑤 ... 𝑣 +𝑤
.
.
.

.

.

.
.
.
.

. . .
.
.
.

𝑤 𝑣 𝑢𝑣𝑤 + 𝑣 +𝑤 ... 2𝑣𝑤𝑥 + 2𝑢𝑥 + 3𝑣 + 4𝑤


.

det(𝐵) = − (−𝑣2𝑤2𝑥2 + 𝑢𝑣𝑤𝑥2 + 𝑣𝑤2𝑥 − 𝑢𝑤𝑥 + 𝑣2 − 2𝑣𝑤 +𝑤2)
(𝑣2𝑤2𝑥2 + 𝑢𝑣𝑤𝑥2 + 𝑣𝑤2𝑥 + 𝑢𝑤𝑥 − 𝑣2 − 2𝑣𝑤 −𝑤2)
(𝑢2𝑣2𝑤2 + 𝑢2𝑣𝑤𝑥 + 𝑢𝑣2𝑤 + 𝑢𝑣𝑥 − 𝑣2 − 2𝑣𝑤 −𝑤2)
(𝑢2𝑣2𝑤2 − 𝑢2𝑣𝑤𝑥 − 𝑢𝑣2𝑤 + 𝑢𝑣𝑥 − 𝑣2 + 2𝑣𝑤 −𝑤2) .

The number of terms in det(𝐵4) is 120, and each factor has 7 terms.

And the leading coefficients in each variable is non-monic, e.g.

lcoeff(𝐵,𝑢) = −𝑣6𝑤6𝑥4 + 𝑣4𝑤4𝑥6 + 𝑣4𝑤6𝑥2 − 𝑣2𝑤4𝑥4,

lcoeff(𝐵, 𝑣) = 𝑢4𝑤8𝑥4 − 2𝑢4𝑤6𝑥2 − 3𝑢2𝑤6𝑥4 + 𝑢4𝑤4 + 6𝑢2𝑤4𝑥2

+𝑤4𝑥4 − 3𝑢2𝑤2 − 2𝑤2𝑥2 + 1.

All the matrices we used for our benchmarks are available online:

http://www.cecm.sfu.ca/~mmonagan/code/BBfactor/
Table 1 shows the CPU timings (in seconds) for our new algo-

rithm, compared with Maple and Magma’s current best determi-

nant and factorization algorithms. We used Maple 2022 and Magma

V2.25-5 to compute the determinants of 𝐵𝑛 and factored them.

Maple 2022 uses Monagan and Tuncer’s algorithm MTSHL [22] for

factoring multivariate polynomials. The timings for Maple det were

obtained by using Gentleman and Johnson’s algorithm [10].

In Table 1, 𝑛 is the number of variables of 𝑎 = det(𝐵𝑛) ∈
Z[𝑥1, · · · , 𝑥𝑛]. The size of matrix 𝐵𝑛 is of 𝑁 × 𝑁 with 𝑁 = 2𝑛.

#𝑓𝑖 ’s are the number of terms in each factor of 𝑎. # det(𝐵𝑛) is the
number of terms of det(𝐵𝑛) in expanded form. CMSHL tot is the

total time for our algorithm, and probes tot is the total number

of probes to the black box B for CMHSL. Maple det is the time

for determinant computation in Maple and Maple fac is the time

for Maple’s factorization. Similarly for the last section of Magma’s

timings.

We see that our algorithm outperformed both Maple and Magma

at 𝑛 = 5. At 𝑛 = 7, our algorithm is more than 100 times faster

than Maple and Magma. At 𝑛 = 8, Maple ran out of memory at

computing det(𝐵8) and CMSHL only took 19.68 seconds in total.

Table 2 shows a breakdown of timings for each subroutine at

Hensel lifting the last variable 𝑥𝑛 . The number 𝑠 is the number of

bivariate images needed at the last Hensel lifting step (𝑠 is defined

in 7 of Algorithm 1). BB tot is the total time for step 10 (probes to

the black box B). BB eval is the time for evaluating the polynomial

entries of the matrix 𝐵𝑛 . BB det is the time for computing the

determinant in Z𝑝 . Eval ˆ𝑓𝜌,𝑗 is the time for evaluating the factors

𝑓𝜌,𝑗−1 at step 16. BHL is the time for bivariate Hensel lifts at step

19. VSolve is the time for Vandermonde solves at step 25.

The first benchmark is non-monic but square-free and the matri-

ces are relatively small. We tested more examples for non-square-

free and non-primitive cases, and the matrices are much larger.

Table 3 shows timings for four different matrices with various 𝑛

and 𝑁 . For example, heron3d is of 13 × 13 and it has the following

determinant with 7 variables:

det(𝐴) = 64𝑎𝑠7 (𝑎𝑠 − 𝑏𝑠 + 𝑐𝑠) (𝑎𝑠 − 𝑏𝑠 − 𝑐𝑠) (𝑎𝑠 + 𝑏𝑠 + 𝑐𝑠) (𝑎𝑠+𝑏𝑠−𝑐𝑠)
(𝑎𝑠4𝑒𝑠2 + 𝑎𝑠2𝑏𝑠2𝑐𝑠2 − · · · − 𝑐𝑠2𝑒𝑠2 𝑓 𝑠2 + 144𝑣𝑜2)2︸                                                           ︷︷                                                           ︸

23 terms

In Table 3, 𝑛 is the number of variables, the size of matrices are

of 𝑁 × 𝑁 . 𝑟 is the number of square-free factors of 𝑎. #𝑓𝑖 are the
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Table 1: Timings (in seconds) for computing det(𝐵𝑛)

𝑛 5 6 7 8 9

𝑁 = 2𝑛 10 12 14 16 18

#𝑓𝑖 12,7 32,32 56,30 167,167 153,294

12,7 32,32 56,30 167,167 253,294

# det(𝐵𝑛) 701 5162 79740 1716810 7490224

CMSHL tot 0.257 0.972 3.618 19.677 40.219

probes tot 2112 6453 19584 85189 145065

Maple det 0.455 7.880 382.80 > 64 gigs N/A

Maple fac 0.109 0.326 1.270 N/A N/A

Maple tot 0.564 8.206 384.07 N/A N/A

Magma det 1.680 6.290 594.60 > 3h N/A

Magma fac 0.120 0.480 33.140 N/A N/A

Magma tot 1.800 6.770 627.74 N/A N/A

Table 2: Breakdown of timings for H.L. 𝑥𝑛 .

𝑛 5 6 7 8 9

𝑁 = 2𝑛 10 12 14 16 18

H.L. 𝑥𝑛 total 0.088 0.385 0.868 5.931 12.163

𝑠 (H.L. 𝑥𝑛) 9 25 31 131 201

BB tot 0.028 0.138 0.429 3.389 7.678

BB eval 0.017 0.083 0.322 2.639 5.936

BB det 0.004 0.038 0.078 0.450 1.015

Eval
ˆ𝑓𝜌 𝑗−1 0.001 0.014 0.015 0.074 0.128

BHL 0.003 0.012 0.018 0.050 0.082

VSolve 0.001 0.007 0.007 0.016 0.020

number of terms in each square-free factor and 𝑒𝑖 are the corre-

sponding powers for those factors in det(𝐴) (as factored form). The

number max _𝜌 is the maximum of _𝜌 (1 ≤ 𝜌 ≤ 𝑟 ), computed from

rational number reconstruction, after the last Hensel lifting step.

We compared our timings with Maple’s determinant computation

and factorization. Maple ran out of memory for computing the

determinant of heron4d.

Table 4 shows a breakdown of timings for our algorithm at

the last Hensel lifting step. The matrix robotarms has a relatively

smaller size (20 × 20), but it has larger number of terms (about 100)

in each polynomial entry. We can see that BB tot is much larger for

robotarms than heron4d. heron5d is a much larger matrix, and BB

tot is the bottleneck.

4 COMPLEXITY ANALYSIS WITH FAILURE
PROBABILITIES

First, we state the Schwartz-Zippel Lemma [26, 31]:

Lemma 4.1. Let 𝐹 be a field and 𝑓 ∈ 𝐹 [𝑥1, 𝑥2, · · · , 𝑥𝑛] (𝑓 ≠ 0)
with total degree 𝑑 and let 𝑆 ⊆ 𝐹 . Then the number of roots of 𝑓 in
𝑆𝑛 is at most 𝑑 |𝑆 |𝑛−1. Hence if 𝛽𝛽𝛽 is chosen at random from 𝑆𝑛 then
Pr[𝑓 (𝛽𝛽𝛽) = 0] ≤ 𝑑

|𝑆 | .

We have the following bound of failure probability for the j
th

Hensel lifting step of Algorithm CMSHL:

Table 3: Timings (in seconds) for computing determinants of
large matrices.

heron3d heron4d robotarms heron5d

𝑛 7 11 8 16

𝑁 × 𝑁 13 × 13 63 × 63 20 × 20 399 × 399

𝑟 6 4 3 8

#𝑓𝑖 3,23,3, 22,1, 2124,4,7 823,130,22,3

3,1,3 6,131 3,3,3,1

𝑒𝑖 1,2,1, 2,37, 1,4,4 8,8,20,46

1,7,1 7,4 46,46,1831

# det(𝐴) 525 37666243 178053 -

max _𝜌 1 1 169 1

CMSHL tot 1.096 81.376 1083.335 155054.324

probes tot 8560 339840 540834 36008392

Maple det 0.614 O/M N/A N/A

Maple fac 0.084 O/M N/A N/A

Maple tot 0.698 - - -

Table 4: Breakdown of timings (in seconds) at H.L. 𝑥𝑛 .

heron3d heron4d robotarms heron5d

𝑛 7 11 8 16

𝑁 × 𝑁 13 × 13 63 × 63 20 × 20 399 × 399

H.L. 𝑥𝑛 tot 0.229 16.612 441.593 10361.995

s 13 85 806 571

BB tot 0.046 12.801 421.366 9940.302

BB eval 0.028 5.428 415.676 4809.717

BB det 0.011 6.507 7.193 5087.231

Eval
ˆ𝑓𝜌,𝑗−1 0.011 0.132 0.374 0.467

BHL 0.005 0.023 0.298 0.196

VSolve 0.003 0.001 0.333 0.021

Proposition 4.2. Let 𝑝 be a large prime. Let 𝑟 be the number of fac-
tors of sqf(𝑎). Let 𝑑 = deg(𝑎), ˜𝑑 = deg(sqf(𝑎)), ˜𝑑 𝑗 = deg(sqf(𝑎), 𝑥 𝑗 )
and 𝑠 be the number defined at step 7 in Algorithm 1. Let #

ˆ𝑓𝜌,𝑗−1

denote the number of terms in the input factors ˆ𝑓𝜌,𝑗−1 at the jth Hensel
lifting step of Algorithm CMSHL. Then, Algorithm 1 fails to compute
ˆ𝑓𝜌,𝑗 ∈ Z𝑝 [𝑥1, · · · , 𝑥 𝑗 ] with a probability less than

((𝑟2 − 𝑟 + 2) ˜𝑑2 + 2𝑑)𝑠2 + (2 ˜𝑑2 + ˜𝑑
∑𝑟

𝜌=1
#

ˆ𝑓𝜌,𝑗−1 + 2𝑑)𝑠
2(𝑝 − 1)︸                                                                    ︷︷                                                                    ︸

step 6,11,13,17,18

+
˜𝑑2

𝑗

∑𝑟
𝜌=1

#
ˆ𝑓𝜌,𝑗−1

𝑝 − ˜𝑑 𝑗 + 1︸               ︷︷               ︸
Lemma 2.2

. (10)

Proof. For step 13, let 𝐴𝑘 = 𝐴𝑘/𝑔𝑘 and

¯𝜕𝐴𝑘

𝜕𝑥1

=
𝜕𝐴𝑘

𝜕𝑥1

/𝑔𝑘 . Then,

deg

(
gcd

(
𝐴𝑘 ,

¯𝜕𝐴𝑘

𝜕𝑥1

)
, 𝑥1

)
> 0⇔ res

(
𝐴𝑘 ,

¯𝜕𝐴𝑘

𝜕𝑥1

, 𝑥1

)
= 0.



ISSAC 2023, July 24–27, 2023, Tromsø, Norway Chen and Monagan

Let 𝑎 𝑗 = 𝑎 𝑗/𝑔 𝑗 and
¯𝜕𝑎 𝑗

𝜕𝑥1

=
𝜕𝑎 𝑗

𝜕𝑥1

/𝑔 𝑗 where 𝑔 𝑗 := gcd(𝑎 𝑗 ,
𝜕𝑎 𝑗

𝜕𝑥1

) ∈

Z𝑝 [𝑥1, · · · , 𝑥 𝑗 ]. Define 𝑅 := res

(
𝑎 𝑗 ,

¯𝜕𝑎 𝑗

𝜕𝑥1

, 𝑥1

)
∈ Z𝑝 [𝑥2, · · · , 𝑥 𝑗 ] (for

simplicity, we assume 𝑅 ≠ 0). Let 𝑅𝑘 := 𝑅(𝑥𝑘
2
, · · · , 𝑥𝑘

𝑗−1
, 𝑥 𝑗 ) and

𝑆 =
∏𝑠

𝑘=1
𝑅𝑘 .

Algorithm CMSHL step j fails at step 13 if 𝑅(𝑌𝑘 , 𝑥 𝑗 ) = 0 for some

𝑘 . Let (𝛽2, · · · , 𝛽 𝑗 ) be chosen at random from Z
𝑗−1

𝑝 ,

Pr[𝑅(𝑌𝑘 , 𝑥 𝑗 ) = 0 for some 𝑘] = Pr[𝑆 (𝛽2, · · · , 𝛽 𝑗−1, 𝑥 𝑗 ) = 0]
≤ Pr[𝑆 (𝛽2, · · · , 𝛽 𝑗−1, 𝛽 𝑗 ) = 0]

≤ deg(𝑆)
𝑝 − 1

by Lemma 4.1.

Now,

deg(𝑆) =
𝑠∑︁

𝑘=1

deg(𝑅𝑘 ) <
𝑠∑︁

𝑘=1

2𝑘 ˜𝑑2 = ˜𝑑2𝑠 (𝑠 + 1) .

Thus, CMSHL step j fails at step 13 with a probability less than

˜𝑑2𝑠 (𝑠 + 1)
𝑝 − 1

.

The proofs for failure probabilities at step 6, 11, 17, 18 follow

from [21] and [4]. And we have the following:

Pr[step 6 fails at step j] <

˜𝑑𝑠
∑𝑟

𝜌=1
#

ˆ𝑓𝜌,𝑗−1

2(𝑝 − 1) ,

Pr[step 11 fails at step j] <
𝑑𝑠 (𝑠 + 1)
2(𝑝 − 1) ,

Pr[step 17 fails at step j] <
˜𝑑𝑠 (𝑠 + 1)
2(𝑝 − 1) ,

Pr[step 18 fails at step j] <
˜𝑑2𝑠2𝑟 (𝑟 − 1)

2(𝑝 − 1) .

Adding up the above, we get the first term in (10). The second term

in (10) comes directly from Lemma 2.2.

□

We have the following theorem for the complexity of CMSHL:

Theorem 4.3. Let 𝑝 be a large prime and �̃� < 𝑝 , �̃� ∈ Z+. Let
𝑎 ∈ Z[𝑥1, · · · , 𝑥𝑛] and𝛼𝛼𝛼 = (𝛼2, · · · , 𝛼𝑛) ∈ Z𝑛−1

𝑝 be randomly chosen
such that 0 < 𝛼𝑖 < �̃� . Suppose 𝛼𝛼𝛼 is Hilbertian and condition (i) of the
input of CMSHL is satisfied. Then, with a high probability of success,
the total number of arithmetic operations in Z𝑝 in the worst case for
lifting ˆ𝑓𝜌,1 to ˆ𝑓𝜌,𝑛 using Algorithm CMSHL in 𝑛 − 1 steps is

𝑂
©«(𝑛 − 2)𝑠max𝑑max

©«
𝑟∑︁

𝜌=1

#
ˆ𝑓𝜌,𝑗−1 + 𝑑2

1
+ 𝑑1𝑑max + 𝑑1C(probe B)ª®¬ª®¬ .

(11)

where 𝑑1 = deg(𝑎, 𝑥1), 𝑑max = max
𝑛
𝑗=2
(deg(𝑎, 𝑥 𝑗 )), 𝑠max = max(𝑠 𝑗 )

where 𝑠 𝑗 is the number 𝑠 defined at step 7 of Algorithm 1 and C(probe
B) is the cost of one probe to the black box B. The total number of
probes to the black box is 𝑂 (𝑛𝑑1𝑑max𝑠max).

Proof. Let 𝑑 𝑗 = deg(𝑎, 𝑥 𝑗 ), ˜𝑑1 = deg(sqf(𝑎), 𝑥1) and ˜𝑑 𝑗 =

deg(sqf(𝑎), 𝑥 𝑗 ). For step 10, we use dense interpolations to get

a bivariate image 𝑎 𝑗 (𝑥1, 𝑌𝑘 , 𝑥 𝑗 ). Thus, it requires 𝑂 (𝑑1𝑑 𝑗 ) probes

to B and𝑂 (𝑑1𝑑
2

𝑗
+𝑑2

1
𝑑 𝑗 ) arithmetic operations in Z𝑝 for one image.

The total cost for step 10 for CMHSL step j is𝑂 (𝑠 (𝑑1𝑑 𝑗C(probe B)))
plus 𝑂 (𝑠 (𝑑2

1
𝑑 𝑗 + 𝑑1𝑑

2

𝑗
)) operations in Z𝑝 for dense interpolations.

For step 12, we can use Brown’s GCD algorithm [3] for GCDs

in Z𝑝 [𝑥1, 𝑥 𝑗 ] which costs 𝑂 (𝑑2

1
𝑑 𝑗 + 𝑑1𝑑

2

𝑗
) arithmetic operations in

Z𝑝 . An alternative with the same asymptotic cost would be to use

the bivariate Hensel lifting of Monagan and Paluck [23]. The total

cost for step 12 for step j of Algorithm CMSHL is𝑂 (𝑠 (𝑑2

1
𝑑 𝑗 +𝑑1𝑑

2

𝑗
))

operations in Z𝑝 .
The proofs of the following steps follow from [4]. We give the

total count of arithmetic operations in Z𝑝 for step j:

Step 16 costs 𝑂 (𝑠∑𝑟
𝜌=1

#
ˆ𝑓𝜌,𝑗−1).

Step 19 costs 𝑂 (𝑠 ( ˜𝑑2

1

˜𝑑 𝑗 + ˜𝑑1
˜𝑑2

𝑗
)) ⊆ 𝑂 (𝑠 (𝑑2

1
𝑑 𝑗 + 𝑑1𝑑

2

𝑗
)).

Step 25 costs 𝑂 (𝑠 ˜𝑑 𝑗
∑𝑟

𝜌=1
#

ˆ𝑓𝜌,𝑗−1).
Adding up, we get the total number of arithmetic operations in

Z𝑝 for step j of Algorithm CMSHL:

𝑂
©«𝑠

(
𝑑2

1
𝑑 𝑗 + 𝑑1𝑑

2

𝑗

)
+ 𝑠 ˜𝑑 𝑗

𝑟∑︁
𝜌=1

#
ˆ𝑓𝜌,𝑗−1 + 𝑠𝑑1𝑑 𝑗C(probe B)ª®¬ . (12)

And (11) follows from (12).

□

The following theorem gives the complexity and the number of

probes to the black box by Rubinfeld and Zippel’s algorithm [25]:

Theorem 4.4. Let 𝑎 be a square-free polynomial over Q with
𝑛 variables and let 𝑟 be the number of factors of 𝑎. To determine
the factors of 𝑎 with high likelihood of success, the total number of
arithmetic operations by Rubinfeld and Zippel’s algorithm [25] is
𝑂 (𝑛2𝑑3

max
#𝑓 3

max
+ 𝑛4𝑑10

max
#𝑓max) and the number of probes to the

black box is 𝑂 (𝑑1 (𝑟𝑛𝑑max)2#𝑓max), where #𝑓max = max
𝑟
𝜌=1

#𝑓𝜌 .

Rubinfeld and Zippel’s algorithm [25] is the best known algo-

rithm for Approach I. However, our algorithm CMSHL requires

much less number of probes to the black box since 𝑠max < #𝑓max.

5 CONCLUSION AND FUTUREWORK
We have contributed a new black box factorization algorithm that

handles the non-monic, non-square-free and non-primitive cases.

Our benchmarks show that our algorithm is much faster thanMaple

andMagma’s current best determinant and factorization algorithms.

We give a complexity analysis with failure probabilities. The number

of probes the black box in our new algorithm is much less than

Approach I by Rubinfeld and Zippel’s algorithm [25].

From our benchmarks, the bottleneck of our algorithm is probes

to the black box. One way to speed this up is to use the previous

evaluation points for polynomial evaluations. Also, our algorithm

is highly parallelizable. We hope to design a parallel algorithm to

further speed up the computation.
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