MATH 895, Assignment 3, Summer 2017

Instructor: Michael Monagan

Please hand in the assignment by 5:00pm Tuesday June 13th.
Late Penalty -20% off for up to 48 hours late, zero after that.

Question 1: The Bareiss/Edmonds Algorithm

Reference: Ch. 9 of Algorithms for Computer Algebra by Geddes, Czapor and Labahn.

Part (a) (10 marks)

For an n by n matrix A with integer entries, implement ordinary Gaussian elimination and the Bareiss/Edmonds algorithms as the Maple procedures GaussElim(A, n, 'B') ; and Bareiss (A, $\mathrm{n},{ }^{\prime} \mathrm{B}^{\prime}$) ; to compute $\operatorname{det}(A)$. The algorithms should initially assign B a copy of the matrix A so that after the algorithm finishes and returns $\operatorname{det}(A)$ the value of B will be $A^{(n-1)}$. Note, you will need to take care of pivoting: if at any step k, the matrix entry $B_{k, k}=0$ and $B_{i, k} \neq 0$ for some $k<i \leq n$, interchange row k with row i before proceeding. And remember interchanging two rows of a matrix changes the sign of the determinant.

Use iquo (a, b) to compute the quotient of a divided by b. When you are debugging, print out the matrices $A^{(1)}, A^{(2)}, \ldots$ after each step of the elimination.
Execute both algorithms on the following matrices for $n=2,3,4, \ldots, 10$.

```
> n := 4;
> m := 4:
> c := rand(10^m):
> A := Matrix(n,n,c);
```

$$
A:=\left[\begin{array}{cccc}
7926 & 8057 & 5 & 3002 \\
2347 & 9765 & 3354 & 5860 \\
6906 & 5281 & 5393 & 1203 \\
311 & 9386 & 9810 & 5144
\end{array}\right]
$$

For $n=4$ print out final triangular matrix for both algorithms.
Finally, in class we showed that $|\operatorname{det}(A)|<\sqrt{n}^{n} B^{m n}$ where $B=10$ and $m=4$ here. Check this for $n=4$.

Part (b) (5 marks)

Here is code for the forward elimination step of ordinary Gaussian elimination applied to an n by n matrix over a field F. It triangularizes A. This code assumes the pivots $A_{k k} \neq 0$.

$$
\begin{aligned}
& \text { for } k=1 \text { to } n-1 \text { do } \# \text { step } k \\
& \qquad \begin{array}{l}
\text { for } i=k+1 \text { to } n \text { do } \# \text { row } i \\
\quad \text { for } j=k+1 \text { to } n \text { do } A_{i j}:=A_{i j}-\frac{A_{i k}}{A_{k k}} A_{k j} ; \\
\quad A_{i k}:=0 ;
\end{array}
\end{aligned}
$$

The divisions $A_{i k} / A_{k k}$ can be moved out of the inner loop so that we have

$$
\begin{aligned}
& \text { for } k=1 \text { to } n-1 \text { do } \# \text { step } k \\
& \qquad \begin{array}{l}
\text { for } i=k+1 \text { to } n \text { do } \# \text { row } i \\
\quad m:=\frac{A_{i k}}{A_{k k}} ; \\
\text { for } j=k+1 \text { to } n \text { do } A_{i j}:=A_{i j}-m A_{k j} \\
\quad A_{i k}:=0 ;
\end{array}
\end{aligned}
$$

This is the usual presentation of Gaussian elimination in a course on numerical analysis. The quantity m is called the multiplier. Let $M(n)$ be the number of multiplications in F does Gaussian elimination does. Notice it does $M(n)$ subtractions also. Work out the exact formula for $M(n)$. One way to do this is as a recurrence relation.

Part (c) (10 marks)

Let F be a field, $D=F[x]$ and A be an n by n matrix over D. If we assume $\operatorname{deg} A_{i, j} \leq d$ and classical quadratic algorithms are used for polynomial multiplication and exact division in $F[x]$, how many multiplications in F does the Bareiss/Edmonds algorithm do?

Try to get an exact formula in terms of n and d assuming $\operatorname{deg} A_{i, j}=d$. I suggest you do this for a 3 x 3 matrix first. Recall that to divide a polynomial in $F[x]$ of degree d by a polynomial of degree $m \leq d$, the classical division algorithm does at most $(d-m+1) m$ multiplications in F.

Question 2: Solving $A x=b$ using p-adic lifting and rational reconstruction.

Part (a) (10 marks)
Let $A \in \mathbb{Z}^{n \times n}$ and $b \in \mathbb{Z}^{n}$. In class I presented an algorithm for solving $A x=b$ for $x \in \mathbb{Q}^{n}$ using linear p-adic lifting and rational number reconstruction. Implement the algorithm in Maple as the procedure PadicLinearSolve (A, b). Use the prime $p=2^{31}-1$. Your procedure should return the solution vector x and also print out the number of lifting steps k that are required. Test your implementation on the following examples. The first has large rationals in the solution vector. The second has very small rationals.

```
> with(LinearAlgebra):
> B := 2^16;
> m := 3;
> U := rand(B^m);
> n := 50;
> A := RandomMatrix(n,n,generator=U);
> b := RandomVector(n,generator=U);
> x := padicLinearSolve(A,b);
> convert( A.x-b, set ); # should be {0}
> y := [1,0,-1/2,2/3,4,3/4,-2,-3,0,-1];
> y := map( op, [y$5] );
> x := Vector(y);
> b := A.x;
> A,b := 12*A,12*b; # clear fractions
> x := padicLinearSolve(A,b);
> convert( A.x-b, set ); # should be {0}
```

To compute $A^{-1} \bmod p$ use the Maple command Inverse (A) mod p .
To multiply A times a vector x use A.x in Maple.
For rational number reconstruction use the Maple command iratrecon. Note, if u is a vector of integers modulo m, iratrecon (u, m) will apply rational reconstructon to each entry in u separately.

Part (b) (6 marks)

Reference: Maximal Quotient Rational Reconstruction: An Almost Optimal Algorithm for Rational Reconstruction by M. Monagan. Available on course website.

In class I presented an Theorem of Guy, Davenport and Wang for rational number reconstruction. One good way to understand what a Theorem is saying is to first check that it's true on some examples. Checking a Theorem will often reveal the conditions under which the Theorem is true. For example, should it be $r_{i} \leq N$ or $r_{i}<N$.

Implement Wang/Guy/Davenport's rational number reconstruction algorithm as presented in class as the Maple procedure $\operatorname{RATRECON}(m, u, N, D)$. For a modulus $m>0$ and input $0 \leq u<m$ and integers N, D satisfying $N \geq 0, D>0$ and $2 N D<m$ run the extended Euclidean algorithm for input $r_{0}=m, r_{1}=u$ and output the first r_{i} / t_{i} satisfying $r_{i} \leq N$ provided $\operatorname{gcd}\left(t_{i}, m\right)=1$ and $\left|t_{i}\right| \leq D$, otherwise output FAIL. You may use my code for the extended Euclidean algorithm in the handout.

Run your algorithm on the following inputs

$$
m=13, u=i, N=3, D=2 \text { for } 0 \leq i<13
$$

Now verify that all rationals n / d satisfying $|n| \leq N$ and $d \leq D$ are recovered and only those rationals are recovered (all other outputs are FAIL).

Part (c) (9 marks)

Suppose $\operatorname{dim} A=n, \operatorname{dim} b=n$ and $\left|A_{i, j}\right|<B^{m}$ and $\left|b_{i}\right|<B^{m}$, i.e., the coefficients in the linear system are m base B digits (or less). Suppose the p-adic lifting algorithm does L lifting steps, i.e. solves $A x=b \bmod p^{L}$ and then successfully reconstructs $x \in \mathbb{Q}^{n}$ using rational reconstruction.

What is the running time of the algorithm assuming classical algorithms are used for integer arithmetic, rational reconstruction and matrix inverse. Express your answer in the form $O(f(m, n, L))$.

Since the integers in the solution vector x may be as large as $m n$ base B digits, as illustrated by the first example, $L \in O(m n)$ in general. What is the running time for $L \in O(m n)$? Recall that we showed in class that the modular algorithm cost $O\left(m n^{4}+m^{2} n^{3}\right)$ to solve $A x=b$.

