Density of rational points on a family of del Pezzo surfaces of degree 1

Rosa Winter
Max Planck Institute for Mathematics in the Sciences, Leipzig

Simon Fraser University

Quarantined Number Theory and Algebraic Geometry Seminar
October 29, 2020

Rational points on varieties

X a variety over a field k.
$X(k)$ set of k-rational points of X.

Rational points on varieties

X a variety over a field k.
$X(k)$ set of k-rational points of X.
Questions.

- Is $X(k)$ empty?
- Is $X(k)$ finite?
- Is $X(k)$ dense in X w.r.t. the Zariski topology?

Rational points on varieties

X a variety over a field k.
$X(k)$ set of k-rational points of X.
Questions.

- Is $X(k)$ empty?
- Is $X(k)$ finite?
- Is $X(k)$ dense in X w.r.t. the Zariski topology?

Can we answer these questions using the geometry of X ?

Rational points on varieties

X a variety over a field k.
$X(k)$ set of k-rational points of X.
Questions.

- Is $X(k)$ empty?
- Is $X(k)$ finite?
- Is $X(k)$ dense in X w.r.t. the Zariski topology?

Can we answer these questions using the geometry of X ?
Example
X a curve of genus at least 2 , then $X(k)$ is finite.

Cubic surfaces

Example of del Pezzo surfaces: smooth cubic surfaces in \mathbb{P}^{3}.

Cubic surfaces

Example of del Pezzo surfaces: smooth cubic surfaces in \mathbb{P}^{3}.

Example
$x^{3}+y^{3}+z^{3}+w^{3}=(x+y+z+w)^{3}$ (Clebsch surface)

Cubic surfaces

Example of del Pezzo surfaces: smooth cubic surfaces in \mathbb{P}^{3}.

Example
$x^{3}+y^{3}+z^{3}+w^{3}=0$ (Fermat cubic)

The geometry of cubic surfaces

Theorem (Cayley-Salmon, 1849)

- A smooth cubic surface over an algebraically closed field contains exactly 27 lines.
- Any point on the surface is contained in at most three of those lines; such a point is an Eckardt point.

The geometry of cubic surfaces
Theorem (Cayley-Sa

- A smooth cubic contains exactly
- Any point on the those lines; such

The geometry of cubic surfaces

Theorem (Cayley-Salmon, 1849)

- A smooth cubic surface over an algebraically closed field contains exactly 27 lines.
- Any point on the surface is contained in at most three of those lines; such a point is an Eckardt point.

The intersection graph of the lines is the complement of the Schläfli graph.

The geometry of cubic surfaces

Theorem (Cayley-Salmon, 1849)

- A smooth cubic surface over an algebraically closed field contains exactly 27 lines.
- Any point on the surface is contained in at most three of those lines; such a point is an Eckardt point.

The intersection graph of the lines is the complement of the Schläfli graph.

Lemma (Hirschfeld, 1967)
There are at most 45 Eckardt points on a cubic surface.

Rational points on cubic surfaces

Let X be a smooth cubic surface over a field k.

Theorem (Segre, Manin, Kollár)
The following are equivalent.
(i) X contains a k-rational point.
(ii) There is a map $\mathbb{P}_{k}^{n} \rightarrow X$ for some n such that the image is dense in X.

Rational points on cubic surfaces

Let X be a smooth cubic surface over a field k.

Theorem (Segre, Manin, Kollár)
The following are equivalent.
(i) X contains a k-rational point.
(ii) There is a map $\mathbb{P}_{k}^{n} \rightarrow X$ for some n such that the image is dense in X.

Property (ii) means that X is unirational over k. If k is infinite, this implies that $X(k)$ is dense in X.

Rational points on cubic surfaces

Let X be a smooth cubic surface over a field k.

Theorem (Segre, Manin, Kollár)
The following are equivalent.
(i) X contains a k-rational point.
(ii) There is a map $\mathbb{P}_{k}^{n} \rightarrow X$ for some n such that the image is dense in X.

Property (ii) means that X is unirational over k. If k is infinite, this implies that $X(k)$ is dense in X.

Conclusion: k infinite, then

$$
X(k) \neq \emptyset \text { if and only if } X(k) \text { dense in } X .
$$

More general: del Pezzo surfaces

Definition

A del Pezzo surface X is a 'nice' surface with ample anticanonical divisor $-K_{X}$, i.e., X has an embedding in some \mathbb{P}^{n}, such that $-a K_{X}$ is linearly equivalent to a hyperplane section for some a. Its degree is the self intersection $\left(-K_{X}\right)^{2}$ of the anticanonical divisor.

More general: del Pezzo surfaces

Definition

A del Pezzo surface X is a 'nice' surface with ample anticanonical divisor $-K_{X}$, i.e., X has an embedding in some \mathbb{P}^{n}, such that $-a K_{X}$ is linearly equivalent to a hyperplane section for some a. Its degree is the self intersection $\left(-K_{X}\right)^{2}$ of the anticanonical divisor.

Fact
The degree is an integer between 1 and 9 .

More general: del Pezzo surfaces

Definition

A del Pezzo surface X is a 'nice' surface with ample anticanonical divisor $-K_{X}$, i.e., X has an embedding in some \mathbb{P}^{n}, such that $-a K_{X}$ is linearly equivalent to a hyperplane section for some a. Its degree is the self intersection $\left(-K_{X}\right)^{2}$ of the anticanonical divisor.

Fact

The degree is an integer between 1 and 9 .
Example

- Smooth cubic surfaces in \mathbb{P}^{3} (degree 3).
- Complete intersection of two quadrics in \mathbb{P}^{4} (degree 4).
- Double cover of \mathbb{P}^{2}, ramified over a smooth quartic curve (degree 2).
- For $3 \leq d \leq 9$, a del Pezzo surface is isomorphic to a surface of degree d in \mathbb{P}^{d}.

Geometry of del Pezzo surfaces

A del Pezzo surface over an algebraically closed field is birationally equivalent to the projective plane.

Geometry of del Pezzo surfaces

A del Pezzo surface over an algebraically closed field is birationally equivalent to the projective plane.

Theorem
Let X be a del Pezzo surface of degree d over an algebraically closed field. Then X is isomorphic to either the product of two lines (then $d=8$), or \mathbb{P}^{2} blown up in $9-d$ points in general position, where general position means

- no three points on a line;
- no six points on a conic;
- no eight points on a cubic that is singular at one of them.

Lines on a del Pezzo surface

Recall: a smooth cubic surface in \mathbb{P}^{3} over an algebraically closed field contains 27 lines.

Lines on a del Pezzo surface

Recall: a smooth cubic surface in \mathbb{P}^{3} over an algebraically closed field contains 27 lines.

Let X be a del Pezzo surface over an algebraically closed field, constructed by blowing up \mathbb{P}^{2} in r points P_{1}, \ldots, P_{r}. There is a finite number of 'lines' (exceptional curves) on X. These are given by

- the exceptional curves above P_{1}, \ldots, P_{r};

Lines on a del Pezzo surface

Recall: a smooth cubic surface in \mathbb{P}^{3} over an algebraically closed field contains 27 lines.

Let X be a del Pezzo surface over an algebraically closed field, constructed by blowing up \mathbb{P}^{2} in r points P_{1}, \ldots, P_{r}. There is a finite number of 'lines' (exceptional curves) on X. These are given by

- the exceptional curves above P_{1}, \ldots, P_{r}; the strict transform of
- lines through two of the points;
- conics through five of the points;
- cubics through seven of the points, singular at one of them;
- quartics through eight of the points, singular at three of them;
- quintics through eight of the points, singular at six of them;
- sextics through eight of the points, singular at all of them, containing one of them as a triple point.

Degree 7

Blow up 2 points

Degree 7

Blow up 2 points

Degree 7
 Degree 6

Blow up 2 points Blow up 3 points

Degree 7
 Degree 6

Blow up 2 points Blow up 3 points

Degree 7
Degree 6
Degree 5

Blow up 2 points
Blow up 3 points
Blow up 4 points

Degree 7

Degree 6

Blow up 3 points
Blow up 4 points
Degree 5

Blow up 2 points

Degree 7
Degree 6
Degree 5

Blow up 2 points
Blow up 3 points
Blow up 4 points

d	1	2	3	4	5	6	7	8
lines on X	240	56	27	16	10	6	3	1

Configuration of the lines on a del Pezzo surface

The intersection graph of the lines on a del Pezzo surface is known:
Degree 5: 10 lines, Petersen graph.
Degree 4: 16 lines, Clebsch graph.
Degree 3: 27 lines, complement of the Schläfli graph.

Configuration of the lines on a del Pezzo surface

The intersection graph of the lines on a del Pezzo surface is known:
Degree 5: 10 lines, Petersen graph.
Degree 4: 16 lines, Clebsch graph.
Degree 3: 27 lines, complement of the Schläfli graph.
Degree 2: 56 'lines', any line I intersects exactly one other line I^{\prime} with multiplicity two, and 27 other lines with multiplicity one. These 27 lines do not intersect I^{\prime}, and they form again the complement of the Schläfli graph.
\rightarrow one point is contained in at most 4 lines

Configuration of the lines on a del Pezzo surface

The intersection graph of the lines on a del Pezzo surface is known:
Degree 5: 10 lines, Petersen graph.
Degree 4: 16 lines, Clebsch graph.
Degree 3: 27 lines, complement of the Schläfli graph.
Degree 2: 56 'lines', any line I intersects exactly one other line I^{\prime} with multiplicity two, and 27 other lines with multiplicity one. These 27 lines do not intersect I^{\prime}, and they form again the complement of the Schläfli graph.
\rightarrow one point is contained in at most 4 lines.
Degree 1: 240 'lines'...
Theorem (van Luijk-W.)
On a del Pezzo surface of degree 1, a point is contained in at most 10 lines in char $\neq 2,3$, at most 16 lines in char 2 , and 12 in char 3.

The intersection graph on the 240 lines

Rational points on del Pezzo surfaces

Recall:

- A variety X is unirational over a field k if there is a map $\mathbb{P}_{k}^{n} \rightarrow X$ for some n such that the image is dense in X.
- A smooth cubic surface has a k-rational point if and only if it is unirational over k.

Unirationality ~ 'There are many rational points.'

Rational points on del Pezzo surfaces

Recall:

- A variety X is unirational over a field k if there is a map $\mathbb{P}_{k}^{n} \rightarrow X$ for some n such that the image is dense in X.
- A smooth cubic surface has a k-rational point if and only if it is unirational over k.

$$
\text { Unirationality } \sim \text { 'There are many rational points.' }
$$

Theorem (Segre, Manin, Kollár, Pieropan)
A del Pezzo surface of degree $d \geq 3$ over a field k that has a k-rational point is unirational over k.

Rational points on del Pezzo surfaces

Del Pezzo surface of degree 2: double cover of \mathbb{P}^{2}, ramified over a smooth quartic curve.
Theorem (Salgado-Testa-Várilly-Alvarado)
A del Pezzo surface of degree 2 over a field k, that contains a k-rational point outside the ramification locus, that is not contained in the intersection of 4 lines, is unirational over k.

Rational points on del Pezzo surfaces

Del Pezzo surface of degree 2: double cover of \mathbb{P}^{2}, ramified over a smooth quartic curve.

Theorem (Salgado-Testa-Várilly-Alvarado)
A del Pezzo surface of degree 2 over a field k, that contains a k-rational point outside the ramification locus, that is not contained in the intersection of 4 lines, is unirational over k.

Corollary
For these surfaces, under these conditions, if k is infinite then the set of k-rational points is dense.

What about del Pezzo surfaces of degree 1 ?

Let X be a del Pezzo surface of degree 1 over a field k.
We can restrict to X being k-minimal:

What about del Pezzo surfaces of degree 1 ?

Let X be a del Pezzo surface of degree 1 over a field k.
We can restrict to X being k-minimal:

- If X is not k-minimal (i.e. it contains a k-Galois orbit of pairwise disjoint exceptional curves), blow down X to obtain a del Pezzo surface X^{\prime} of higher degree.
- Use previous theorems do determine if $X^{\prime}(k)$ is dense in X^{\prime}.
- Since X and X^{\prime} are birationally equivalent, density of $X(k)$ follows from density of $X^{\prime}(k)$.

What about del Pezzo surfaces of degree 1 ?

Let X be a del Pezzo surface of degree 1 over a field k.
We can restrict to X being k-minimal:

- If X is not k-minimal (i.e. it contains a k-Galois orbit of pairwise disjoint exceptional curves), blow down X to obtain a del Pezzo surface X^{\prime} of higher degree.
- Use previous theorems do determine if $X^{\prime}(k)$ is dense in X^{\prime}.
- Since X and X^{\prime} are birationally equivalent, density of $X(k)$ follows from density of $X^{\prime}(k)$.
X minimal $\Rightarrow X$ has Picard rank 1 or 2.

What about del Pezzo surfaces of degree 1 ?

Theorem (Kollár-Mella, 2017)
A del Pezzo surface of degree 1 over a field k with char $k \neq 2$ that admits a conic bundle structure is unirational.

The surfaces in the theorem have Picard rank 2.

What about del Pezzo surfaces of degree 1 ?

Theorem (Kollár-Mella, 2017)
A del Pezzo surface of degree 1 over a field k with char $k \neq 2$ that admits a conic bundle structure is unirational.

The surfaces in the theorem have Picard rank 2.

Apart from this theorem, the question is wide open:
Q. Is there an example of a minimal del Pezzo surface of degree 1 with Picard rank 1 that is unirational?
Q. Is there an example of a minimal del Pezzo surface of degree 1 with Picard rank 1 that is not unirational?

A goal more within reach: density of rational points

Let X be a variety, k an infinite field.
X unirational over $k \Rightarrow X(k)$ dense in X.

A goal more within reach: density of rational points

Let X be a variety, k an infinite field.

$$
X \text { unirational over } k \Rightarrow X(k) \text { dense in } X \text {. }
$$

Q: X a del Pezzo surface of degree 1 over k. Is $X(k)$ dense in X with respect to the Zariski topology?

- We expect the answer to be yes.
- Partial results (Várilly-Alvarado '11, Ulas, Togbé, Jabara '07-'12, van Luijk-Salgado '14, Jardins-W.).

Summary: rational points on del Pezzo surfaces

X a del Pezzo surface of degree d over an infinite field k. Assume there is a point $P \in X(k)$.

	k-unirational	\Rightarrow
d	$\left(\mathbb{P}^{n} \rightarrow X\right.$ dariski density of	
≥ 3	\checkmark	$X(k) \subset X$
2	P outside a closed subset	
1	char $k \neq 2$, Picard rank 2	\checkmark
	several families	

Summary: rational points on del Pezzo surfaces

X a del Pezzo surface of degree d over an infinite field k. Assume there is a point $P \in X(k)$.

d	k-unirational $\left(\mathbb{P}^{n} \rightarrow X\right.$ dominant $)$	Zariski density of $X(k) \subset X$
≥ 3	\checkmark	\checkmark
2	P outside a closed subset	P outside a closed subset
1	char $k \neq 2$, Picard rank 2	several families

Rest of this talk: explain the strategy in proving these partial results, and show new result (joint with Julie Desjardins).

Del Pezzo surfaces of degree 1

A del Pezzo surface X of degree 1 over a field k is isomorphic to a smooth sextic in the weighted projective space $\mathbb{P}(2,3,1,1)$ with coordinates $(x: y: z: w)$:

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with $a_{i} \in k[z, w]$ homogeneous of degree i.

Del Pezzo surfaces of degree 1

A del Pezzo surface X of degree 1 over a field k is isomorphic to a smooth sextic in the weighted projective space $\mathbb{P}(2,3,1,1)$ with coordinates $(x: y: z: w)$:

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with $a_{i} \in k[z, w]$ homogeneous of degree i.
Such a surface always contains a k-rational point:

$$
\mathcal{O}=(1: 1: 0: 0)
$$

We have a map

$$
X \longrightarrow \mathbb{P}^{1}, \quad(x: y: z: w) \longmapsto(z: w),
$$

defined everywhere except in \mathcal{O}.

Del Pezzo surfaces of degree 1

When we blow up the point \mathcal{O}, we obtain an elliptic surface: a surface \mathcal{E} with a morphism to \mathbb{P}^{1}, where almost all fibers are elliptic curves.

Example

Consider the del Pezzo surface given by

$$
y^{2}=x^{3}+27 z^{6}+16 w^{6} \subset \mathbb{P}(2,3,1,1)
$$

We blow up $\mathcal{O}=(1: 1: 0: 0)$, obtain elliptic surface.

Example

Consider the del Pezzo surface given by

$$
y^{2}=x^{3}+27 z^{6}+16 w^{6} \subset \mathbb{P}(2,3,1,1)
$$

We blow up $\mathcal{O}=(1: 1: 0: 0)$, obtain elliptic surface.
Fiber above a point $\left(z_{0}: w_{0}\right) \in \mathbb{P}^{1}$ is given by

$$
y^{2}=x^{3}+27 z_{0}^{6}+16 w_{0}^{6}
$$

isomorphic to an elliptic curve for allmost all $\left(z_{0}: w_{0}\right)$.

Strategy to prove density of rational points

Recap:
X del Pezzo surface of degree 1 over a field k.

- X given by a smooth sextic in $\mathbb{P}(2,3,1,1)$.
- X contains a rational point \mathcal{O}.
- After blowing up \mathcal{O}, obtain an elliptic surface \mathcal{E} with a dominant morphism $\mathcal{E} \longrightarrow X$.

Strategy to prove density of rational points

Recap:
X del Pezzo surface of degree 1 over a field k.

- X given by a smooth sextic in $\mathbb{P}(2,3,1,1)$.
- X contains a rational point \mathcal{O}.
- After blowing up \mathcal{O}, obtain an elliptic surface \mathcal{E} with a dominant morphism $\mathcal{E} \longrightarrow X$.

If $\mathcal{E}(k)$ is dense in \mathcal{E}, then $X(k)$ is dense in X.

Strategy to prove density of rational points

Recap:
X del Pezzo surface of degree 1 over a field k.

- X given by a smooth sextic in $\mathbb{P}(2,3,1,1)$.
- X contains a rational point \mathcal{O}.
- After blowing up \mathcal{O}, obtain an elliptic surface \mathcal{E} with a dominant morphism $\mathcal{E} \longrightarrow X$.

If $\mathcal{E}(k)$ is dense in \mathcal{E}, then $X(k)$ is dense in X.
Idea: show that infinitely many fibers of \mathcal{E} have infinitely many k-rational points - then $\mathcal{E}(k)$ lies dense in \mathcal{E}.

Showing that infinitely many fibers have infinitely many rational points - two techniques

1. Studying the root number of the fibers:

Theorem (Várilly-Alvarado,'11)
Let X be a del Pezzo surface given by

$$
y^{2}=x^{3}+A z^{6}+B w^{6}
$$

with $A, B \in \mathbb{Z}$, such that either $3 A / B$ is not a square, or $\operatorname{gcd}(A, B)=1$ and $9 \nmid A B$. If the Tate-Shafarevich group of elliptic curves with j-invariant 0 is finite, then $X(\mathbb{Q})$ is dense in X.

Showing that infinitely many fibers have infinitely many rational points - two techniques

1. Studying the root number of the fibers:

Theorem (Várilly-Alvarado,'11)
Let X be a del Pezzo surface given by

$$
y^{2}=x^{3}+A z^{6}+B w^{6}
$$

with $A, B \in \mathbb{Z}$, such that either $3 A / B$ is not a square, or $\operatorname{gcd}(A, B)=1$ and $9 \nmid A B$. If the Tate-Shafarevich group of elliptic curves with j-invariant 0 is finite, then $X(\mathbb{Q})$ is dense in X.
\rightarrow Várilly-Alvarado showed that there are infinitely many disjoint pairs of fibers with opposite root number.

Showing that infinitely many fibers have infinitely many rational points - two techniques
2. Creating a multisection:

Section

Showing that infinitely many fibers have infinitely many rational points - two techniques
2. Creating a multisection:

Multisection

Showing that infinitely many fibers have infinitely many rational points - two techniques

2. Creating a multisection:

Ulas, Togbé, Jabara '07-'12, van Luijk-Salgado '14.
Results for various families of del Pezzo surfaces of degree 1, by creating multisections of genus ≤ 1 and assuming that they contain infinitely many rational points.

Recent result

Let X be a del Pezzo surface of degree 1 over a number field k of the form

$$
\begin{equation*}
y^{2}=x^{3}+A z^{6}+B w^{6} \tag{1}
\end{equation*}
$$

with $A, B \in \mathbb{Z}$. Let \mathcal{E} be the elliptic surface obtained by blowing up the point $(1: 1: 0: 0)$.

Recent result

Let X be a del Pezzo surface of degree 1 over a number field k of the form

$$
\begin{equation*}
y^{2}=x^{3}+A z^{6}+B w^{6} \tag{1}
\end{equation*}
$$

with $A, B \in \mathbb{Z}$. Let \mathcal{E} be the elliptic surface obtained by blowing up the point ($1: 1: 0: 0$).

Theorem (Desjardins-W.)
The set $X(k)$ is dense in X if and only if the surface contains a point $P=\left(x_{0}: y_{0}: z_{0}: w_{0}\right) \in X(k)$ such that $z_{0}, w_{0} \neq 0$, and its corresponding point on \mathcal{E} lies on a smooth fiber, and is non-torsion on this fiber.

Recent result

Let X be a del Mezzo surface of degree 1 over a number field k of the form
with $A, B \in \mathbb{Z}$. Let \mathcal{E} the point (1:1:0:0

Theorem (Desjardins The set $X(k)$ is dens ϵ point $P=\left(x_{0}: y_{0}: z_{0}\right.$ corresponding point o on this fiber.

Recent result

Let X be a del Pezzo surface of degree 1 over a number field k of the form

$$
\begin{equation*}
y^{2}=x^{3}+A z^{6}+B w^{6} \tag{1}
\end{equation*}
$$

with $A, B \in \mathbb{Z}$. Let \mathcal{E} be the elliptic surface obtained by blowing up the point $(1: 1: 0: 0)$.

Theorem (Desjardins-W.)
The set $X(k)$ is dense in X if and only if the surface contains a point $P=\left(x_{0}: y_{0}: z_{0}: w_{0}\right) \in X(k)$ such that $z_{0}, w_{0} \neq 0$, and its corresponding point on \mathcal{E} lies on a smooth fiber, and is non-torsion on this fiber.

This is the first result that gives necessary and sufficient conditions for the family (1) over any number field.

Idea of proof

X, k, \mathcal{E} as in the theorem.

Idea of proof

X, k, \mathcal{E} as in the theorem.
For $R=\left(x_{R}: y_{R}: z_{R}: w_{R}\right) \in X$, with $z_{R}, w_{R} \neq 0$, construct the curve on X cut out by

$$
3 x_{R}^{2} z_{R}^{2} x z-2 y_{R} z_{R}^{3} y-\left(x_{R}^{3}-2 A z_{R}^{6}\right) z^{3}+2 B z_{R}^{3} w^{3}=0
$$

Idea of proof

X, k, \mathcal{E} as in the theorem.
For $R=\left(x_{R}: y_{R}: z_{R}: w_{R}\right) \in X$, with $z_{R}, w_{R} \neq 0$, construct the curve on X cut out by

$$
3 x_{R}^{2} z_{R}^{2} x z-2 y_{R} z_{R}^{3} y-\left(x_{R}^{3}-2 A z_{R}^{6}\right) z^{3}+2 B z_{R}^{3} w^{3}=0
$$

- Pull back to \mathcal{E} : curve C_{R}
- Automorphism $\sigma:(x: y: z: w) \longmapsto\left(x: y: z: \zeta_{3}^{2} w\right)$
- C_{R} is a 3-section, and singular in $R, \sigma(R), \sigma^{2}(R)$.

Idea of proof

Goal: show that there is an R such that C_{R} intersects infinitely many fibers in a k-rational point that is non-torsion.

Proposition

If R is not contained in an exceptional curve on $\bar{X}=X \times_{k} \bar{k}$, then C_{R} either contains a section that is defined over k, or it is geometrically integral and has geometric genus at most 1, in which case $R, \sigma(R), \sigma^{2}(R)$ are all double points.

Idea of proof

Goal: show that there is an R such that C_{R} intersects infinitely many fibers in a k-rational point that is non-torsion.

Recall: we assume there is $P=\left(x_{0}: y_{0}: z_{0}: w_{0}\right) \in X(k)$ such that $z_{0}, w_{0} \neq 0$, and its corresponding point on \mathcal{E} lies on a smooth fiber \mathcal{F}, and is non-torsion on \mathcal{F}.

Corollary

There are infinitely many multiples R of P on \mathcal{F} such that C_{R} either contains a section defined over k, or C_{R} has genus at most 1 .

Idea of proof

Goal: show that there is an R such that C_{R} intersects infinitely many fibers in a k-rational point that is non-torsion.

Recall: we assume there is $P=\left(x_{0}: y_{0}: z_{0}: w_{0}\right) \in X(k)$ such that $z_{0}, w_{0} \neq 0$, and its corresponding point on \mathcal{E} lies on a smooth fiber \mathcal{F}, and is non-torsion on \mathcal{F}.

Corollary

There are infinitely many multiples R of P on \mathcal{F} such that C_{R} either contains a section defined over k, or C_{R} has genus at most 1 .

- C_{R} contains a section over k: done.
- C_{R} geometric genus 0: it has infinitely many k-rational points.
- What about C_{R} with geometric genus 1?
C_{R} geometrically integral of genus 1
V : set of multiples R on P on its fiber \mathcal{F}, such that C_{R} is geometrically integral of genus 1 .

For $R \in V$, let Q be the third point of intersection of C_{R} with the fiber \mathcal{F}.
$E_{R}=\left(\tilde{C}_{R}, Q\right)$ elliptic curve, with point $D_{R}=\sigma(Q)+\sigma^{2}(Q)$.

C_{R} geometrically integral of genus 1
V : set of multiples R on P on its fiber \mathcal{F}, such that C_{R} is geometrically integral of genus 1 .

For $R \in V$, let Q be the third point of intersection of C_{R} with the fiber \mathcal{F}.
$E_{R}=\left(\tilde{C}_{R}, Q\right)$ elliptic curve, with point $D_{R}=\sigma(Q)+\sigma^{2}(Q)$.
Proposition
For all but finitely many points in V, the point D_{R} has infinite order on E_{R}.

Finishing the argument

Conclusion: there is a point R on the fiber \mathcal{F} such that C_{R} intersects infinitely many fibers of \mathcal{E} in a k-rational point.

Finishing the argument

Conclusion: there is a point R on the fiber \mathcal{F} such that C_{R} intersects infinitely many fibers of \mathcal{E} in a k-rational point.

Claim Infinitely many of these points are non-torsion on their fiber.

Finishing the argument

Conclusion: there is a point R on the fiber \mathcal{F} such that C_{R} intersects infinitely many fibers of \mathcal{E} in a k-rational point.

Claim Infinitely many of these points are non-torsion on their fiber.

- Upper bound $B=B(k)$ such that on all the fibers, all the torsion points have order at most B (Merel).
- For $m \leq B$ integer, let T_{m} be the zero locus of the m-th division polynomial $\psi_{m} \in k[x, y, t]$ of the generic fiber E of \mathcal{E} over the function field $k(t)$.

Finishing the argument

Conclusion: there is a point R on the fiber \mathcal{F} such that C_{R} intersects infinitely many fibers of \mathcal{E} in a k-rational point.

Claim
Infinitely many of these points are non-torsion on their fiber.

- Upper bound $B=B(k)$ such that on all the fibers, all the torsion points have order at most B (Merel).
- For $m \leq B$ integer, let T_{m} be the zero locus of the m-th division polynomial $\psi_{m} \in k[x, y, t]$ of the generic fiber E of \mathcal{E} over the function field $k(t)$.
- T_{m} intersects every smooth fiber of \mathcal{E} in m^{2} distinct points.
- C_{R} intersects the smooth fiber \mathcal{F} in a point with multiplicity 2 .
- So C_{R} is not contained in $\cup_{m \leq B} T_{m}$, hence intersects it in finitely many points.

Recap

We showed that infinitely many fibers of \mathcal{E} contain a k-rational point of infinite order.

So $\mathcal{E}(k)$ is dense in \mathcal{E}, hence $X(k)$ is dense in X.

Recap

We showed that infinitely many fibers of \mathcal{E} contain a k-rational point of infinite order.

So $\mathcal{E}(k)$ is dense in \mathcal{E}, hence $X(k)$ is dense in X.
Conversely: if $X(k)$ dense in X, then X contains a point P with infinite order on its fiber on \mathcal{E}; otherwise $X(k)$ would be contained in the torsion locus on \mathcal{E}, which is a closed subset (using Merel).

Example

Let X be the del Pezzo surface of degree 1 given by

$$
y^{2}=x^{3}+6\left(27 z^{6}+w^{6}\right)
$$

Let \mathcal{E} be the elliptic surface obtained by blowing up \mathcal{O}.

Example

Let X be the del Pezzo surface of degree 1 given by

$$
y^{2}=x^{3}+6\left(27 z^{6}+w^{6}\right)
$$

Let \mathcal{E} be the elliptic surface obtained by blowing up \mathcal{O}.
The fiber $\mathcal{E}_{(1: 1)}$ above (1:1) is smooth, and has rank 2 over \mathbb{Q} (magma).

Example

Let X be the del Pezzo surface of degree 1 given by

$$
y^{2}=x^{3}+6\left(27 z^{6}+w^{6}\right)
$$

Let \mathcal{E} be the elliptic surface obtained by blowing up \mathcal{O}.
The fiber $\mathcal{E}_{(1: 1)}$ above (1:1) is smooth, and has rank 2 over \mathbb{Q} (magma).
So X contains a point that lies on a smooth fiber of \mathcal{E} and has infinte order, hence $X(\mathbb{Q})$ is dense in X !

Example

Let X be the del Pezzo surface of degree 1 given by

$$
y^{2}=x^{3}+6\left(27 z^{6}+w^{6}\right)
$$

Let \mathcal{E} be the elliptic surface obtained by blowing up \mathcal{O}.
The fiber $\mathcal{E}_{(1: 1)}$ above (1:1) is smooth, and has rank 2 over \mathbb{Q} (magma).
So X contains a point that lies on a smooth fiber of \mathcal{E} and has infinte order, hence $X(\mathbb{Q})$ is dense in X !

Explicitly:

- Two generators for $\mathcal{E}_{(1: 1)}(\mathbb{Q})$ are given by $P_{1}=(1: 13: 1: 1)$ and $P_{2}=(22: 104: 1: 1)$ (magma).
- The curve $C_{P_{1}}$ is cut out from X by $3 x z-26 y+323 z^{3}+12 w^{3}$.

Thank you!

