MACM 401/MATH 801/CMPT 981 Assignment 2, Spring 2021.

Michael Monagan

Due Monday February 8th at 11pm. For problems involving Maple calculations and Maple programming, you should export your work to a .pdf file. Late Penalty: -20% for up to 24 hours late. Zero after that.

Question 1 (15 marks): The Extended Euclidean Algorithm

Given $a, b \in E$, a Euclidean domain, the extended Euclidean algorithm solves $s a+t b=g$ for $s, t \in E$ and $g=\operatorname{gcd}(a, b)$. More generally, for $k=0,1, \ldots, n, n+1$ it computes $\left(r_{k}, s_{k}, t_{k}\right) \in E^{3}$ where $r_{0}=a, r_{1}=b, r_{n+1}=0$ and $s_{k} a+t_{k} b=r_{k}$ for $0 \leq k \leq n+1$.
(a) For integers $a=99, b=28$ execute the extended Euclidean algorithm by hand. Use the tabular method presented in class that shows the values for $r_{k}, s_{k}, t_{k}, q_{k}$. Identify $b^{-1} \bmod a$.
(b) Program the extended Euclidean algorithm for $\mathbb{Q}[x]$ in Maple. The input is two nonzero polynomials $a, b \in \mathbb{Q}[x]$. The output is three polynomials (s, t, g) where g is the monic gcd of a and b and $s a+t b=g$ holds.
Please print out the values of $\left(r_{k}, s_{k}, t_{k}\right)$ that are computed after each division step so that we can observe the exponential growth in the size of the rational coefficients of the r_{k}, s_{k}, t_{k} polynomials.

Use the Maple commands quo ($\mathrm{a}, \mathrm{b}, \mathrm{x}$) and/or rem ($\mathrm{a}, \mathrm{b}, \mathrm{x}$) to compute the quotient and remainder of a divided b in $\mathbb{Q}[x]$. Remember, in Maple, you must explicitly expand products of polynomials using the expand (...) command.

Execute your Maple code on the following inputs.

```
> a := expand}((x+1)*(2*x^4-3*x^3+5*x^2+3*x-1))
> b := expand}((x+1)*(7*x^4+5*x^3-12*x^2-x+4))
```

Check that your output satisfies $s a+t b=g$ and check that your result agrees with Maple's g := gcdex(a,b,x,'s','t'); command.
(c) Consider $a(x)=x^{3}-1, b(x)=x^{2}+1$, and $c(x)=x^{2}$. Apply the algorithm in the proof of Theorem 2.6 (as presented in class) to solve the polynomial diophantine equation $\sigma a+\tau b=c$ for $\sigma, \tau \in \mathbb{Q}[x]$ satisfying $\operatorname{deg} \sigma<\operatorname{deg} b-\operatorname{deg} g$ where g is the monic gcd of a and b. Use Maple's $\mathrm{g}:=\operatorname{gcdex}(\mathrm{a}, \mathrm{b}, \mathrm{x}$, 's', 't') ; command to solve $s a+t b=g$ for $s, t \in \mathbb{Q}[x]$.

Question 2 (10 marks): Multivariate Polynomials

(a) Consider the polynomials

$$
A=3+5 x^{2} y^{2}+7 x y-2 x^{2}+4 y^{3} \quad \text { and } \quad B=7 x y z+9 x^{2}+3 x^{2} z-5 y^{3}
$$

For each polynomial, write it in graded lexicographical order with $x>y>z$.
Write down $\operatorname{lc}(A), \operatorname{lm}(A), \operatorname{lt}(A), \operatorname{lc}(A B), \operatorname{lm}(A B)$ and $\operatorname{lt}(A B)$.
Repeat this using pure lexicographical order monomial ordering with $x>y>z$. See the MultiPolyDefinitions handout for lecture 6.
(b) Consider the polynomials

$$
A=6 y^{2} x^{3}+2 x^{2} y^{2}+5 y x^{2}+3 x y^{2}+y x+y^{2}+x+y \text { and } B=2 y x^{2}+x+y .
$$

You are to divide the polynomials A by B over \mathbb{Z}. Write $A \in \mathbb{Z}[y][x]$ and test if $B \mid A$ by doing the division in $\mathbb{Z}[y][x]$ by hand. If $B \mid A$ determine the quotient Q of $A \div B$. Note, the quotient must be a polynomial in $\mathbb{Z}[y][x]$. Show your working.
Repeat the calculation using

$$
A=6 y^{2} x^{3}+2 x^{2} y^{2}+6 y x^{2}+3 x y^{2}+y x+y^{2}+x+y
$$

Check your answers using Maple's divide command.

Question 3 (15 marks): The Primitive Euclidean Algorithm

Reference section 2.7
(a) Calculate the content and primitive part of the following polynomial $a \in \mathbb{Z}[x, y]$, first as a polynomial in $\mathbb{Z}[y][x]$ and then as a polynomial in $\mathbb{Z}[x][y]$, i.e., first with x the main variable then with y the main variable. Use the Maple command gcd to calculate the GCD of the coefficients. The coeff command will be useful.

```
> a := expand( (x^4-3*x^3*y-x^2-y)*(8*x-4*y+12)*(2*y^2-2) );
```

(b) By hand, calculate the pseudo-remainder \tilde{r} and the pseudo-quotient \tilde{q} of the polynomials $a(x)$ divided by $b(x)$ below where $a, b \in \mathbb{Z}[y][x]$.

```
> a := 3*x^3+(y+1)*x;
> b := (2*y)*x^2+2*x+y;
```

Now compute \tilde{r} and \tilde{q} using Maple's prem command to check your work.
(c) Given the following polynomials $a, b \in \mathbb{Z}[x, y]$, calculate the $\operatorname{GCD}(a, b)$ using the primitive Euclidean algorithm with x the main variable.

```
> a := expand( (x^4-3*x^3*y-x^2-y)*(2*x-y+3)*(8*y^2-8) );
> b := expand( (x^3*y^2+x^3+x^2+3*x+y)*(2*x-y+3)*(12*y^3-12) );
```

You may use the Maple commands prem, gcd and divide for intermediate calculations.

Question 4 (20 marks): Chinese Remaindering

Reference section 5.3.
(a) By hand, find $0 \leq u<M$ where $M=5 \times 7 \times 9$ such that

$$
u \equiv 3 \bmod 5, \quad u \equiv 1 \bmod 7, \quad \text { and } u \equiv 3 \bmod 9
$$

using the "mixed radix representation" for u.
(b) We will solve the Chinese remainder problem in $F[y]$.

Theorem: Let F be a field and let $m_{1}, m_{2}, \ldots, m_{n}$ and $u_{1}, u_{2}, \ldots, u_{n}$ be polynomials in $F[y]$ with $\operatorname{deg}\left(m_{i}\right)>0$ for $1 \leq i \leq n$. If $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for $1 \leq i<j \leq n$ then there exists a unique polynomial u in $F[y]$ s.t.
(i) $u \equiv u_{i}\left(\bmod m_{i}\right)$ for $1 \leq i \leq n$ and
(ii) $u=0$ or $\operatorname{deg} u<\sum_{i=1}^{n} \operatorname{deg} m_{i}$.

Prove the theorem by modifying the proof of the Chinese remainder theorem for \mathbb{Z} to work for $F[y]$. Note, in the congruence relation $u \equiv u_{i}\left(\bmod m_{i}\right)$ means $m_{i} \mid\left(u-u_{i}\right)$ in $F[y]$.
(c) Consider the polynomials

$$
A=x^{4}+x^{3}+x+1 \quad \text { and } \quad B=x^{3}+1
$$

in the ring $\mathbb{Z}_{p}[x]$ for $p=2$. Use Maple to compute $A B, \operatorname{gcd}(A, B)$, the remainder of $A \div B$, and to solve $S A+T B=G$ in $\mathbb{Z}_{p}[x]$ for S, T, G where $G=\operatorname{gcd}(A, B)$.

See the handout PolynomialOperations.pdf from lecture 6 for the Maple commands.

Now solve the following Chinese remainder problem in $F[y]$ for $F=\mathbb{Z}_{2}$. Find $u \in \mathbb{Z}_{2}[y]$ such that

$$
u \equiv y^{2} \quad\left(\bmod y^{3}+y+1\right) \quad \text { and } u \equiv y^{2}+y+1 \quad\left(\bmod y^{3}+y^{2}+1\right)
$$

Question 5 (10 marks): Matrix Polynomials and Determinants

The symmetric Toeplitz matrix T_{n} is an $n \times n$ symmetric matrix where

$$
T_{i, j}=x_{|i-j|} \text { for } 1 \leq i \leq n \text { and } 1 \leq j \leq n
$$

For example, here is T_{3} and its determinant in Maple.

```
> T3 := Matrix(3,3):
> for i to 3 do for j to 3 do T[i,j] := x[abs(i-j)]; od od:
> T3;
```

$$
\left[\begin{array}{lll}
x_{0} & x_{1} & x_{2} \\
x_{1} & x_{0} & x_{1} \\
x_{2} & x_{1} & x_{0}
\end{array}\right]
$$

```
> with(LinearAlgebra): # this loads the Linear Algebra package
```

> Determinant(T3);

$$
x_{0}^{3}-2 x_{0} x_{1}^{2}-x_{0} x_{2}^{2}+2 x_{1}^{2} x_{2}
$$

Write a Maple procedure Toeplitz such that Toeplitz (n, x) constructs an $n \times n$ symmetric Toeplitz matrix in $x_{0}, x_{1}, \ldots, x_{n-1}$.

In a for loop use your Maple procedure to compute $T_{2}, T_{3}, T_{4}, T_{5}$. For each Toeplitz matrix compute and factor it's determinant. Print out the matrix T_{n}, the number of terms of the determinant, and the factorization of the determinant.

The number of terms of $\operatorname{det}\left(T_{n}\right)$ grows rapidly. I was able to compute $\operatorname{det}\left(T_{15}\right)$ on a server. It has $19,732,508$ terms. Computing $\operatorname{det}\left(T_{20}\right)$ seems hopeless; it is just way too big. Maybe it will never be computed. Use an evaluation homomorphism to prove that $\operatorname{det}\left(T_{20}\right) \neq 0$.

