MATH 340 Bonus 3, Fall 2017

Michael Monagan

This bonus question is to be handed in to me by Wednesday November 29th by 11:30am. It is worth a 1% bonus to your grade.

Let p be a prime and $f, g \in \mathbb{Z}_{p}[x]$ be irreducible over \mathbb{Z}_{p} with $\operatorname{deg} f=n>0$.
Let $F=\mathbb{Z}_{p}[y] / f(y)$ and $G=\mathbb{Z}_{p}[z] / g(z)$ so that F and G are finite fields with p^{n} elements. Let $\beta \in G$ such that $f(\beta)=0$.
Let $[a]=\left[a_{0}+a_{1} y+\cdots+a_{n-1} y^{n-1}\right]$ be in F and $\phi: F \rightarrow G$ be defined by

$$
\phi([a])=\left[a_{0}+a_{1} \beta+\cdots+a_{n-1} \beta^{n-1}\right]=[a(\beta)] .
$$

Theorem 2.13.3 on page 163 says ϕ is an isomorphism. For $[a],[b] \in F$ we proved in class that $\phi([a]+[b])=\phi([a])+\phi([b])$ and $\phi([a][b])=\phi([a]) \phi([b])$. To complete the proof that ϕ is an isomorphism prove that ϕ is bijective.

