
A Compact Parallel Implementation of F4

Michael Monagan
Department of Mathematics

Simon Fraser University
Burnaby, B.C. V5A 1S6, CANADA.

mmonagan@cecm.sfu.ca

Roman Pearce
Department of Mathematics

Simon Fraser University
Burnaby, B.C. V5A 1S6, CANADA.

rpearcea@cecm.sfu.ca

ABSTRACT
We present a compact and parallel C implementation of the
F4 algorithm for computing Gröbner bases which uses Cilk.
We give an easy way to parallelize the sparse linear algebra
which is the main cost in practice. To obtain more speedup
we attempted to parallelize the generation of sparse matrices
as well. We present timings to assess the effectiveness of our
approach and to compare our implementation to others.

1. INTRODUCTION
Gröbner bases are a useful tool in computer algebra that

can also be expensive to compute. Thus, they are a natural
target for parallelization. There are three main algorithms
for computing Gröbner bases: the Buchberger algorithm [1],
the F4 algorithm by Faugère [4], and the F5 algorithm also
by Faugère [5]. The ideas in F5 have also been generalized
to produce several other algorithms, see [3] for a survey.

Attempts to parallelize Gröbner basis computations have
a long history; see Vidal [17], Revees [15], and Leykin [10].
Recently, authors have focused on parallelizing the sparse
linear algebra used in F4 and F5. Faugere and Lachartre [6]
partition the matrix into regions [[A |B], [C |D]] where A is
upper triangular, the columns of A and C correspond to the
monomials that are reducible, and we compute D−CA−1B
and triangularize it to obtain new basis elements. A similar
scheme is proposed by Neumann in [13]. An advantage of
our approach is that it is very easy to implement.

In fact, a goal of this paper is to show how to implement
a version of F4 that is compact, fast, and easy to parallelize.
Our C library is under 30KB and computes Gröbner bases
modulo a 31-bit prime. Some additional Maple code allows
us to compute over Q via Chinese remaindering and rational
reconstruction. We obtain good performance and reasonable
parallel speedup in both cases.

Our paper is organized as follows. Section 2 describes the
F4 algorithm and our approach to implementing it. Section
3 presents benchmarks and an assessment of our approach.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

2. F4 ALGORITHM
To compute a Gröbner basis, the F4 algorithm inserts all

of the initial polynomials into the basis and generates a set
of S-pairs. It then proceeds in five steps:

1. A subset of S-pairs are selected, normally those having
lowest lcm degree. For each S(gi, gj) = X · gi − Y · gj
it constructs the polynomials X · gi and Y · gj .

2. Symbolic preprocessing loops over all the polynomials
and for each reducible monomial m, divisible by the
leading term of some gi, it constructs (m/LM(gi)) · gi
and loops over that polynomial as well.

3. The set of monomials encountered in step 2 is sorted in
the term order, the position becomes a column index,
mapping the polynomials to rows of a matrix.

4. Gaussian elimination is performed on the matrix.

5. Rows whose leading monomial is not divisible by the
basis are added to the basis; new pairs are generated.

To remove redundant pairs we use the Gebauer and Möller
criteria [7].

Faugère described two optimizations in [4]. First, he uses
a simplify function to rewrite polynomials. Given X · gi he
searches previous matrices for a row Y · gi with Y |X. If one
is found, he replaces X · gi with (X/Y) · h where h is taken
from the row reduced matrix and LM(h) = LM(Y · gi). He
then simplifies (X/Y) · h recursively if X 6= Y .

Second, Faugère adopts a complicated storage scheme to
compress the matrices. He stores the coefficients of each gi
and reuses them for each X · gi (changing only the indices),
which saves a factor of two in space. He also suggests that
rather than store the indices, one can store their differences
which often fit into bytes. That saves up to a factor of four
over 32-bit indices.

In an early version of our software we experimented with
associating a polynomial to each monomial and simplifying
as suggested by Faugère, but we did not observe a speedup.
We decided against implementing Faugère’s storage scheme
because it would complicate the code and we do not appear
to need the memory savings. Recall that Faugére computed
Gröbner bases of cyclic-9 in the late 1990’s and faced severe
memory constraints. A typical machine of the era may have
only 500 MB of RAM. Nowadays, we can “throw hardware
at the problem” and use solid state hard drives for swap. In
our opinion, large Gröbner basis computations are probably
limited more by time than memory despite the introduction
of multicore CPUs.

2.1 Polynomial Representation
Polynomials in Zp[x1, ..., xn] with p < 231 are represented

as arrays of 32-bit integers. The first word stores the length
of the array, followed by pairs of monomials and coefficients
sorted in a monomial ordering. Borrowing an idea from the
Magma computer algebra system, monomials are an index
into a block of memory, and hashing is used to make them
unique [16]. Once a monomial is created it persists over the
course of an entire Gröbner basis computation. We tried to
garbage collect them, but this did not improve our timings.

Attached to each monomial we store its degree, which is
used for comparisons, a hash value to prevent recalculation,
a cache for divisions by the basis, and a column index that
is used to map polynomials to matrix rows for elimination.

To hash monomials xe1
1 · · ·xen

n we compute h =
∑n

i=1 riei
where the ri are random integers chosen at the outset. The
hash table size is a power of two, and we use the quadratic
probing method of Hopgood and Davenport [8]. The value
of h is stored in the monomial to accelerate probes.

We tested the following idea, due to Faugere and used in
Magma [16]. When multiplying two monomials, their hashes
are added and a lookup is performed to find the product in
the table if it exists. The scheme is very effective at finding
products and it made monomial multiplications 20% faster.

Our main goal in designing the monomial representation
was to accelerate symbolic preprocessing, which consists of
dividing each monomial by the Gröbner basis, and for those
which divide, multiplying the basis element by a monomial.
In each monomial we store an index into the basis to let us
continue dividing where we left off. After row reduction, we
use the index to identify rows whose leading element is not
reducible by the basis. These rows are added to the basis.

Finally, the monomials contain a field for a column index.
After symbolic preprocessing, we collect all the monomials
that appear in the matrix, sort them into descending order,
and assign them indices. The column index field is used to
map monomials to column indices for Gaussian elimination.

2.2 Gaussian Elimination
The main source of parallelism in F4 is from sparse linear

algebra. This takes the majority of time, and as we will see,
it is relatively simple to parallelize. An n×m sparse matrix
is represented as an array of pointers to rows. The rows are
arrays with a length followed by pairs of column indices and
coefficients sorted in descending order. An overview of the
elimination process is shown in Figure 1.

To perform row reduction, we use two auxiliary arrays of
length m. The first, called pivots, is initialized to zero, and
when we encounter a new pivot xj which is the leading term
of some reduced row ri we assign pivotsj := ri. This allows
us look up a reducer for column j in constant time.

The second array is a dense buffer that is used to reduce
rows. A row to be reduced is moved into the buffer, and we
loop over the buffer contents in descending order, cancelling
non-zero elements for which a pivot is known. If the result
is not zero, we copy the buffer contents to a new sparse row,
make it monic, and insert that row into the pivots array.

Our implementation uses 32-bit words for the rows of the
matrix, 64-bit integers for the buffer, and row reduces mod
a 31-bit prime p. To prevent overflow when subtracting c ·~a
from the buffer, we add p2 if the value becomes negative, as
shown in the listing of the innermost loop below. We found
that using 32-bit integers produced a savings of around 5%,

Figure 1: Data structures for Gaussian elimination.

Buffer

Rows

Pivots

1

1

1

n

m

m

Input

Matrix

while unrolling the innermost loop below saved up to 34%.
We attempted to vectorize the loop without success. Lastly,
we tried replacing the % operator with multiplications but
this had no effect as all of the time is in the innermost loop.

for (i=lt; i >= 0; i--) {

c = buffer[i];

if (c) c %= p;

buffer[i] = c;

if (!c) continue;

a = pivots[i];

if (a==NULL) continue;

// subtract c times row a from the buffer mod p

buffer[i] = 0;

for (j=3; j < a[0]; j+=2) {

t = buffer[a[j]];

t -= c * a[j+1];

t += (t >> 63) & p2; // t = (t<0) ? t+p2 : t;

buffer[a[j]] = t;

}

}

Several optimizations are important for the F4 algorithm.
First, our implementation sorts the matrix so that rows are
examined by increasing leading column. Secondly, we avoid
reducing rows whose leading term is a new pivot – these are
inserted directly into the pivots array, bypassing the buffer.
In an earlier version of our code, we tried reducing all rows
and re-using them in later matrices, but this never paid off.
It also does not pay to perform only top reductions, that is,
reducing rows just until a new pivot is found.

To parallelize this algorithm, each thread is given its own
buffer to work in, and the reduction of each row is spawned
as a task [2]. If the resulting row is non-zero, it is added to
the pivots array using an atomic compare and swap. Should
the CAS operation fail, the row is copied back to the buffer
and reduced again, in which case we do more work than the
sequential algorithm. Table 1 shows the total CPU time for
sparse linear algebra as the number of threads increases, on
an Intel Xeon E5-2680v2 2.8 GHz with 20 cores. On smaller
problems there is a substantial increase in work due to this
issue of extra work performed by threads under contention.
On larger problems we obtain better speedups.

Table 1: CPU time and speedup for linear algebra.

CPU 1 2 4 8 12 16 20
cyclic-7 0.080 0.110 0.150 0.220 0.250 0.300 0.320
cyclic-8 1.920 2.080 2.260 2.500 2.910 3.060 3.210
cyclic-9 261.540 272.340 278.790 295.740 355.380 322.360 331.650
katsura-9 0.330 0.390 0.450 0.540 0.660 0.690 0.740
katsura-10 2.840 2.900 3.040 3.320 3.660 3.800 3.950
katsura-11 17.330 17.820 18.450 19.480 20.840 21.060 21.430
katsura-12 267.571 281.080 292.300 315.350 337.010 351.480 359.230

speedup 1 2 4 8 12 16 20
cyclic-7 1.00 1.54 2.22 3.20 3.64 4.00 4.21
cyclic-8 1.00 1.89 3.47 5.96 7.97 9.14 10.55
cyclic-9 1.00 1.92 3.75 7.07 10.02 12.98 15.76
katsura-9 1.00 1.76 3.20 5.50 5.89 6.73 7.86
katsura-10 1.00 1.96 3.73 6.83 9.44 11.74 13.27
katsura-11 1.00 1.94 3.74 7.07 9.97 13.10 16.06
katsura-12 1.00 1.90 3.66 6.78 9.50 12.18 14.89

2.3 Amdahl’s Law
Table 2 shows a breakdown of the time spent in different

parts of the algorithm for two larger examples. On cyclic-9,
Gaussian elimination takes 85% of the total sequential time
and the speedup is 15.76x. But on the entire Gröbner basis
computation, the time drops from 305 to 60 seconds, which
is only a speedup of 5x. The result for katsura-12 is more
encouraging, the overall speedup is 8.58x. However, on this
problem Gaussian elimination is 95% of the sequential time
and its speedup is 14.89x. The times vary somewhat due to
turbo boost, which allows the processor run faster provided
the temperature stays low.

Table 2: Time breakdown for large Gröbner bases.
cyclic-9 katsura-12

1 core 20 cores 1 core 20 cores
select pairs 7.560 7.322 4.159 4.163
symbolic preproc. 24.276 24.193 8.760 8.274
poly ↔ matrix 2.584 2.712 1.227 1.341
Gaussian elim. 261.540 16.596 267.571 17.972
update pairs 9.050 9.341 0.949 1.010
inter-reduce 0.257 0.290 0.170 0.205
total time 305.267 60.454 282.836 32.965

Our lack of speedup is explained by Amdahl’s law, which
states that for times {t1, . . . , tn} with speedups {s1, . . . , sn}
the overall speedup is

t1 + t2 + · · ·+ tn
t1/s1 + t2/s2 + · · ·+ tn/sn

.

One can also see sequential costs taking a larger percentage
of the total time when running in parallel with many cores.

Amdahl’s law allows us to estimate the parallel speedup
we can achieve by optimizing or parallelizing other parts of
the program. For example, if we parallelize the construction
of matrices in the algorithm (first two rows) and we achieve
a speedup of 20x then we would expect the overall speedup
on cyclic-9 to improve from 5x to 10x. This motivated us to
try, and our results are reported in the next section.

An alternative would be to implement packed monomials
as in Magma [16]. If we pack the exponents into bytes and
use 64-bit arithmetic to multiply monomials then we might
be able to gain up to a factor of eight. That would improve
the parallel speedup on cyclic-9 from 5x to 9.3x. Note that
whether we optimize or parallelize the effects are the same,
so a small optimization to the sequential part of a program
can have a large impact on parallel speedup.

2.4 Symbolic Preprocessing
After Gaussian elimination, the next largest cost in F4 is

multiplying polynomials by monomials during the symbolic
preprocessing step. In order to parallelize more, we have to
first make our monomial operations threadsafe.

In the computation of cyclic-9, about 5% of all monomial
operations produce a new monomial. Therefore, we decided
to use a lock to protect the monomial block and hash table
from parallel writes. The next problem was how to enlarge
these structures if they fill up while other threads are using
them in parallel. We did not attempt this. Instead, when a
monomial operation has no storage available it simply fails.
We detect this, acquire more space, and restart that part of
the algorithm. In practice, we would enlarge the structures
in advance to prevent failures from occurring. Our goal was
to impose as little overhead as possible.

After several false starts we settled on a simple approach
to parallelizing symbolic preprocessing. When a polynomial
multiplication was to be performed, it would be spawned as
a task [2]. In place of the result we would temporarily store
a sentinel value, which would be overwritten on completion
of the task. Cilk makes this very easy to do, e.g.:

a[i] = SENTINEL;

a[i] = cilk_spawn poly_mult(q, g);

If the symbolic preprocessing code encountered the sentinel
it would issue a cilk_sync; and run all tasks to completion
before proceeding. In practice this was very rare, suggesting
the approach could be effective theoretically. We think this
method of programming irregular parallelism is useful.

Unfortunately it did not work out so well, and the reason
is interesting. Table 3 shows real and CPU time on cyclic-9
with parallel symbolic preprocessing on the right. Observe
the explosion of CPU time for symbolic preprocessing when
parallelism is used. We think this is due to lock contention.
While it is true that 5% of monomial operations produce a
new monomial, those operations are not evenly distributed;
they are clustered near the start of symbolic preprocessing.
This makes parallelization difficult, and we view the results
in Table 3 as an unsuccessful experiment.

Table 3: Cyclic-9: parallel symbolic preprocessing.
only Gauss elim. symbolic preproc.

real CPU real CPU
select pairs 7.598 7.598 0.708 13.770
symbolic preproc. 25.642 25.642 15.189 301.880
poly ↔ matrix 2.709 2.709 3.865 3.965
Gaussian elim. 16.754 334.430 17.269 344.940
update pairs 9.464 9.464 9.558 9.558
inter-reduce 0.302 0.302 0.308 0.308
total time 62.292 379.950 46.835 674.300

2.5 Rational Computations
The standard approach to computing Gröbner bases over

the rationals is to use a modular method, which we present
in the next section. For comparison, we implemented linear
algebra using the fraction-free approach of [12], which does
an order of magnitude less work on sparse problems. Sadly,
the intermediate expression swell we observed suggests that
direct computation of Gröbner bases over Q is not practical.

While reducing the buffer, the code maintains a common
denominator d. It also stores a denominator for each buffer
element. To cancel the leading term in the buffer, a/d, with

a row having leading coefficient b, we compute g = gcd(a, b),
d := db/g, and q = a/g, and subtract q times the row from
the buffer. The buffer entries that are modified by the row
operation are put over the common denominator using one
division and one multiplication if need be.

This method can save a significant amount of arithmetic
if the buffer is long and the rows are short, since it updates
only the entries colliding with a row, and at the same time
avoids the costly gcds of rational arithmetic. The approach
is efficient so long as the common denominator does not get
too large. Unfortunately, this blowup occurs in the Gröbner
basis computations we tested.

For example, cyclic-7 took 1 hour 40 minutes to compute.
The result has coefficients up to 293 bits, but intermediate
polynomials have coefficients up to 33431 bits. There is an
acute blowup during zero-reductions, which used arithmetic
with numbers approaching one million bits.

From this experiment we conclude that modular methods
are critically important and we should reconstruct the final
basis instead of the intermediate polynomials in each stage.

2.6 Multi-modular Computations
To compute Gröbner bases over the rationals we adopted

a multi-modular approach. The top level algorithm written
in Maple [11] calls our C library to compute Gröbner bases
modulo a set of primes. Then we use Chinese remaindering
and rational reconstruction to recover the basis over Q. We
implemented two methods: run our C library in serial with
parallel Gaussian elimination, or run our library in parallel
for several primes at once with serial Gaussian elimination.
For the second method we spawned parallel processes using
Maple’s Grid package. The Grid package adds about 10 ms
of overhead per call, which we consider acceptable.

Table 4 summarizes our results. We report the number of
primes, the time for sequential Gröbner basis computation,
the time for parallel computation with 20 threads, the time
using Maple’s Grid package which computed Gröbner bases
in batches of 20 primes, the time for Chinese remaindering,
and the time for rational reconstruction.

Table 4: Time breakdown of Gröbner bases over Q.
Gröbner bases mod p Maple code

#p seq par grid chrem recon
cyclic-7 19 3.023 2.159 1.928 0.802 0.694
cyclic-8 44 120.801 48.844 15.446 6.552 2.712

katsura-9 27 15.352 4.517 10.041 3.796 2.604
katsura-10 43 176.571 35.340 65.485 36.867 10.527

Simply calling our parallel algorithm sequentially offers a
speedup of 1.25x on cyclic-7 and 2.34x on cyclic-8, which is
disappointing. For katsura-9 we obtain a speedup of 2x and
for katsura-10 we obtain 2.7x.

The Grid method has a speedup of 5.26x on cyclic-8, but
for katsura-9 and 10 the speedup decreases to 1.32x and 2x.
We did not expect this. It turns out that reconstructing the
basis in those cases creates a significant amount of garbage,
and Maple’s garbage collection costs increase substantially.
This further slows down Chinese remaindering and rational
reconstruction in Maple (not shown).

We tried varying the batch size and number of threads to
perform fewer basis computations in parallel but with more
parallelism in each one. We also tested a pre-release version
of Maple 2015 which has a more efficient Grid package. The
times for Gröbner bases modulo p are reported in Table 5.

Table 5: Varied numbers of threads and batch size.
threads/batch 20/1 10/2 5/4 2/10 1/20

cyclic-7 2.159 3.174 1.665 1.059 0.825
cyclic-8 48.844 32.267 21.639 16.176 16.267

katsura-9 4.517 6.044 4.782 2.956 4.493
katsura-10 35.340 37.201 28.316 crash crash

Katsura-10 exposed a memory corruption bug which has
been reported to Maplesoft.

While there is clearly an advantage to computing modulo
batches of primes, there is also a disadvantage of increased
memory use which could be prohibitive on larger examples.
The (sequential) cost of Chinese remaindering and rational
reconstruction is also a problem. For katsura-9 and 10 they
limit parallel speedup to 3x and 4x respectively.

It is clear from Amdahl’s law that we have to optimize or
parallelize Chinese remaindering and rational reconstuction
to obtain better speedup. In the meantime, our parallelized
Gaussian elimination does a good job of reducing the total
time spent for a modest number of cores, e.g. four, with no
increase in space.

3. BENCHMARKS
We compared the performance of our software with FGb

in Maple 18, Magma 2.21-2, and Singular 4-0-2, running on
an Intel Xeon E5-2660 2.2 GHz (16 core) with 3 GHz turbo
speed and 64 GB of RAM, running 64-bit Linux.

FGb and Magma use the F4 algorithm and Singular uses
Buchberger’s algorithm. We also tested the signature basis
algorithm in Singular but its timings were similar.

Our first benchmark uses the short prime 32003, which is
fast for all the systems tested. Our code handles primes up
to 231 − 1 as does Singular. FGb needs a 16-bit prime, and
Magma supports any size prime but is fastest for primes up
to 11863279 (23.5 bits).

Table 6: Gröbner bases mod a short prime 32003.

16 cores 4 cores 1 core FGb Magma Singular
cyclic-7 0.135 0.146 0.197 0.194 0.140 1.330
cyclic-8 1.345 1.753 3.541 3.804 1.960 38.250
cyclic-9 73.853 139.710 411.466 433.137 166.730 –
katsura-9 0.184 0.295 0.715 1.198 0.380 8.540
katsura-10 0.964 1.850 5.356 9.608 2.540 64.030
katsura-11 6.013 14.019 45.801 76.794 18.710 685.260
katsura-12 44.481 112.127 383.921 677.874 630.010 –

The timings show that for one core we are comparable to
FGb but not as fast as Magma. We attribute that to a lack
of vectorization. With parallelization, which was fairly easy
to do, we become the fastest program. We can expect good
performance on a typical desktop machine with 4-8 cores.

The timings also show that the Buchberger algorithm can
not compete with the F4 algorithm. It is worth considering
why this is so. Recall that Buchberger’s algorithm reduces
S-polynomials one at a time. In doing so, it 1) searches the
basis for divisors for each monomial, 2) multiplies elements
of the basis by monomials, 3) subtracts polynomials using a
merge that does monomial comparisons. The F4 algorithm
amortizes all of these costs across a batch of pairs, and also
largely eliminates storage management by making the inner
loop operate in-place on a buffer.

Our next benchmark compares the systems by computing
over the rationals. We use the parallel Gaussian elimination
of Section 2.2, and reconstruct the final basis using Chinese
remaindering and rational reconstruction. FGb implements

the same strategy (we think) but it is faster than our code.
Magma is the fastest system of all. It seems to reconstruct
the intermediate polynomials instead of just the final basis.
The strategy seems to work well despite the blowup we saw
in Section 2.5. Singular’s Buchberger algorithm was unable
to compete with the modular F4 algorithms in general.

Table 7: Gröbner bases over the rationals.
16 cores 4 cores 1 core FGb Magma Singular

cyclic-7 4.237 4.416 5.436 3.175 0.820 >6825.010
cyclic-8 73.362 92.371 171.070 87.476 18.420 –
katsura-9 15.184 17.936 30.176 13.717 2.700 140.970
katsura-10 105.110 144.155 298.283 101.494 21.370 >1688.580

We were surprised that our code is competitive modulo p
yet we did not fair so well over the rationals. Clearly, there
is more to do. One idea that we have not explored yet is to
remember which rows reduce to zero in the computation for
one prime and to avoid reducing those rows for subsequent
primes. This process, called learning [14] could increase our
throughput for computations over Q. Another option is to
vectorize the computation for several primes at once.

Our final benchmark is the cyclic-10 problem modulo p.
This is an example of a very large computation that shows
the benefits of parallelism. We tested Magma and our code
with 16 cores, and we present a breakdown of the times for
both systems. Both systems use 20GB of memory.

Table 8: Time breakdown for cyclic-10 benchmark.
our library (16 cores) Magma
real time CPU time CPU time

select pairs 236.363 235.860 144.140
symbolic preproc. 1082.708 1080.780 440.780
poly ↔ matrix 133.419 133.100 3.370
Gaussian elim. 5974.139 95331.660 31378.890
update pairs 446.000 445.260 113.030
inter-reduce 25.783 398.460 4.040
total time 7875.532 97229.960 32090.180

The table suggests several areas where we could improve.
For example, by packing exponents into machine words the
times for select pairs, symbolic preprocessing and updating
the basis could be reduced. Still these optimizations, which
may be time consuming, pale in comparison to parallelizing
Gaussian elimination which takes the vast majority of time.
Ultimately we were able to beat Magma by a factor of four
using 16 cores, so with 4 cores we might expect a tie.

The lesson we think is that while there is value in having
a highly optimized implementation, one should not overlook
the easy gains available from parallelism. This will become
especially obvious if the number of cores available on most
machines continues to increase.

4. CONCLUSION
This paper presented a compact C implementation of the

F4 algorithm for computing Gröbner bases modulo a prime.
Our main contribution was a simple way to parallelize the
Gaussian elimination. Other contributions are experiments
in parallelizing symbolic preprocessing, an experiment with
computing over the rationals directly, and an initial version
of an algorithm for Q coded in Maple, which can compute
modulo several primes in parallel.

From this we can see several options for future work. We
plan to improve the algorithm for Q, and it seems clear that

to do so will require us to implement more things in C. We
suspect there will be more opportunities for parallelism this
way as well. For example, Chinese remaindering or rational
reconstuction can operate on coefficients in parallel, and the
gains could be significant as per Amdahl’s law.

One question that we did not address here is whether our
parallel Gaussian elimination remains efficient for matrices
generated by the F5 algorithm, because those matrices have
full rank. This would require an implementation of F5, and
we think this would be an interesting research topic.

In any case we hope that our experience of implementing
F4 with very little code encourages more computer algebra
systems to adopt the algorithm. We also hope that an easy
approach to parallelism, like the one presented here, allows
more software to exploit the multicore computers of today.

With that in mind, a notable contribution is our method
for parallelizing symbolic preprocessing. Although it didn’t
work out for us here, we think it is a good approach and we
intend to try it in other settings.

5. REFERENCES
[1] B. Buchberger. Gröbner-Bases: An Algorithmic Method in

Polynomial Ideal Theory. Multidimensional Systems
Theory - Progress, Directions and Open Problems in
Multidimensional Systems, Reidel (1985), 184–232.

[2] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson,
K.H. Randall, Y. Zhou. Cilk: An Efficient Multithreaded
Runtime System. Proc. of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP), 207–216, 1995.

[3] C. Eder, J.C. Faugère. A survey on signature-based
Gröbner basis computations. arXiv:1404.1774.

[4] J.C. Faugere. A new efficient algorithm for computing
Gröbner bases (F4). J. of Pure and Applied Algebra, 139
(1999) 61–88.

[5] J.C. Faugère. A new efficient algorithm for computing
Gröbnerr basis without reduction to 0 F5, Proc. of ISSAC
2002, ACM Press, (2002), 75–83.

[6] J.C. Faugère, S. Lachartre. Parallel Gaussian elimination
for Gröbner bases computations in finite fields. Proc. of
PASCO 2010, ACM Press, (2010), 89–97.

[7] R. Gebauer and H.M. Möller. On an Installation of
Buchberger’s Algorithm. J. of Symb. Comp., 6 (2 and 3)
(1988) 275–286.

[8] F. Hopgood and J. Davenport. The quadratic hash method
when the table size is a power of 2. The Computer Journal,
15 (4) (1972) 314–315.

[9] H. Kredel. Distributed Parallel Groebner Bases
Computation. Proc. CISIS 2009, IEEE, (2010), 518–524.

[10] A. Leykin. On parallel computation of Gröbner bases.
Proc. ICPP Workshops, (2004), 160–164.

[11] Maple 2015. Maplesoft, a division of Waterloo Maple Inc.,
Waterloo, Ontario.

[12] M. Monagan, R. Pearce. Sparse Polynomial Division using
Heaps. J. Symb. Cmpt. 46(7) (2011), 807–822.

[13] S. Neumann. Parallel Reduction of Matrices in Gröbner
Bases Computations. Proc. of CASC 2012, Springer,
(2012), 260–270.

[14] B. Parisse. A probabilistic and deterministic modular
algorithm for computing Groebner basis over Q.
arXiv:1309.4044.

[15] A. Reeves. A parallel implementation of Buchberger’s
algorithm over Zp for p ≤ 31991. J. Symb. Comp. 26
(1998) 229–244.

[16] Allan Steel. Private communication.
[17] J.P. Vidal. The computation of Gröbner bases on a shared

memory multiprocessor. LNCS 429, Springer, (1990),
81–90.

