
MAPLE Notes for Computer Algebra

Michael Monagan

Department of Mathematics


Simon Fraser University

August, 1998.


Updated August 2002, September  2004, January 2007, January 2009.
> restart;
These notes are for Maple V Release 8.  They are platform independent, i.e., they are the same for the 
Macintosh, PC, and Unix versions of Maple.  These notes should be backwards compatible with Maple 6 and 
Maple 7 and forwards compatible with Maple 9, 10, 11 and 12. 

Maple as a Calculator
Input of a numerical calculation uses +, -, *, /, and ^ for addition, subtraction, multiplication, division, and 
exponentiation respectively.
> 1+2*3-2;

5
> 2^3;

8
> 120/105;

8

7
Because the input involved integers, not decimal numbers, Maple calculates the exact fraction when there 
is a division, automatically cancelling out the greatest common divisor (GCD).  In this case the GCD is 
15, which you can calculate specifically as
> igcd(120,105);

15
Observe that every command ends with a semicolon ;   This is a gramatical requirement of Maple.  If you 
forget, Maple will assume that the comand is not complete.  This allows you to break long commands 
across a line.  For example
> 1+2*3/
> (2+3);

11

5
We are not going to use decimal numbers very much in this course as all encryption and decryption 
calculations that we do will involve integers.  However, here is how you would do some decimal 
calculations.  The presence of a decimal point .  in a number means that the number is a decimal number 
and Maple will, by default, do all calculations to 10 decimal places.
> 120/105.0;

1.142857143
> sqrt(2.0);

1.414213562
> sqrt(2);

2
Notice the difference caused by the presence of a decimal point in these examples.  Now, if you have 

input an exact quantity, like the 2  above, and you now want to get a numerical value to 3 decimal 
digits, use the evalf command to evaluate to floating point.  Use the % character to refer to the previous 
Maple output.  
> evalf(%,3);

1.41



To input a formula, just use a symbol, e.g. x and the arithmetic operators and functions known to Maple.  
For example, here is a quartic  polynomial in x .
> x^4-3*x+2;

− +x4 3 x 2
We are going to use this polynomial for a few calculations.  We want to give it the name f so we can refer 
to it later.  We do this using the assignment operation in Maple as follows
> f := x^4-3*x+2;

 := f − +x4 3 x 2
The name f is now a variable.  It refers to the polynomial.  Here is it’s value
> f;

− +x4 3 x 2
To evaluate this as a function at the point =x 3 use the eval command as follows
> eval(f,x=3);

74
The following commands differentiate f with respect to x and factor f into irreducible factors over the field 
of rational numbers.
> diff(f,x);

−4 x3 3
> factor(f);

( )−x 1 ( )+ + −x3 x2 x 2
You can graph functions using the plotting commands.  The basic syntax for the plot command for a 
function of one variable is illustrated as follows: 

> plot(f,x=0.5..1.5);
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In the graph I can see a local minimum near x=0.9.  We can find this point using calculus.  The command 
fsolve( f(x)=0, x ), on input of a polynomial f(x) computes 10 digit numerical approximations for the real 
roots of f(x).
> diff(f,x)=0;

=−4 x3 3 0
> fsolve(diff(f,x)=0,x);

0.9085602964
Here are some functions which we differentiate and integrate  to try Maple out.
> f := 2*sin(t)*exp(-2*t);

 := f 2 ( )sin t e
( )−2 t

> integrate(f,t);

− −
2

5
e

( )−2 t
( )cos t

4

5
( )sin t e

( )−2 t

> integrate(f,t=0..1);

− − +
2

5
e

( )-2
( )cos 1

4

5
( )sin 1 e

( )-2 2

5
> g := x*exp(-x^2)/ln(1+x);

 := g
x e

( )−x2

( )ln +1 x
> h := integrate(g,x);



 := h d

⌠

⌡



x e
( )−x2

( )ln +1 x
x

That means Maple could not integrate it.
> diff(h,x);

x e
( )−x2

( )ln +1 x
> g := diff(g,x);

 := g − −
e

( )−x2

( )ln +1 x

2 x2 e
( )−x2

( )ln +1 x

x e
( )−x2

( )ln +1 x 2 ( )+1 x
> g := simplify(g);

 := g −
e

( )−x2

( )− − + + +( )ln +1 x ( )ln +1 x x 2 x2 ( )ln +1 x 2 x3 ( )ln +1 x x

( )ln +1 x 2 ( )+1 x
> integrate(g,x);

x e
( )−x2

( )ln +1 x
We have used the name f as variable to refer to formulae and the symbols  x for an uknown  in a  formula.  
Often you will have assigned to a name like we have done here to f but you want now to use the name f as 
a symbol again, not as a variable.  You can unassign the value of a name as follows
> f;

2 ( )sin t e
( )−2 t

> f := ’f’;

 := f f
> f;

f
> 

Calculating Sums and Solving Systems of Equations

The Maple command sum(f(i), i=m..n) calculates the sum ∑
=i m

n

( )f i .   Often you will want to 

simplify Maple’s output.  You can use the expand, simplify, factor and combine commands to do this.
> f := sum( 2^i, i=0..n-1 );

 := f −2n 1
> f := sum( a^i, i=0..n-1 );

 := f −
an

−a 1

1

−a 1
> simplify(f);

−an 1

−a 1
> f := sum(i^2,i=1..n);



 := f − + +
( )+n 1 3

3

( )+n 1 2

2

n

6

1

6
> expand(f);

+ +
1

3
n3 1

2
n2 1

6
n

> factor(f);

n ( )+n 1 ( )+2 n 1

6
> g := sum( k*binomial(n,k), k=0..n );

 := g
2n n

2
The Maple command  solve( {equations}, {unknowns} ) solves a system of equations for 
the given unknowns. Here is an example of a linear system in two unknowns.
> sys := {x+y=2,x-y=1};

 := sys { },=−x y 1 =+x y 2
> solve( sys, {x,y} );

{ },=y
1

2
=x

3

2
And a non-linear system is input similarly.
> sys := {x^2+y^2=1,x+y=1};

 := sys { },=+x y 1 =+x2 y2 1
> solve(sys,{x,y});

,{ },=y 0 =x 1 { },=x 0 =y 1
> sys := {x^2+y^2=2, x+y=1};

 := sys { },=+x2 y2 2 =+x y 1
> solve(sys,{x,y});

{ },=y ( )RootOf ,− −2 _Z2 2 _Z 1 =label _L12 =x − +( )RootOf ,− −2 _Z2 2 _Z 1 =label _L12 1
This is Maple’s RootOf notation for the solutions.  This is avoid generating large complicated radicals in 
the output.  But in this case, the solutions can be expressed simply as radicals.  Do this to get radicals.
> _EnvExplicit := true;

 := _EnvExplicit true
> solve(sys,{x,y});

,{ },=x −
1

2

3

2
=y +

1

2

3

2
{ },=x +

1

2

3

2
=y −

1

2

3

2
> sys := {a*x^2+y^2=1, x+y=1};

 := sys { },=+x y 1 =+a x2 y2 1
> solve(sys,{x,y});

,{ },=x 0 =y 1 { },=x
2

+1 a
=y

−a 1

+1 a
> 

Integers
Here are some commands which do integer calculations that we will use in the course.  Integers in Maple 
are not limited to the precision of the hardware on your computer.  They are limited by an internal limit of 
Maple to approximately half a million digits.  Any calculations that you do with large integers though will 
take longer for larger integers.  Here is 2 100 .



> 2^100;

1267650600228229401496703205376
The command irem(a,b) computes the integer remainder of a divided by b.  The command iquo(a,b) 
computes the integer quotient of a divided by b.  For example
> a := 20;

b := 7;

 := a 20

 := b 7
> r := irem(a,b);

 := r 6
> q := iquo(a,b);

 := q 2
It should be the case that  a = b q + r .  Let’s check
> a = b*q + r;

=20 20
The commands igcd(a,b) and ilcm(a,b) compute the greatest common divisor and least common multiple 
of integers a and b, respectively. 
> igcd(6,4);

2
> ilcm(6,4);

12
The command  igcdex(a,b,’s’,’t’)   outputs =g ( )GCD ,a b  .  It also assigns  ,s t  integers satisfying the 
equation =+s a t b g  and satisfying <s b   and <t a  .  So this command implements the extended 
Euclidean algorithm.  For example
> g := igcdex(3,5,’s’,’t’);

 := g 1
> s;

2
> t;

-1
> s*3+t*5;

1
The command isprime(n) outputs false if n is composite and true if n is prime.  The command ifactor(n) 
computes the integer factorization of an integer.  For example
> isprime(997);

true
> isprime(1001);

false
> ifactor(1001);

( ) 7 ( ) 11 ( ) 13
Now, if you are not sure what a command does, or how to use it, you can use Maple’s on-line help 
system.  You input ?command and then a return.  Try the following
> ?isprime
> ?ifactor
You should get a window with some information about the command and how to use it.  Almost all of the 
on-line help files have examples.  If you don’t know the name of the command, you can use the help 
browser to search for the command - see the Help menu at the top right of the window.
For the algorithms based on the Chinese remainder theorem we will need a source of primes.  Say 32 bit 
primes.  The command nextprime(n) outputs the first prime greater than or equal to n and the command 



nextprime
prevprime(n) finds the first prime less than or equal to n.  
> p := prevprime(2^32);

 := p 4294967291
> p := prevprime(p);

 := p 4294967279
Often we will need random numbers, random integers in the range 0..p-1.  You can create a random 
number generator using the rand command as follows.  Then call it to create random numbers.
> R := rand(10):
> R();

1
> R();

0
> seq( R(), i=1..10 );

, , , , , , , , ,7 3 6 8 5 8 1 9 5 3
You can also create long random integers.
> U := rand(10^100):
> U();

4570391695941600884305716749604988340858129204579164537470194616440313953079\

20624947349951053530086
> 

Lists
The simplest data structure in Maple is a list.  The elements of a list may be of any type.   To create a list 
of values enclose them in square brackets [, ].  Lists may be nested of course and the entries may be of 
any type.
> restart;


> E := []; # the empty list

 := E [ ]
> L := [1,2,-3,4,1];

 := L [ ], , , ,1 2 -3 4 1
> M := [[1,2,3],[x,y,z]];

 := M [ ],[ ], ,1 2 3 [ ], ,x y z
To count the number of entries in a list use nops(L) command.
> nops(L);

5
> nops(M);

2
To access the i’th element of a list (counting from 1) use a subscript.  A negative subscript counts from 
the end.
> L[3];

-3
> L[-1];

1
> M[2];

[ ], ,x y z
> M[2][2];

y
Use the following to extract a sublist



> L[2..3];

[ ],2 -3
> L[2..-1];

[ ], , ,2 -3 4 1
To append (prepend) elements to a list use the following.
> op(L);

, , , ,1 2 -3 4 1
> [op(L),5];

[ ], , , , ,1 2 -3 4 1 5
To test if an element is in a list use
> member(2,L);

true
Although you can assign to an entry of a list (as if it were an array) if the list has less than 100  elements, 
do not do this.  It creates a copy of the entire list.  So it’s not efficient.  Use Arrays .
> L[2] := 10;

 := L2 10
> L;

[ ], , , ,1 10 -3 4 1
> 

Loops and If statements.
> restart;
To do a sequence of calculations it will be handy to know how to use some of Maple’s looping commands 
and also the if command.  To execute a command in Maple conditionally use the if command which has 
either of the following forms



    if <condition> then <statements> else <statements> fi



or just



    if <condition> then <statements> fi


> if 2>1 then print(good) else print(bad) fi;

good
To execute one or more statements zero or more times in a loop use the for command.  It has the 
following form



    for <variable> from <start> to <end> do <statements> od


> for i from 1 to 5 do i^2; od;

1

4

9

16

25
To execute some statements while a condition is true use the while loop.  It has the syntax



    while <condition> do <statements> od 




    while do od 



In the following example we repeatedly divide an integer n by 2 until it is odd.
> n := 12; while irem(n,2) = 0 do n := iquo(n,2); od;

 := n 12

 := n 6

 := n 3
Here is a loop to calculate the GCD of two integers a and b using Euclid’s algorithm.  Notice that this 
loop has three statements in the body of the loop - between the  do ... od, each of which is terminated by a 
semicolon.  You don’t have to put them on the same line as I have done here.
> a := 64; b := 20;

 := a 64

 := b 20
> while b <> 0 do
>    r := irem(a,b); a := b; b := r;
> od;

 := r 4

 := a 20

 := b 4

 := r 0

 := a 4

 := b 0
Thus 4 should be the GCD(64,20).  A check with Maple
> igcd(64,20);

4
We will use Maple to obtain the first prime bigger than the integer 128^6.  Note, the nextprime command 
does this automatically.
> p := 128^6+1;

while not isprime(p) do p := p + 2 od;

 := p 4398046511105

 := p 4398046511107

 := p 4398046511109

 := p 4398046511111

 := p 4398046511113

 := p 4398046511115

 := p 4398046511117

 := p 4398046511119
> nextprime(128^6);

4398046511119
Two other useful looping constructs are the map command and the seq command and the add command.  
The examples show what the commands do.
> L := [1,2,3,4,5];

 := L [ ], , , ,1 2 3 4 5
> map( f, L );

[ ], , , ,( )f 1 ( )f 2 ( )f 3 ( )f 4 ( )f 5
> map( isprime, L );

[ ], , , ,false true true false true
> seq( i^2, i=1..5 );



, , , ,1 4 9 16 25
> seq( L[i], i=1..nops(L) );

, , , ,1 2 3 4 5
> seq( isprime(L[i]), i=1..nops(L) );

, , , ,false true true false true
> seq( L[i]*x^(i-1), i=1..nops(L) );

, , , ,1 2 x 3 x2 4 x3 5 x4

> L := [seq( n^2, n=L )];

 := L [ ], , , ,1 4 9 16 25
> add( f(i), i=1..5 );

+ + + +( )f 1 ( )f 2 ( )f 3 ( )f 4 ( )f 5
> add( i^2, i=1..5 );

55
> add( x[i], i=0..5 );

+ + + + +x0 x1 x2 x3 x4 x5

> add( x^i, i=0..5 );

+ + + + +1 x x2 x3 x4 x5

Read the help files for these commands, they are very handy.
> ?map
> ?seq
> ?add
> 

Modular Arithmetic
Modular arithmetic is done using the  mod  operator in Maple.  By default, Maple uses the positive range 
for the integers modulo m, that is, the result is calculated in the range  .. 0 −m 1. 


> restart;
> 12 mod 7;

5
> 2+3*3 mod 7;

4

To compute a
( )−1

mod m, you can do either of the following
> 2^(-1) mod 7;

4
> 1/2 mod 7;

4

To compute an mod m you can do either
> 2 ^ 200 mod 7;

4
> 2 &^ 200 mod 7;

4

Use the latter.  The difference is that in the first case, the integer 2 200 was computed then reduced modulo 
m .  In the second case, all products were reduced modulo m  so no large integers occured.
We will use a loop to verify that Fermat’s (little) theorem holds for  p = 13 but not for n = 14.
> p := 13;

for i from 0 to p-1 do (i^p mod p) = i od;

 := p 13



=0 0

=1 1

=2 2

=3 3

=4 4

=5 5

=6 6

=7 7

=8 8

=9 9

=10 10

=11 11

=12 12
> n := 14;

for i from 0 to n-1 do (i^n mod p) = i od;

 := n 14

=0 0

=1 1

=4 2

=9 3

=3 4

=12 5

=10 6

=10 7

=12 8

=3 9

=9 10

=4 11

=1 12

=0 13
We can solve equations and systems of equations modulo n using the msolve command.
> msolve( 6*x=4, 13 );

{ }=x 5
> msolve( 6*x=4, 26 );

,{ }=x 5 { }=x 18
> msolve( {24*a+b=5, 4*a+b=9, 18*a+b=1}, 26 );

{ },=a +13 _Z2~ 5 =b 15
The variable _Z2~ means any integer so the solutions are {b = 15, a = 18} and {b = 15, a = 5}.
You can use the ichrem command to solve the Chinese remainder problem. 

Suppose we want to solve u == 3 mod 5 and u == 4 mod 7 and u = 1 mod 3.
> u := chrem( [3,4,1], [5,7,3] );

 := u 88
> u mod 5;

3
> u mod 7;



4
> u mod 3;

1
The chrem command applies itself accross the coefficients of polynomials.  E.g. suppose we want to 
solve

f = +3 x2 2 x mod 7 and f = + +2 x3 5 x 7 mod 11.
> f := chrem( [3*x^2+2*x,2*x^3+5*x+7], [7,11] );

 := f + + +7 66 x2 35 x3 16 x
> f mod 7;

+3 x2 2 x
> f mod 11;

+ +2 x3 5 x 7
> 

Maple Functions and Procedures
A simple function, like the function ek(x) = a*x+b mod n may be input using the arrow notation in Maple, 
as follows
> ek := x -> 3*x+5 mod 26;

 := ek →x mod( )+3 x 5 26
> ek(1);  ek(7);

8

0
A procedure in Maple takes the form



     proc( p1, p2, ... )

     local l1, l2, ... ;

     global g, g2, ... ;

         statement1;

         statement2;

          ....

         statementn;

     end proc

There may be zero or more parameters, one or more locals, one or more globals and one or more 
statements in the procedure body.

The local and global statements are optional.  Variables in the procedure body that are not explicitly 
declared as parameters, locals, or globals are declared to be local automatically if assigned to, otherwise 
they are global.  The value returned by the procedure is the value of statementn, the last statement in the 
body of the procedure or the value of an explicit return statement.  Type declarations for parameters and 
local variables need not be explicitly given.  Some examples will help. 
> f := proc(x) y := x^2; y-1; end proc;
Warning, ‘y‘ is implicitly declared local to procedure ‘f‘


 := f proc( ) end procx local ;y ; := y ^x 2 −y 1
> f(2);

3
> f(z);

−z2 1



This next example searches a list L  for the value x. It outputs the position of the first occurrence of x in L 
and 0 otherwise.  I am also telling Maple that the input should be of type list.  Below is an example with 
inputs of type integer.  See ?type for how to specify types and for what types are available if you need 
them.
> position := proc(x::anything,L::list) local i;

   for i from 1 to nops(L) do if L[i]=x then return i fi; od;

   0; # meaning x is not in the list

end proc;

position := 

proc( ) end proc,::x anything ::L list local ;i ;for to do end doi ( )nops L if then end if=[ ]L i x return i 0
> position(x,[u,v,w,x,y,z]);

4
> position(y,[u,v,w]);

0
This  next  example is an implementation of the Euclidean algorithm.  It uses the multiple assignment.
> a,b := 2,3;

 := ,a b ,2 3
> EuclideanAlgorithm := proc(a::integer,b::integer) local c,d,r;

    (c,d) := (abs(a),abs(b));

    while d <> 0 do r := irem(c,d); (c,d) := (d,r); od;

    c;

end proc;

EuclideanAlgorithm ,::a integer ::b integerproc( ) := 

local ;, ,c d r

; ; := ,c d ,( )abs a ( )abs b while do end do≠d 0 ; := r ( )irem ,c d  := ,c d ,d r c

end proc
> EuclideanAlgorithm(24,210);

6
Procedures may be nested, nested lexical scoping is used (a la Pascal).  

Procedures may be returned and passed freely as parameters.  

The simplest debugging tool is to insert print statements in the procedure.  For example
> EuclideanAlgorithm := proc(a::integer,b::integer) local c,d,r;

    (c,d) := (abs(a),abs(b));

    while d <> 0 do r := irem(c,d); print(r); (c,d) := (d,r); od;

    c;

end proc:

> EuclideanAlgorithm(24,210);

24

18

6

0

6
The next simplest debugging tool is the trace command.  All assigment statements are displayed.
> trace(EuclideanAlgorithm);

EuclideanAlgorithm
> EuclideanAlgorithm(24,210);
{--> enter EuclideanAlgorithm, args = 24, 210

 := ,c d ,24 210

 := r 24



24

 := ,c d ,210 24

 := r 18

18

 := ,c d ,24 18

 := r 6

6

 := ,c d ,18 6

 := r 0

0

 := ,c d ,6 0

6
<-- exit EuclideanAlgorithm (now at top level) = 6}

6
The printf command can be used to print more detailed information in a controlled format.  It works just 
like the printf command in the C language.  The main difference is the %a option for printing algebraic 
objects like polynomials.  E.g.
> printf( "A polynomial %a\n", x^2-2*y*x );
A polynomial x^2-2*y*x
Here we print the quotients in the Euclidean algorithm.  Notice the three argument version  of the iquo 
command.  It computes and returns the quotient but assigns the third input (a variable) the value of the 
remainder.  Notice that the quotients, with exception of the first one, are typically small.
> q := iquo( 6, 4, ’r’ );

 := q 1
> r;

2
> EuclideanAlgorithm := proc(a::integer,b::integer) local c,d,r,q;

    (c,d) := (abs(a),abs(b));

    while d <> 0 do 

        r := irem(c,d,’q’); 

        printf("Quotient = %d\n",q); 

        (c,d) := (d,r); od;

    c;

end proc:

> EuclideanAlgorithm(123456789,54321);
Quotient = 2272
Quotient = 1
Quotient = 2
Quotient = 1
Quotient = 1
Quotient = 1
Quotient = 14
Quotient = 1
Quotient = 2
Quotient = 1
Quotient = 26

3
Here is a recursive implementation of Euclid’s algorithm.
> EuclideanAlgorithm := proc(a::integer,b::integer)

if a<0 then EuclideanAlgorithm(-a,b)

elif b<0 then EuclideanAlgorithm(a,-b)

elif a<b then EuclideanAlgorithm(b,a)

elif b=0 then a

else EuclideanAlgorithm(b,irem(a,b))




fi;

end:

> EuclideanAlgorithm(-30,16);

2
There is more.  See  ?proc  if you need more information or more tools.
> 

Polynomials and Finite Fields
Polynomials in Maple are simply input as formulae using the arithmetic operators.  For example
> restart;


> f := x^4-3*x^2+12;

 := f − +x4 3 x2 12
is a polynomial in one variable, x with integer coefficients.  Here is a polynomial in two variables. 
> a := (x-y)*(x^2-y^2)*(x^3-y^3);

 := a ( )−x y ( )−x2 y2 ( )−x3 y3

To multiply the factors of the polynomial out use the expand command
> expand(a);

− + − + −x6 x4 y2 x y5 y x5 y4 x2 y6

To factor the polynomial into prime factors with integer coefficients use the factor command
> factor(f);

factor(a);

− +x4 3 x2 12

( )−x y 3 ( )+x y ( )+ +x2 x y y2

To compute the degree of a polynomial and read off a coefficient in x i do
> degree(f,x); coeff(f,x,2);

4

-3
> degree(a,x); degree(a,y);

6

6
> coeff(a,x,2); coeff(a,y,2);

y4

−x4

We  will only need polynomials in one variable and mostly work  in the rings  Z[x] and  Zp[x]  where p 
will be a prime integer.  In what follows we show operations for Zp[x] and also Q[x]. For help for 
operations for polynomials see ?polynomial.  For help for operations in Zp[x] see ?mod.

Here are two polynomials
> a := 2*x^6-3*x^5+3*x+3;

 := a − + +2 x6 3 x5 3 x 3
> b := 3*x^4-4*x^3+1;

 := b − +3 x4 4 x3 1
The command eval( a(x), x=k ) evaluates the polynomial a(x) at x = k.  The command Eval( a, x=k ) mod 
p does this modulo p .  For example
> eval( a, x=2 );

41
> Eval( a, x=2 ) mod 7;



6
Here is how we can tabulate the values of this polynomial for all values in Z7.  We conclude that a(x) has 
no roots. 
> seq( Eval(a,x=i) mod 7, i=0..6 );

, , , , , ,3 5 6 6 4 4 5
We can interpolate a polynomial from it’s values as follows
> a;

− + +2 x6 3 x5 3 x 3
> X := [seq(i,i=0..8)];

 := X [ ], , , , , , , ,0 1 2 3 4 5 6 7 8
> Y := [seq( eval(a,x=i), i=0..8 )];

 := Y [ ], , , , , , , ,3 5 41 741 5135 21893 70005 184901 426011
> interp(X,Y,p);

− + +2 p6 3 p5 3 p 3
The  command expand(a*b)  multiplies out the product a b.  The command Expand(a*b) mod p does the 
product modulo p, that is, all coefficients in the resulting polynomial are reduced modulo p .  For example
> p := 5;

 := p 5
> expand(a*b);

− + + + − + − +6 x10 17 x9 2 x6 12 x8 6 x5 3 x4 3 x 12 x3 3
> Expand(a*b) mod p;

+ + + + + + + +x10 3 x9 2 x6 2 x8 x5 2 x4 3 x 3 x3 3
The operations rem(a,b,x) and quo(a,b,x) compute, respectively, the remainder r and quotient q of a
divided by b satisfying =a +b q r  with =r 0 or <( )deg r ( )deg b .  The corresponding operations for Zp are 

Rem(a,b,x) mod p  and  Quo(a,b,x) mod p .  For example
> r := rem(a,b,x);

 := r + − −
85

27

28

9
x

2

3
x2 16

27
x3

> q := quo(a,b,x);

 := q − −
2

3
x2 1

9
x

4

27
> expand( a = b*q+r );

=− + +2 x6 3 x5 3 x 3 − + +2 x6 3 x5 3 x 3
> r := Rem(a,b,x) mod p;

 := r + +2 x3 x2 2 x
> q := Quo(a,b,x) mod p;

 := q + +4 x2 x 3
> Expand( a = b*q+r ) mod p;

=+ + +2 x6 2 x5 3 x 3 + + +2 x6 2 x5 3 x 3
The commands gcd(a,b) and lcm(a,b) compute, respectively the greatest common divisor and least 
common multiple of two polynomials.  The corresponding operations for Zp are Gcd(a,b) mod p and Lcm
(a,b) mod p.  For example
> gcd(x^4-2*x^2+2,x^4+1);

1
> Gcd(x^4-2*x^2+2,x^4+1) mod p;



+x2 2
The command gcdex(a,b,x,’s’,’t’) outputs =g ( )GCD ,a b  .  It also outputs through the input parameters ,s t  
integers satisfying the equation =+s a t b g  and satisfying <( )deg s ( )deg b   and <( )deg t ( )deg a  .  The 
corresponding command  for Zp is  Gcdex(a,b,x,’s’,’t’) mod p.  For example
> gcdex(a,b,x,’s’,’t’);

1
> s;

− + −
6847

25565

1356

5113
x

8358

25565
x2 3312

25565
x3

− + − + −
5024

25565

201

25565
x

4958

25565
x3 4734

25565
x2 2208

25565
x5 1188

5113
x4

> expand( s*a+t*b );

1
> Gcdex(a,b,x,’s’,’t’) mod p;

+ +x2 3 x 1
> s;

+x 4
> t;

+ + +x3 3 x2 3 x 4
> Expand(a*s+t*b) mod p;

+ +x2 3 x 1
The command irreduc(a) outputs true if the polynomial ( )a x  is irreducible and the command factor(a)  
outputs the factorization of ( )a x  into irreducible factors over the integers.  The corresponding commands 
for Zp  are  Irreduc(a) mod p and  Factor(a) mod p.  For example
> factor(a);

− + +2 x6 3 x5 3 x 3
> factor(b);

( )+ +3 x2 2 x 1 ( )−x 1 2

> Factor(a) mod 5;

2 ( )+x 1 ( )+x 4 5

> Factor(b) mod 5;

3 ( )+ +x2 4 x 2 ( )+x 4 2

The polynomial + +x2 x 1  is irreducible modulo 2  
> Factor(x^2+x+1) mod 2;

+ +x2 x 1
and hence the finite field of 4 elements can be represented by polynomials of degree < 2 over the integers 
modulo 2, i.e. the  polynomials R = { }, , ,0 1 +x 1 x    .  We construct the multiplication table M for this 
finite field as follows.
> R := [0,1,x,x+1];

M := matrix(4,4);

 := R [ ], , ,0 1 x +x 1

 := M ( )array , , .. 1 4  .. 1 4 [ ]
> for i to 4 do 

    for j to 4 do M[i,j] := Rem(R[i]*R[j],x^2+x+1,x) mod 2 od;

od;

> print(M);















0 0 0 0

0 1 x +x 1

0 x +x 1 1

0 +x 1 1 x
See  ?mod  for other operations on polynomials over the integers modulo p .
> 

Subscripted Names and Arrays
Variables may be subscripted.  For example, here is a polynomial in  , ,x1 x2 x3.   You can assign to the 
subscripts.
> restart;


> f := 1-x[1]*x[2]*x[3];
> x[1] := 3;

 := f −1 x1 x2 x3

 := x1 3
> f;

−1 3 x2 x3

There may be more than one subscript and the subscripts may be any value. 

Arrays are like arrays from computing science.  Here is how to create a one-dimensional array A with 
values indexed from 1 to 5.
> A := Array(1..5);

 := A [ ], , , ,0 0 0 0 0
By default, the entries in the array A are initialized to 0.
> A[1] := 3;

 := A1 3
> A[1];

3
> for i from 2 to 5 do A[i] := 3*A[i-1] od;

 := A2 9

 := A3 27

 := A4 81

 := A5 243

Here is a Maple procedure for multiplying two positive integers of length m and n stored in the arrays A 
and B base 10 where the arrays are indexed from 0, so A is indexed from 0 to m-1.  N
> IntMul := proc(m::posint,n::posint,A::Array,B::Array)

local C, i,j,carry,t;

C := Array(0..m+n-1);

for i from 0 to m-1 do

    carry := 0;

    for j from 0 to n-1 do

        t := A[i]*B[j]+carry+C[i+j];

        C[i+j] := irem(t,10,’carry’);

    od;

    C[i+j] := carry;

od;




C;

end: 

> a,b := 9876,1234;

 := ,a b ,9876 1234
> A := convert(a,base,10);

 := A [ ], , ,6 7 8 9
The above is a list.  Here is a short way to make it into an Array.
> A := Array(0..3,A);

A Array  .. 0 3 { }, , ,=( )0 6 =( )1 7 =( )2 8 =( )3 9 =datatype anything =storage rectangular, , , ,( := 

=order Fortran_order)
> B := Array(0..3,convert(b,base,10));

B Array  .. 0 3 { }, , ,=( )0 4 =( )1 3 =( )2 2 =( )3 1 =datatype anything =storage rectangular, , , ,( := 

=order Fortran_order)
> C := IntMul(4,4,A,B);

C Array  .. 0 7 { }, , , , , , ,=( )1 8 =( )2 9 =( )3 6 =( )4 8 =( )5 1 =( )6 2 =( )7 1 =( )0 4, ,( := 

=datatype anything =storage rectangular =order Fortran_order, , )
> c := add( C[i]*10^i, i=0..7 );

 := c 12186984
> a*b;

12186984
The same basic procedure can be used to multiply polynomials.  Suppose we represent a polynomial as a 
list of coefficients.  To allow us to convert from Maple’s polynomial representation we’ll write a Maple 
procedure MapleToList and ListToMaple to convert from and to Maple’s polynomial representation.
> MapleToList := proc(f::polynom(rational),x) local i;

    if f=0 then return [] fi;

    [seq( coeff(f,x,i), i=0..degree(f,x) )];

end:

ListToMaple := proc(L,x) local i;

    add( L[i]*x^(i-1), i=1..nops(L) );

end:

> f := 3*x^3-12*x+5;

 := f − +3 x3 12 x 5
> F := MapleToList(f,x);

 := F [ ], , ,5 -12 0 3
> ListToMaple(F,x);

− +3 x3 12 x 5
Now we can write the polynomial multiplication procedure - again, we’ll use Arrays of coefficients.  
We’ll show how to construct the Array in two ways, the second being a shortcut for the first.
> PolMul := proc(f::list(rational),g::list(rational))

local C,m,n,i,j,A,B;

if f=[] or g=[] then return [] fi;

m := nops(f)-1; A := Array(0..m);

for i from 0 to m do A[i] := f[i+1] od;

n := nops(g)-1; B := Array(0..n,g);

C := Array(0..m+n+1);

for i from 0 to m do

    for j from 0 to n do

        C[i+j] := A[i]*B[j]+C[i+j];

    od;

od;




[ seq( C[i], i=0..m+n ) ];

end: 

> a := -62-50*x^5-12*x^4-18*x^3+31*x^2-26*x;

 := a − − − − + −62 50 x5 12 x4 18 x3 31 x2 26 x
> b := x^4+5*x^2+6*x+7;

 := b + + +x4 5 x2 6 x 7
> ListToMaple( PolMul( MapleToList(a,x), MapleToList(b,x) ), x );

− − − − − − − − − −434 554 x 249 x2 70 x3 99 x4 538 x5 329 x6 268 x7 12 x8 50 x9

> expand(a*b);

− − − − − − − − − −434 554 x 249 x2 70 x3 99 x4 538 x5 329 x6 268 x7 12 x8 50 x9

> 
> 


