MACM 401/MATH 701, MATH 819/CMPT 881

Assignment 1, Spring 2015.

Michael Monagan

This assignment is to be handed in by 2 pm Friday January 23 rd .
Late penalty: -20% for up to 70 hours late. Zero after that.
For problems involving Maple calculations and Maple programming, please submit a printout of a Maple worksheet.

Question 1 (15 marks): Karatsuba's Algorithm

Reference: Algorithm 4.2 in the Geddes text.
(a) By hand, calculate $\left(5 x^{3}+4 x^{2}+3 x+2\right) \times\left(3 x^{3}+8 x^{2}+2 x+9\right)$ using Karatsuba's algorithm. You will need to do three multiplications involving linear polynomials. Do the first one, $(5 x+4) \times(3 x+8)$ using Karatsuba's algorithm. Do the other two using any method.
(b) Let $T(n)$ be the time it takes to multiply two n digit integers using Karatsuba's algorithm. We will assume (for simplicity) that $n=2^{k}$ for some $k>0$. Then for $n>1$, we have $T(n) \leq 3 T(n / 2)+c n$ for some constant $c>0$ and $T(1)=d$ for some constant $d>0$.

First show that $3^{k}=n^{\log _{2} 3}$. Now solve the recurrence relation and show that $T(n)=$ $(2 c+d) n^{\log _{2} 3}-2 c n$. Show your working.
(c) Show that $T(2 n) / T(n) \sim 3$, that is, if we double the length of the integers then the time for Karatsuba's algorithm increases by a factor of 3 (asymptotically).

Question 2 (15 marks): Integer GCD Algorithms

(a) Implement the binary GCD algorithm in Maple as the Maple procedure named BINGCD to compute the GCD of two positive integers a and b. Use the Maple functions irem (a, b) and iquo (a, b) for dividing by 2 .
Your Maple code will have a main loop in it. Each time round the loop please print out current values of (a, b) using the command

```
printf("a=%d b=%d\n",a,b);
```

so that you and I can see the algorithm working. Test your procedure on the integers $a=$ $16 \times 3 \times 101$ and $b=8 \times 3 \times 203$.
(b) Time Maple's igcd (a, b) ; command on random pairs of integers (a, b) of suitable lengths to experimentally determine the time complexity of the algorithm Maple is using. For example, integers of lengths $n=50000,100000,200000,400000$, etc. decimal digits. Note, the timer in Maple on Windows is inaccurate for timings smaller than 0.01 seconds. Express your answer in $O(f(n))$ notation.
NB: Maple 18 is using a newer version of the GMP integer arithmetic package which has a new algorithm for integer GCD computation. Use Maple 17 or an older version if possible.

Question 3 (20 marks): Gaussian Integers

Let G be the subset of the complex numbers \mathbb{C} defined by $G=\{x+y i: x, y \in \mathbb{Z}, i=\sqrt{-1}\}$. G is called the set of Gaussian integers and is usually denoted by $\mathbb{Z}[i]$.
(a) Why is G an integral domain?

What are the units in G ?
Let $a, b \in G$. In order to define the remainder of a divided by b we need a measure $v: G \rightarrow \mathbb{N}$ for the size of a non-zero Gaussian integer. We cannot use $v(x+i y)=|x+i y|=\sqrt{x^{2}+y^{2}}$ the the length of the complex number $x+i y$ because it is not an integer valued function. We will instead use the norm $N(x+i y)=x^{2}+y^{2}$ for $v(x+i y)$ which has the following useful properties.
(b) Show that for $a, b \in G, N(a b)=N(a) N(b)$ and $N(a b) \geq N(a)$.
(c) Now, given $a, b \in G$, where $b \neq 0$, find a definition for the quotient q and remainder r satisfying $a=b q+r$ with $r=0$ or $v(r)<v(b)$ where $v(x+i y)=x^{2}+y^{2}$. Using your definition calculate the quotient and remainder of $a=63+10 i$ divided by $b=7+43 i$.
Hint: consider the real and imaginary parts of the complex number a / b and consider how to choose the quotient of a divided b. Note, you must prove that your definition for the remainder r satisfies $r=0$ or $v(r)<v(b)$. The multiplicative property $N(a b)=N(a) N(b)$ will help you. Now since part (b) implies $v(a b) \geq v(b)$ for non-zero $a, b \in G$, this establishes that G is a Euclidean domain.
(d) Finally write a Maple program REM that computes the remainder r of a divided b using your definition from part (c). Now compute the gcd of $a=63+10 i$ and $b=7+43 i$ using the Euclidean algorithm and your program. You should get $2+3 i$ up to multiplication by a unit. Note, in Maple I is the symbol used for the complex number i and you can use the Re and Im commands to pick off the real and imaginary parts of a complex number. Also, the round function may be useful. For example
$>\mathrm{a}:=2+5 / 3 * I$;
a $:=2+5 / 3 \mathrm{I}$
$>\operatorname{Re}(\mathrm{a}) ;$
$>\operatorname{Im}(\mathrm{a}) ;$
$>$ round(a);

$$
2+2 I
$$

Question 4 (10 marks): The Extended Euclidean Algorithm

Reference: Algorithm 2.2 in the Geddes text.
Given $a, b \in \mathbb{Z}$, the extended Euclidean algorithm solves $s a+t b=g$ for $s, t \in \mathbb{Z}$ and $g=\operatorname{gcd}(a, b)$. More generally, for $i=0,1, \ldots, n, n+1$ it computes integers $\left(r_{i}, s_{i}, t_{i}\right)$ where $r_{0}=a, r_{1}=b$ satisfying $s_{i} a+t_{i} b=r_{i}$ for $0 \leq i \leq n+1$.
(a) For $m=99, u=28$ execute the extended Euclidean algorithm with $r_{0}=m$ and $r_{1}=u$ by hand. Use the tabular method presented in class that shows the values for $r_{i}, s_{i}, t_{i}, q_{i}$. Hence determine the inverse of u modulo m.
(b) Repeat part (a) but this time use the symmetric remainder, that is, when dividing a by b choose the quotient q and remainder r are integers satisfying $a=b q+r$ and $-|b / 2| \leq r<|b / 2|$ instead of $0 \leq r<b$.

Question 5 (20 marks): Integral Domains [MATH 819 students only]

Let S be the subset of the complex numbers \mathbb{C} defined by

$$
S=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\}
$$

where addition in S is defined by $(a+b \sqrt{-5})+(c+d \sqrt{-5})=(a+c)+(b+d) \sqrt{-5}$ and multiplication is defined by $(a+b \sqrt{-5}) \times(c+d \sqrt{-5})=(a c-5 b d)+(a d+b c) \sqrt{-5}$. Note, since S is a subring of \mathbb{C} then S has no zero-divisors and therefore S is an integral domain.
(a) Show that the only units in S are +1 and -1 .
(b) Show that S is not a unique factorization domain. Hint: show that the element 21 has two different factorizations into irreducibles. Hint: $1-2 \sqrt{-5}$ is an irreducible factor of 21 . Note: you must show that your factors are irreducible.
(c) Show that the elements $a=147$ and $b=21-42 \sqrt{-5}$ in S have no greatest common divisor. Hint: first show that 21 and $7-14 \sqrt{-5}$ are both common divisors of a and b.

