# MATH 340 Assignment 5, Fall 2017 

Michael Monagan

This assignment is due Wednesday November 1st at 11:20am.
For problems involving Maple please submit a printout of a Maple worksheet.
Late penalty: $-20 \%$ for up to 48 hours late. Zero for more than 48 hours late.

## Section 2.5: Complex Numbers

1. Let $i^{2}=-1, a=(2+3 i)$ and $b=(1-2 i)$.

Calculate $a+b, a b, a^{-1},|a|$ and $\bar{b}$.
Draw the points $a, b, a b, a^{-1}, \bar{b}$ in the complex plane.
2. Let $x, y \in \mathbb{C}$. Show that $x y=y x$ and $|x y|=|x||y|$ and $\overline{x y}=\bar{x} \bar{y}$.
3. If $f(x)=x^{3}-6 x^{2}+13 x-10$ and $2+i$ is a root of $f(x)$, find the other roots of $f(x)$ and factor $f(x)$ over $\mathbb{C}$.
4. Let $\mathbb{Z}[i]$ be the subset of complex numbers $\mathbb{C}$ given by $\mathbb{Z}[i]=\left\{a+b i: a, b \in \mathbb{Z}\right.$ and $i^{2}=$ $-1\}$. The set $\mathbb{Z}[i]$ is called the set of Gaussian integers. Show that $\mathbb{Z}[i]$ is a subring of $\mathbb{C}$. See Lemma 2.2.4 (i).

## Section 2.6: Irreducible Polynomials

Exercises 1, 2, 9, 10, 13, 14.

## Section 2.7: Construction of Fields

Exercises 1, 2, 5, 6, 7, 8, 9.
Consider the ring $R=\mathbb{Z}_{2}[x] /\left(x^{3}+x^{2}+x\right)$.
(i) What are the congruence classes of $R$ ?
(ii) Find a zero divisor in $R$.
(iii) Use the extended Euclidean algorithm to find $[x+1]^{-1}$ in $R$.

