MATH 895 Assignment 1, Summer 2017

Instructor: Michael Monagan

Please hand in the assignment by 9:30am Thursday May 18th.
Late Penalty -20% off for up to 24 hours late. Zero after that.
For Maple problems, please submit a printout of a Maple worksheet containing Maple code and the execution of examples.
References: Sections 4.5-4.9 of Geddes, Czapor and Labahn and/or sections 8.2,8.3,9.1 of von zur Gathen and Gerhard.

Question 1 An iterative FFT.

The file FFT1.c contains my recursive radix 2 FFT code. Convert it to an iterative algorithm. You will need to accomplish the bit-reverse permutation separately. Check that your algorithm is correct by checking that

$$
F F T^{-1}\left(F F T(A, \omega), \omega^{-1}\right)=n A
$$

for a problem of your choosing modulo $p=97$.

Question 2 Analysis of the FFT.

Let K be a field and $\omega=i$ be a primitive 4'th root of unity in K. Let $a=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ and $A=\left[a_{0}, a_{1}, a_{2}, a_{3}\right] \in K^{4}$. The FFT computes $F=\left[a(1), a(\omega), a\left(\omega^{2}\right), a\left(\omega^{3}\right)\right]^{T}$. This polynomial evaluation can be expressed as an affine transformation. Let V_{4} be the 4×4 Vandermonde matrix

$$
V=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \omega & \omega^{2} & \omega^{3} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} \\
1 & \omega^{3} & \omega^{6} & \omega^{9}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]
$$

Then the FFT computes $V_{4} A^{T}$, that is, $F=V_{4} A^{T}$. For both FFT algorithms (FFT1 and FFT2) factor the matrix V_{4} into a product of three matrices so that $V_{4}=U V W$ where one of the matrices will be a permutation matrix. The two factorizations explain how the two algorithms both compute $V_{4} A=F$. Check that the two permutation matrices are inverses of each other.

Question 3 Fast Division

Consider dividing a by b in $F[x]$ where $\operatorname{deg} a=d$, $\operatorname{deg} b=m$ with $d \geq m>0$. Program the Newton iteration (Algorithm 4.6) recursively in Maple for $F=\mathbb{Z}_{p}$ to compute f^{-1} as a power series to $O\left(x^{n}\right)$ where $n=d-m+1$.

To make the Newton iteration efficient when n is not a power of 2 , compute $y=f^{-1}$ recursively to order $O\left(x^{\lceil n / 2\rceil}\right)$. To truncate a polynomial b modulo x^{n} you could use the Maple command $\operatorname{rem}\left(b, x^{\wedge} n, x\right)$. Use convert (taylor (b, x, n), polynom) instead which is more efficient in Maple.

Test your algorithm on the following problem in $\mathbb{Z}_{p}[x]$.

```
> p := 101;
> a := randpoly(x,degree=100,dense) mod p;
> b := randpoly(x,degree=50,dense) mod p;
> Quo(a,b,x) mod p;
```


Question 4 Complexity of Fast Division

Let $f \in F[x]$ and let $D(n)$ be the number of multiplications in F for computing f^{-1} as power series to order $O\left(x^{n}\right)$ using the Newton iteration. Let $M(n)$ be the number of multiplications in F that your favorite multiplication algorithm takes to multiply two polynomials of degree $n-1$ in $F[x]$. For $n=2^{k}$ explain why

$$
D(n)=D(n / 2)+M(n)+M(n / 2)+c n
$$

for some constant $c>0$. Now, using $D(1)=d$ for some constants $d>0$, solve this recurrence relation, show that

$$
D(n)<3 M(n)+2 c n+d
$$

Use the fact that $2 M(n / 2)<M(n)$, i.e., $M(n)>O(n)$.
Thus conclude that the cost of the Newton iteration is roughly 3 multiplications.

