MATH 340 Assignment 6, Fall 2017

Michael Monagan

This assignment is due Friday November 10th at 11:20am.
Late penalty: -20% for handing in by 11:20am, Tuesday November 14th. Zero after that.

Section 2.8: Extension Fields

Exercises 1, 3, 4, 9, 13.
For exercises $1,3,4$ use the construction $G F(9)=\mathbb{Z}_{3}[x] /\left(x^{2}+1\right)$ as shown in example 2.8.1. In exercise 3 , note that the polynomial $x^{9}-x$ factors as $x\left(x^{4}-1\right)\left(x^{4}+1\right)$ and $x^{2}+x+2$ is an irreducible factor of $x^{4}+1$ over \mathbb{Z}_{3}.

Additional questions on extension fields and roots of unity.

1. Is $\mathbb{Q}[z] /\left(z^{3}+1\right)$ a field? Justify your answer briefly.
2. Consider the field $F=\mathbb{Q}[z] /\left(z^{2}-2\right)$.

Use the extended Euclidean algorithm to find the inverse of $[z] \in F$.
3. Consider the field $F=\mathbb{R}[z] /\left(z^{2}+1\right)$. Let $\phi: F \rightarrow \mathbb{C}$ be the mapping given by $\phi([a+b z])=a+b i$. Show that ϕ is isomorphism.
4. Sketch the 12 'th roots of unity in the complex plane. Circle which ones are primitive.
5. Let ω be a primitive n^{\prime} th root of unity. For n even, prove that $\omega^{n / 2}=-1$.

6 . What are the primitive 6 'th roots of unity?
Find $\phi_{6}(x)$ the sixth cyclotomic polynomial. See Theorem 2.8.11.

Section 2.9: Multiplicative Structure of Finite Fields

Exercises 1(ii), 2, 5 .

Section 2.10: Primitive Elements

Exercises 1, 4, 5 .
Using your multiplication table for $G F(8)$ from exercise $2.8 \# 9$, calculate the order of all elements and determine which elements are primitive.

