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Rational points on varieties

X a variety over a field k .

X (k) set of k-rational points of X .

Questions.

• Is X (k) empty?

• Is X (k) finite?

• Is X (k) dense in X w.r.t. the Zariski topology?

Can we answer these questions using the geometry of X?

Example

X a curve of genus at least 2, then X (k) is finite.
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Cubic surfaces
Example of del Pezzo surfaces: smooth cubic surfaces in P3.
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x3 + y3 + z3 + w3 = (x + y + z + w)3 (Clebsch surface)



Cubic surfaces
Example of del Pezzo surfaces: smooth cubic surfaces in P3.

Example

x3 + y3 + z3 + w3 = 0 (Fermat cubic)



The geometry of cubic surfaces

Theorem (Cayley-Salmon, 1849)

I A smooth cubic surface over an algebraically closed field
contains exactly 27 lines.

I Any point on the surface is contained in at most three of
those lines; such a point is an Eckardt point.

The intersection graph of the
lines is the complement of the
Schläfli graph.

Lemma (Hirschfeld, 1967)

There are at most 45 Eckardt points on a cubic surface.
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Rational points on cubic surfaces

Let X be a smooth cubic surface over a field k.

Theorem (Segre, Manin, Kollár)

The following are equivalent.

(i) X contains a k-rational point.

(ii) There is a map Pn
k 99K X for some n such that the image

is dense in X .

Property (ii) means that X is unirational over k . If k is infinite,
this implies that X (k) is dense in X .

Conclusion: k infinite, then

X (k) 6= ∅ if and only if X (k) dense in X .
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More general: del Pezzo surfaces

Definition
A del Pezzo surface X is a ‘nice’ surface with ample anticanonical
divisor −KX , i.e., X has an embedding in some Pn, such that
−aKX is linearly equivalent to a hyperplane section for some a.
Its degree is the self intersection (−KX )2 of the anticanonical
divisor.

Fact
The degree is an integer between 1 and 9.

Example

I Smooth cubic surfaces in P3 (degree 3).

I Complete intersection of two quadrics in P4 (degree 4).

I Double cover of P2, ramified over a smooth quartic curve
(degree 2).

I For 3 ≤ d ≤ 9, a del Pezzo surface is isomorphic to a surface
of degree d in Pd .
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Geometry of del Pezzo surfaces

A del Pezzo surface over an algebraically closed field is birationally
equivalent to the projective plane.

Theorem
Let X be a del Pezzo surface of degree d over an algebraically
closed field. Then X is isomorphic to either the product of two
lines (then d = 8), or P2 blown up in 9− d points in general
position, where general position means

I no three points on a line;

I no six points on a conic;

I no eight points on a cubic that is singular at one of them.
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Lines on a del Pezzo surface
Recall: a smooth cubic surface in P3 over an algebraically closed
field contains 27 lines.

Let X be a del Pezzo surface over an algebraically closed field,
constructed by blowing up P2 in r points P1, . . . ,Pr . There is a
finite number of ‘lines’ (exceptional curves) on X . These are given
by

I the exceptional curves above P1, . . . ,Pr ;

the strict transform of

I lines through two of the points;

I conics through five of the points;

I cubics through seven of the points, singular at one of them;

I quartics through eight of the points, singular at three of them;

I quintics through eight of the points, singular at six of them;

I sextics through eight of the points, singular at all of them,
containing one of them as a triple point.
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Configuration of the lines on a del Pezzo surface

The intersection graph of the lines on a del Pezzo surface is known:

Degree 5: 10 lines, Petersen graph.
Degree 4: 16 lines, Clebsch graph.
Degree 3: 27 lines, complement of the Schläfli graph.

Degree 2: 56 ‘lines’, any line l intersects exactly one other line l ′

with multiplicity two, and 27 other lines with multiplicity one.
These 27 lines do not intersect l ′, and they form again the
complement of the Schläfli graph.
→ one point is contained in at most 4 lines.

Degree 1: 240 ‘lines’...

Theorem (van Luijk-W.)

On a del Pezzo surface of degree 1, a point is contained in at most
10 lines in char 6= 2, 3, at most 16 lines in char 2, and 12 in char 3.
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The intersection graph on the 240 lines

e1

e ′1

126

e2

e ′2

60

32

32

1

3

0

0

2

2

1

56

e3 e1,3

2

56

e ′3

3

2
1

0



Rational points on del Pezzo surfaces

Recall:
• A variety X is unirational over a field k if there is a map
Pn
k 99K X for some n such that the image is dense in X .
• A smooth cubic surface has a k-rational point if and only if it is
unirational over k .

Unirationality ∼ ‘There are many rational points.’

Theorem (Segre, Manin, Kollár, Pieropan)

A del Pezzo surface of degree d ≥ 3 over a field k that has a
k-rational point is unirational over k.
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Rational points on del Pezzo surfaces

Del Pezzo surface of degree 2: double cover of P2, ramified over a
smooth quartic curve.

Theorem (Salgado–Testa–Várilly-Alvarado)

A del Pezzo surface of degree 2 over a field k , that contains a
k-rational point outside the ramification locus, that is not
contained in the intersection of 4 lines, is unirational over k.

Corollary

For these surfaces, under these conditions, if k is infinite then the
set of k-rational points is dense.
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What about del Pezzo surfaces of degree 1?

Let X be a del Pezzo surface of degree 1 over a field k .

We can restrict to X being k-minimal :

• If X is not k-minimal (i.e. it contains a k-Galois orbit of pairwise
disjoint exceptional curves), blow down X to obtain a del Pezzo
surface X ′ of higher degree.
• Use previous theorems do determine if X ′(k) is dense in X ′.
• Since X and X ′ are birationally equivalent, density of X (k)
follows from density of X ′(k).

X minimal ⇒ X has Picard rank 1 or 2.
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What about del Pezzo surfaces of degree 1?

Theorem (Kollár-Mella, 2017)

A del Pezzo surface of degree 1 over a field k with char k 6= 2 that
admits a conic bundle structure is unirational.

The surfaces in the theorem have Picard rank 2.

Apart from this theorem, the question is wide open:

Q. Is there an example of a minimal del Pezzo surface of degree 1
with Picard rank 1 that is unirational?

Q. Is there an example of a minimal del Pezzo surface of degree 1
with Picard rank 1 that is not unirational?
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A goal more within reach: density of rational points

Let X be a variety, k an infinite field.

X unirational over k ⇒ X (k) dense in X .

Q: X a del Pezzo surface of degree 1 over k . Is X (k) dense in X
with respect to the Zariski topology?

• We expect the answer to be yes.

• Partial results (Várilly-Alvarado ’11, Ulas, Togbé, Jabara ’07-’12,
van Luijk–Salgado ’14, Jardins-W.).
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Summary: rational points on del Pezzo surfaces

X a del Pezzo surface of degree d over an infinite field k . Assume
there is a point P ∈ X (k).

k-unirational ⇒ Zariski density of
d (Pn 99K X dominant ) X (k) ⊂ X

≥ 3 X X
2 P outside a closed subset P outside a closed subset
1 char k 6= 2, Picard rank 2 several families

Rest of this talk: explain the strategy in proving these partial
results, and show new result (joint with Julie Desjardins).
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Del Pezzo surfaces of degree 1

A del Pezzo surface X of degree 1 over a field k is isomorphic to a
smooth sextic in the weighted projective space P(2, 3, 1, 1) with
coordinates (x : y : z : w):

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

with ai ∈ k[z ,w ] homogeneous of degree i .

Such a surface always contains a k-rational point:

O = (1 : 1 : 0 : 0).

We have a map

X 99K P1, (x : y : z : w) 7−→ (z : w),

defined everywhere except in O.
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Del Pezzo surfaces of degree 1

When we blow up the point O, we obtain an elliptic surface: a
surface E with a morphism to P1, where almost all fibers are
elliptic curves.



Example

Consider the del Pezzo surface given by

y2 = x3 + 27z6 + 16w6 ⊂ P(2, 3, 1, 1).

We blow up O = (1 : 1 : 0 : 0), obtain elliptic surface.

Fiber above a point (z0 : w0) ∈ P1 is given by

y2 = x3 + 27z60 + 16w6
0 ,

isomorphic to an elliptic curve for allmost all (z0 : w0).
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Strategy to prove density of rational points

Recap:

X del Pezzo surface of degree 1 over a field k .

• X given by a smooth sextic in P(2, 3, 1, 1).
• X contains a rational point O.
• After blowing up O, obtain an elliptic surface E with a dominant
morphism E −→ X .

If E(k) is dense in E , then X (k) is dense in X .

Idea: show that infinitely many fibers of E have infinitely many
k-rational points - then E(k) lies dense in E .
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Showing that infinitely many fibers have infinitely many
rational points - two techniques

1. Studying the root number of the fibers:

Theorem (Várilly-Alvarado,’11)

Let X be a del Pezzo surface given by

y2 = x3 + Az6 + Bw6,

with A,B ∈ Z, such that either 3A/B is not a square, or
gcd(A,B) = 1 and 9 - AB. If the Tate-Shafarevich group of elliptic
curves with j-invariant 0 is finite, then X (Q) is dense in X .

→ Várilly-Alvarado showed that there are infinitely many disjoint
pairs of fibers with opposite root number.
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Showing that infinitely many fibers have infinitely many
rational points - two techniques

2. Creating a multisection:

Ulas, Togbé, Jabara ’07-’12, van Luijk–Salgado ’14.

Results for various families of del Pezzo surfaces of degree 1, by
creating multisections of genus ≤ 1 and assuming that they contain
infinitely many rational points.



Recent result

Let X be a del Pezzo surface of degree 1 over a number field k of
the form

y2 = x3 + Az6 + Bw6, (1)

with A,B ∈ Z. Let E be the elliptic surface obtained by blowing up
the point (1 : 1 : 0 : 0).

Theorem (Desjardins–W.)

The set X (k) is dense in X if and only if the surface contains a
point P = (x0 : y0 : z0 : w0) ∈ X (k) such that z0,w0 6= 0, and its
corresponding point on E lies on a smooth fiber, and is non-torsion
on this fiber.

This is the first result that gives necessary and sufficient conditions
for the family (1) over any number field.
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the point (1 : 1 : 0 : 0).

Theorem (Desjardins–W.)

The set X (k) is dense in X if and only if the surface contains a
point P = (x0 : y0 : z0 : w0) ∈ X (k) such that z0,w0 6= 0, and its
corresponding point on E lies on a smooth fiber, and is non-torsion
on this fiber.

This is the first result that gives necessary and sufficient conditions
for the family (1) over any number field.



Idea of proof
X , k, E as in the theorem.

For R = (xR : yR : zR : wR) ∈ X , with zR ,wR 6= 0, construct the
curve on X cut out by

3x2Rz
2
Rxz − 2yRz

3
Ry − (x3R − 2Az6R)z3 + 2Bz3Rw

3 = 0.

I Pull back to E : curve CR

I Automorphism σ : (x : y : z : w) 7−→ (x : y : z : ζ23w)
I CR is a 3-section, and singular in R, σ(R), σ2(R).
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Idea of proof
Goal: show that there is an R such that CR intersects infinitely
many fibers in a k-rational point that is non-torsion.

Proposition

If R is not contained in an exceptional curve on X = X ×k k, then
CR either contains a section that is defined over k , or it is
geometrically integral and has geometric genus at most 1, in which
case R, σ(R), σ2(R) are all double points.
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Recall: we assume there is P = (x0 : y0 : z0 : w0) ∈ X (k) such that
z0,w0 6= 0, and its corresponding point on E lies on a smooth fiber
F , and is non-torsion on F .

Corollary

There are infinitely many multiples R of P on F such that CR

either contains a section defined over k, or CR has genus at most 1.



Idea of proof
Goal: show that there is an R such that CR intersects infinitely
many fibers in a k-rational point that is non-torsion.

Recall: we assume there is P = (x0 : y0 : z0 : w0) ∈ X (k) such that
z0,w0 6= 0, and its corresponding point on E lies on a smooth fiber
F , and is non-torsion on F .

Corollary

There are infinitely many multiples R of P on F such that CR

either contains a section defined over k, or CR has genus at most 1.

• CR contains a section over k : done.
• CR geometric genus 0: it has infinitely many k-rational points.
• What about CR with geometric genus 1?



CR geometrically integral of genus 1
V : set of multiples R on P on its fiber F , such that CR is
geometrically integral of genus 1.

For R ∈ V , let Q be the third point of intersection of CR with the
fiber F .

ER = (C̃R ,Q) elliptic curve, with point DR = σ(Q) + σ2(Q).



CR geometrically integral of genus 1
V : set of multiples R on P on its fiber F , such that CR is
geometrically integral of genus 1.

For R ∈ V , let Q be the third point of intersection of CR with the
fiber F .

ER = (C̃R ,Q) elliptic curve, with point DR = σ(Q) + σ2(Q).

Proposition

For all but finitely many points in V , the point DR has infinite
order on ER .



Finishing the argument

Conclusion: there is a point R on the fiber F such that CR

intersects infinitely many fibers of E in a k-rational point.

Claim
Infinitely many of these points are non-torsion on their fiber.

• Upper bound B = B(k) such that on all the fibers, all the
torsion points have order at most B (Merel).
• For m ≤ B integer, let Tm be the zero locus of the m-th division
polynomial ψm ∈ k[x , y , t] of the generic fiber E of E over the
function field k(t).
• Tm intersects every smooth fiber of E in m2 distinct points.
• CR intersects the smooth fiber F in a point with multiplicity 2.
• So CR is not contained in ∪m≤BTm, hence intersects it in finitely
many points.
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Recap

We showed that infinitely many fibers of E contain a k-rational
point of infinite order.

So E(k) is dense in E , hence X (k) is dense in X .

Conversely: if X (k) dense in X , then X contains a point P with
infinite order on its fiber on E ; otherwise X (k) would be contained
in the torsion locus on E , which is a closed subset (using Merel).
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Example

Let X be the del Pezzo surface of degree 1 given by

y2 = x3 + 6(27z6 + w6).

Let E be the elliptic surface obtained by blowing up O.

The fiber E(1:1) above (1 : 1) is smooth, and has rank 2 over Q
(magma).

So X contains a point that lies on a smooth fiber of E and has
infinte order, hence X (Q) is dense in X !

Explicitly:
• Two generators for E(1:1)(Q) are given by P1 = (1 : 13 : 1 : 1)
and P2 = (22 : 104 : 1 : 1) (magma).
• The curve CP1 is cut out from X by 3xz − 26y + 323z3 + 12w3.
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Thank you!


