To determine the cost of an algorithm let
$$T(n)$$
 be the
number of _______ operations that the algorithm does the
an input of size n . If $T(n) = 3n^2 + 2n + 5$ we
say the algorithm is quadratic in n .
For large n the term $3n^2$ dominates the cost of the edg.
Definition. Let $n \in N$ and $f: N \rightarrow R$ and $g: N \rightarrow R$.
We say g dominates f if $\exists c > 0$ and $\exists k \in \mathbb{N}$ set.
 $|f(n)| \leq c |g(n)|$ for $n \geq k$.
Define $O(g(n)) = \xi f(n) : g(n)$ dominates $f(n)$?.
Examples $g(n)$ $|f(n)| \leq c |g(n)| \forall n \geq k$.
 $2n^2 + \xi \in O(n^2)$ because $2n^2 + \xi \in [2] : n^2 + n \geq [2]$
 $n^2 \notin O(n^2)$ because $2n^3 + \xi \in [2] : n^2 + n \geq [2]$
 $n^2 \notin O(n^2)$ because $n^3 \notin c : n^2 + n \geq [2]$
 $n^2 \notin O(n^2)$ because $n^3 \notin c : n^2 + n \geq [2]$
 $n^2 \notin O(n^2)$ because $n^3 \notin c : n^2 + n \geq c$
So $O(n^2) = \xi$ an 4 bn + c, an + b, an + 5 bn + c, an lag n, \dots ?
 $O(n) \in O(n^2) \subset O(n^3)$
Linear algs. Quadratic algs. Cubic algs.
f, ge $\Phi[x]$ fig fig A is non-matrices
 $egf = deg = n = f(n)$ fig A is non-matrices
 $egf = deg = n = f(n)$ fig A is algorithm.
Let $al \in \mathbb{R}$
Here de we show $O(f(n)) = O(g(n))$? $O(3n^2 + i) = O(n^2 + n)$?
We show $O(f(n)) \subseteq O(g(n))$ and $O(g(n)) \subset O(g(n))$.
I claim if $f(n) \in O(g(n)) \Rightarrow |f(n)| \leq c(|g(n)| \forall n \geq k_1$
Let $h(n) \in O(f(n)) \Rightarrow |h(n)| \leq c(|f(n)| \forall n \geq k_1$
Let $h(n) \in O(f(n)) \Rightarrow |h(n)| \leq c(|f(n)| \forall n \geq k_1$

E.g.
$$(1+2x)(2+3x) \mod x^2 = 2+4x+3x$$

 $n=1$ = $2+7x$.
Let $f(x) = a_0 + a_1x + a_1x^7 + \dots + a_nx^n$
 $g(x) = b_0 + b_1x + b_1x^2 + \dots + b_nx^n$
 $h(x) = C_0 + C_1x + C_2x^7 + \dots + C_nx^n$
 $\int C_0 = a_0b_0 + a_1b_0$
 $C_2 = a_0b_0 + a_1b_{n-1} + \dots + a_nb_0$
Algorithm Series Mult.
for $k = 0, 1, \dots, n$ do
 $C_k = 0$
 $f_{0x} = a_0b_1 + a_1b_{n-1} + \dots + a_nb_0$
Algorithm Series Mult.
for $k = 0, 1, \dots, n$ do
 $C_k = C_{k+} = a_1 + b_{k-1}$
Let $T(n)$ be the # of arithmetic operations in Z.
 $T(n) = \sum_{k=0}^{\infty} 2(k+1) = 2\left[\sum_{k=0}^{\infty} k + \sum_{k=0}^{\infty}\right]$
 $T(n) = \sum_{k=0}^{\infty} O(k) = (n+1)(n+1) \in O(n^1),$
 $= O(0) + O(1) + \frac{\pi}{2} + O(n)$
By $Pef. = O(0 + 1 + \dots + n) = O(\frac{\pi}{2}n^2) = O(n^2).$
 $Def. O(f_1(n)) + O(f_2(n)) + \dots + O(f_m(n)) = O(1)$

Question: Is the time complexity of algorithm Series Mult O(n2)? No. FE Z[x]. The time will also depend on the cost of the integer t, x.

Bit complexity: Count total 1 of the time of the algorithm.
(proportional to the time of the algorithm).
The polynomial avaluation problem.
Let
$$f \in Q[z]$$
, $f \neq 0$, $n = deg(f]$.
Let $\alpha \in Q$. How can we compute $f(\alpha)$?
 $f = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$.
 $f = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$.
 $f = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$.
Pow(α, n)
 $y=1;$ does n mults. Eval1(f, α)
 $y=a_0$
for $i=1;e/3;\dots,n$ do
 $y=\alpha \cdot y$
return y.
Let T(n) be the $\#$ of mults in Q done.
 $T(n) = \sum_{i=1}^{\infty} (1+i) = \sum_{i=1}^{\infty} 1 + \sum_{i=1}^{\infty} 1 = n(n+i) = n(n+i)$
 $i=1$
 $i=1$
 $y=a_2 + 3 = n \in O(n^2)$.

Homer (f, α) // $f = q_0 + q_1 x + q_2 x + \dots + q_n - x^{n-1} + q_n x^n$

Homer
$$(f, \alpha)$$
 // $f = a_0 + a_1 x + a_2 x + \dots + a_n x^{n-1} + a_n x^n$
// $= a_0 + x(a_1 + x(a_2 + \dots x(a_{n-1} + x(a_n)) \dots))$
 $y = a_n$
for $i = n - l_n n - 2, \dots, 1, 0$ do
 $y = \alpha \cdot y + a_i$
return y_0