MATH 895 Assignment 1, Summer 2015

Instructor: Michael Monagan

Please hand in the assignment by 9:30am Wednesday May 27th.

Late Penalty -20% off for up to two days late. Zero after that.

For Maple problems, please submit a printout of a Maple worksheet containing Maple code and the execution of examples.

References: Sections 4.5–4.9 of Geddes, Czapor and Labahn and/or sections 8.2,8.3,9.1 of von zur Gathen and Gerhard.

Question 1 An iterative FFT.

Attached is a file FFT1.c containing my recursive radix 2 FFT code. Convert it to an iterative algorithm. You will need to accomplish the bit-reverse permutation separately. Check that your algorithm is correct by checking that

$$FFT^{-1}(FFT(A,\omega),\omega^{-1}) = nA.$$

Question 2 Analysis of the FFT.

Let K be a field and $\omega = i$ be a primitive 4'th root of unity in K. Let $a = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ and $A = [a_0, a_1, a_2, a_3] \in K^4$. The FFT computes $F = [a(1), a(\omega), a(\omega^2), a(\omega^3)]^T$. This polynomial evaluation can be expressed as an affine transformation. Let V_4 be the 4×4 Vandermonde matrix

V =	[1	1	1	1 -		1	1	1	1
	1	ω	ω^2	ω^3		1	i	-1	-i
	1	ω^2	ω^4	ω^6		1	-1	1	-1
	1	ω^3	ω^6	ω^9		1	-i	-1	i

Then the FFT computes V_4A^T , that is, $F = V_4A^T$. For both FFT algorithms (FFT1 and FFT2) factor the matrix V_4 into a product of three matrices so that $V_4 = UVW$ where one of the matrices will be a permutation matrix. The two factorizations will help explain how the two algorithms both compute $V_4A = F$.

Question 3 Fast Division

Consider dividing a by b in F[x] where deg a = d, deg b = m with $d \ge m > 0$. Program the Newton iteration (Algorithm 4.6) recursively in Maple for $F = \mathbb{Z}_p$ to compute f^{-1} as a power series to $O(x^n)$ where n = d - m + 1.

To make the Newton iteration efficient when n is not a power of 2, compute $y = f^{-1}$ recursively to order $O(x^{\lceil n/2 \rceil})$. To truncate a polynomial b modulo x^n you could use the Maple command rem(b,x^n,x). Use convert(taylor(b,x,n),polynom) instead.

Test your algorithm on the following problem in $\mathbb{Z}_p[x]$.

```
> p := 101;
> a := randpoly(x,degree=100,dense) mod p;
> b := randpoly(x,degree=50,dense) mod p;
> Quo(a,b,x) mod p;
```

Question 4 Complexity of Fast Division

Let $f \in F[x]$ and let D(n) be the number of multiplications in F for computing f^{-1} as power series to order $O(x^n)$ using the Newton iteration. Let M(n) be the number of multiplications in F that your favorite multiplication algorithm takes to multiply two polynomials of degree n-1 in F[x]. For $n = 2^k$ explain why

$$D(n) = D(n/2) + M(n) + M(n/2) + cn$$

for some constant c > 0. Now, using D(1) = d for some constants d > 0, solve this recurrence relation, show that

$$D(n) < 3M(n) + 2cn + d.$$

Use the fact that 2M(n/2) < M(n), i.e., M(n) > O(n). Thus conclude that the cost of the Newton iteration is roughly 3 multiplications.