MATH 340 Assignment 4, Fall 2017

Michael Monagan

This assignment is due Friday October the 20th at 11:20 am.
Late penalty: -20% for up to 72 hours late. Zero after that.

Section 2.2: Subrings and Subfields

Find a subring of \mathbb{Z}_{8} with 4 elements.
Is it a subfield? Justify your answer.

Section 2.3: Review of Vector Spaces

Exercises 1, 9, 12.

Let $M_{2}\left(\mathbb{Z}_{2}\right)=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d \in \mathbb{Z}_{2}\right\}$ and let $\mathbb{Z}_{2}^{4}=\left\{\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]: a, b, c, d \in \mathbb{Z}_{2}\right\}$.
So $M_{2}\left(\mathbb{Z}_{2}\right)$ is the set of 2 by 2 matrices with entries in \mathbb{Z}_{2} and \mathbb{Z}_{2}^{4} is the set of vectors of dimension 4 over \mathbb{Z}_{2}. Show that the vectors spaces $M_{2}\left(\mathbb{Z}_{2}\right)$ and \mathbb{Z}_{2}^{4} are isomorphic.

Section 2.4: Polynomials

Exercises 1, 3, 12, 13, 14.
For 12,13 and 14 do parts (i) and (ii) only.
For 14 follow the tabular method in Example 1.3.7.

Section 2.5: Polynomial Evaluation and Interpolation

Exercises 1, 2, 3, 6, 7, 8 .
Lemma 2.5.1 (i) says if R is an integral domain and $f(x) \in R[x]$ and $a \in R$ then (i) $f(a)=0 \Longleftrightarrow(x-a) \mid f(x)$.
Prove that this is also true for any commutative ring R with identity 1_{R}.

