MACM 442/CMPT 881/MATH 800 Assignment 3, Fall 2006

Michael Monagan

This assignment is to be handed in on Thursday October 19th at the beginning of class. Late penalty: 10% off for each day late.

Chapter 5 exercises $5.14,5.18,5.20,5.21,5.25,5.26,5.30$.
Additional question. Suppose Bob is using the Rabin cryptosystem with $p=103, q=107$ hence $n=11021$. Suppose Alice computes $y=x^{2} \bmod n$ and sends y to Bob. If $y=10990$ what are the four possible values x can be? Show your working.

MATH 800 and CMPT 881 students should also do exercise 5.22.
MACM 442 students may do 5.22 as a bonus ($+2 \%$ of grade).
Notes: Problem 5.18 illustrates another potential disaster for RSA. Check that the statement is true for $n=35$ with $b=11$ and with $b=13$. Notice what happens for $b=13$. What is special about $b=13$? To do the proof use the same argument that is used to count the number of solutions to the congruence $w^{r} \equiv 1 \bmod p$ on page 204 .

For problem 5.21 compute also f_{n}, the number of bases $0<a<n$ for which n is a pseudoprime to the base a, and s_{n}, the number of bases $0<a<n$ for which n is a strong pseudo-prime to the base a. Use a \&^ $\mathrm{b} \bmod \mathrm{n}$ in Maple to compute $a^{b} \bmod n$ (this uses the square-and-multiply algorithm) and use numtheory[jacobi] (a,n) to compute the Jacobi symbol.

