MACM 401/MATH 801/CMPT 891
 Assignment 5, Spring 2021.

Michael Monagan

Due Monday March 29th at 11pm.
Late Penalty: -20% for up to 48 hours late. Zero after that.

Question 1: Factorization in $\mathbb{Z}_{p}[x]$ (20 marks)

(a) Factor the following polynomials over \mathbb{Z}_{11} using the Cantor-Zassenhaus algorithm.

$$
\begin{gathered}
a_{1}=x^{4}+8 x^{2}+6 x+8, \\
a_{2}=x^{6}+3 x^{5}-x^{4}+2 x^{3}-3 x+3, \\
a_{3}=x^{8}+x^{7}+x^{6}+2 x^{4}+5 x^{3}+2 x^{2}+8 .
\end{gathered}
$$

Use Maple to do all polynomial arithmetic, that is, you can use the $\operatorname{Gcd}(\ldots) \bmod p$ and Powmod(...) mod p commands etc., but not Factor(...) mod p.
(b) Compute the square-roots of the integers $a=3,5,7$ in the integers modulo p, if they exist, for $p=10^{20}+129=100000000000000000129$ by factoring the polynomial $x^{2}-a$ in $\mathbb{Z}_{p}[x]$ using the Cantor-Zassenhaus algorithm. Show your working. You will have to use Powmod here.

Question 2: Factorization in $\mathbb{Z}[x]$ (25 marks)

Factor the following polynomials in $\mathbb{Z}[x]$.

$$
\begin{gathered}
a_{1}=x^{10}-6 x^{4}+3 x^{2}+13 \\
a_{2}=8 x^{7}+12 x^{6}+22 x^{5}+25 x^{4}+84 x^{3}+110 x^{2}+54 x+9 \\
a_{3}=9 x^{7}+6 x^{6}-12 x^{5}+14 x^{4}+15 x^{3}+2 x^{2}-3 x+14 \\
a_{4}=x^{11}+2 x^{10}+3 x^{9}-10 x^{8}-x^{7}-2 x^{6}+16 x^{4}+26 x^{3}+4 x^{2}+51 x-170
\end{gathered}
$$

For each polynomial, first compute its square free factorization. You may use the Maple command $\operatorname{gcd}(. .$.$) to do this. Now factor each non-linear square-free factor as follows. Use the Maple$ command Factor (...) mod p to factor the square-free factors over \mathbb{Z}_{p} modulo the primes $p=$ $13,17,19,23$. From this information, determine whether each polynomial is irreducible over \mathbb{Z} or not. If not irreducible, try to discover what the irreducible factors are by considering combinations of the modular factors and Chinese remaindering (if necessary) and trial division over \mathbb{Z}.

Using Chinese remaindering here is not efficient in general. Why?
Thus for the polynomial a_{4}, use Hensel lifting instead; using a prime of your choice from $13,17,19,23$, Hensel lift each factor $\bmod p$, then determine the irreducible factorization of a_{4} over \mathbb{Z}.

Question 3: The linear x-adic Newton iteration (15 marks)

Let p be a prime and $a \in \mathbb{Z}_{p}[x]$ have degree $d \geq 0$. Let $u=\sqrt{a}$ and suppose $u \in \mathbb{Z}_{p}[x]$. Then for $\alpha \in \mathbb{Z}$ we may write

$$
u=u_{0}+u_{1}(x-\alpha)+\cdots+u_{k}(x-\alpha)^{k}+\cdots+u_{d / 2}(x-\alpha)^{d / 2}
$$

where $u_{0}=\sqrt{a(\alpha)}$. On assignment 4 you derived the following update formula for determining u_{k} given $u^{(k)}=\sum_{i=0}^{k-1} u_{i}(x-\alpha)^{i}$:

$$
u_{k}=\frac{e_{k}}{(x-\alpha)^{k}}\left(2 u_{0}\right)^{-1} \bmod (x-\alpha) \text { where } e_{k}=a-u^{(k)^{2}}
$$

If $a=\sum_{0}^{d} a_{i} x^{i}$ and $a_{0} \neq 0$ then we can use $\alpha=0$ since $a(0)=a_{0}$ so $u_{0}=\sqrt{a_{0}} \neq 0$. Then the update formula simplifies: the quantity $e_{k} / x^{k} \bmod x$ is just the coefficient of x^{k} of e_{k}. Here is my Maple code for implementing the algorithm for $a_{0} \neq 0$.

```
XadicSqrt := proc(a,x::name,p::prime)
# Input a(x) in Zp[x]
# Output sqrt(a) if it is in Zp[x] else FAIL
local a0,u0,u,i,k,d,m,e,uk;
    if a=0 then return 0; fi;
    d := degree(a,x);
    if irem(d,2) <> 0 then return FAIL fi;
    a0 := coeff(a,x,0);
    if aO = O then error "not implemented"; fi;
    u0 := numtheory [msqrt] (a0,p);
    if uO = FAIL then return FAIL; fi;
    i := modp (1/2/u0,p);
    u := u0;
    e := Expand( a-u^2 ) mod p;
    for k from 1 to d/2 do
        uk := coeff(e,x,k)*i mod p;
        u := u + uk*x^k;
        e := Expand( a-u^2 ) mod p;
    od;
    if e = O then u else FAIL fi;
end:
```

The algorithm is correct but not efficient. Let us find out why and then fix it. Let $\operatorname{deg} a=d$ and let $T(d)$ be the number of arithmetic operations algorithm XadicLift does in \mathbb{Z}_{p}. Assuming the polynomial multiplication u^{2} uses a classical quadratic algorithm, show that $T(d)$ is cubic in d. You are to modify the computation of the error so that that $T(d) \in O\left(d^{2}\right)$. You must show that $T(d) \in O\left(d^{2}\right)$. Implement your modified algorithm in Maple - just modify my code appropriately. Finally make your Maple code work for inputs where $a_{0}=0$. Test your code on the following inputs for $p=11$.

$$
a=\left(9 x^{3}+3 x^{2}+5 x+6\right)^{2}, \quad a=x^{3}+\left(9 x^{3}+3 x^{2}+5 x+6\right)^{2}, \quad a=\left(9 x^{3}+3 x^{2}+5 x\right)^{2} .
$$

Hint: The error $e_{k+1}=a-\left(u^{(k+1)}\right)^{2}=a-\left(u^{(k)}+u_{k} x^{k}\right)^{2}$. Use the error $e_{k}=a-u^{(k)^{2}}$ from the previous iteration to calculate e_{k+1} faster.

Question 4 (10 marks): Integration and Differentiation in Maple

(a) You were probably taught that the derivative of $\tan x$ is $\sec ^{2} x$. Differentiate $\tan x$ in Maple. Now use Maple to show that Maple's answer equals $\sec ^{2} x$.
(b) Evaluate the following antiderivatives in Maple.

$$
\int(2 x+\tan x) d x \quad \int \frac{\ln (x)}{x} d x \quad \int x^{2} e^{-x} d x .
$$

(c) Evaluate the following definite integrals in Maple where the parameters r and λ are positive.

$$
\int_{0}^{\pi} \sin x d x \int_{-r}^{r} \sqrt{r^{2}-x^{2}} d x \text { and } \int_{0}^{\infty} \lambda e^{-\lambda x} d x
$$

You will need to tell Maple that $r>0$ and $\lambda>0$. See ?assume

Question 5 (15 marks): Symbolic Integration

Implement a Maple procedure INT (you may use Int if you prefer) that evaluates antiderivatives $\int f(x) \mathrm{d} x$. For a constant c and positive integer n your Maple procedure should apply

$$
\begin{gathered}
\int c d x=c x . \\
\int c f(x) d x \rightarrow c \int f(x) d x \\
\int f(x)+g(x) d x \rightarrow \int f(x) d x+\int g(x) d x . \\
\int x^{-1} d x=\ln x \quad \text { and for } c \neq 1 \int x^{c} d x=\frac{1}{c+1} x^{c+1} . \\
\int e^{x} d x=e^{x} \text { and } \quad \int \ln x d x=x \ln x-x . \\
\int x^{n} e^{x} d x \rightarrow x^{n} e^{x}-\int n x^{n-1} e^{x} d x . \\
\int x^{n} \ln x d x=\frac{x^{n+1}}{n+1} \ln x-\frac{x^{n+1}}{(n+1)^{2}} .
\end{gathered}
$$

You may ignore the constant of integration. NOTE: e^{x} in Maple is $\exp (\mathrm{x})$, i.e. it's a function not a power. HINT: use the diff command for differentiation to determine if a Maple expression is a constant wrt x. Test your program on the following.

```
> INT( x^2 + 2*x + 1, x );
> INT( x^(-1) + 2*x^(-2) + 3*x^(-1/2), x );
> INT( exp(x) + ln(x) + sin(x), x );
> INT( 2*f(x) + 3*y*x/2 + 3*ln(2), x );
> INT( x^2*exp(x) + 2*x*exp(x), x );
> INT( 4*x^3* ln(x), x );
> INT( 2*exp(-x) + ln}(2*x+1), x )
```

