
MATH 895 Assignment 1, Summer 2015

Instructor: Michael Monagan

Please hand in the assignment by 9:30am Wednesday May 27th.
Late Penalty -20% off for up to two days late. Zero after that.
For Maple problems, please submit a printout of a Maple worksheet containing Maple code
and the execution of examples.

References: Sections 4.5–4.9 of Geddes, Czapor and Labahn and/or sections 8.2,8.3,9.1 of
von zur Gathen and Gerhard.

Question 1 An iterative FFT.

Attached is a file FFT1.c containing my recursive radix 2 FFT code. Convert it to an iterative
algorithm. You will need to accomplish the bit-reverse permutation separately. Check that
your algorithm is correct by checking that

FFT−1(FFT (A, ω), ω−1) = nA.

Question 2 Analysis of the FFT.

Let K be a field and ω = i be a primitive 4’th root of unity in K. Let a = a0+a1x+a2x
2+a3x

3

and A = [a0, a1, a2, a3] ∈ K4. The FFT computes F = [a(1), a(ω), a(ω2), a(ω3)]T . This
polynomial evaluation can be expressed as an affine transformation. Let V4 be the 4 × 4
Vandermonde matrix

V =


1 1 1 1

1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 =


1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i


Then the FFT computes V4A

T , that is, F = V4A
T . For both FFT algorithms (FFT1 and

FFT2) factor the matrix V4 into a product of three matrices so that V4 = UVW where one
of the matrices will be a permutation matrix. The two factorizations will help explain how
the two algorithms both compute V4A = F .

1



Question 3 Fast Division

Consider dividing a by b in F [x] where deg a = d, deg b = m with d ≥ m > 0. Program
the Newton iteration (Algorithm 4.6) recursively in Maple for F = Zp to compute f−1 as a
power series to O(xn) where n = d−m + 1.

To make the Newton iteration efficient when n is not a power of 2, compute y = f−1

recursively to order O(xdn/2e). To truncate a polynomial b modulo xn you could use the
Maple command rem(b,x^n,x). Use convert(taylor(b,x,n),polynom) instead.

Test your algorithm on the following problem in Zp[x].

> p := 101;

> a := randpoly(x,degree=100,dense) mod p;

> b := randpoly(x,degree=50,dense) mod p;

> Quo(a,b,x) mod p;

Question 4 Complexity of Fast Division

Let f ∈ F [x] and let D(n) be the number of multiplications in F for computing f−1 as power
series to order O(xn) using the Newton iteration. Let M(n) be the number of multiplications
in F that your favorite multiplication algorithm takes to multiply two polynomials of degree
n− 1 in F [x]. For n = 2k explain why

D(n) = D(n/2) + M(n) + M(n/2) + cn

for some constant c > 0. Now, using D(1) = d for some constants d > 0, solve this recurrence
relation, show that

D(n) < 3M(n) + 2cn + d.

Use the fact that 2M(n/2) < M(n), i.e., M(n) > O(n).
Thus conclude that the cost of the Newton iteration is roughly 3 multiplications.

2


