MACM 442/MATH 800
 Makeup Exercise, Fall 2006

Michael Monagan

This makeup question is to be handed in to me by 10:30am Wednesday December 6th. Late penalty: 10% off for each day late.

If your worst assignment mark is $X / 100$, and you get $Y / 50$ on this makeup question, I will give you $\max (100, \mathrm{X}+\mathrm{Y})$ for that assignment.

Makeup Question (50 marks)

Let $n=p q$ where $p \equiv q \equiv 3 \bmod 4$. Recall that the map $f(x)=x^{2} \bmod n$ partitions $Q R(n)$ into simple cycles. For $n=192649=383 \times 503$ from assignment 5 , I found 1 cycle of length 1,5 cycles of length 50,2 of length 95 and 50 of length 950 .

Explain where the cycle periods $1,50,95,950$ come from. Hint: if $x \in Q R(n)$ is on a cycle of period π then $x^{2^{\pi}} \equiv x \bmod p$.

Now explain how p and q can be chosen so that when a user of a BBS generator (who does not know p nor q) chooses the seed s_{0} from $Q R(n)$ at random, they will get a long cycle with high probability. To answer this, a cycle of period larger than $\sqrt{n} / 10$ is long.

