Computing Selmer groups of Jacobians

Edward Schaefer, Santa Clara University

Let C be a curve over K, a number field. We want to determine C(K), the K-rational points on C. General program (Bruin, Flynn, Macallum, Poonen, S., Stoll, Wetherell, etc.):

Let J be the Jacobian of C. $J = \text{Div}^0(C)/\text{Princ}(C)$. Note $J = J(\overline{K})$. Elliptic curves are Jacobians: $E \cong \text{Div}^0(E)/\text{Princ}(E)$ by $P \mapsto [P-0]$.

We know $J(K) \cong \mathbf{Z}^r \oplus J(K)_{\text{tors}}$ where r and $\#J(K)_{\text{tors}}$ are finite.

- 1. Determine $J(K)_{tors}$. Easy in practice.
- 2. Find a Selmer group to give an upper bound for r. (Focus of this talk.)
- 3. Find independent points of infinite order in J(K) to give a lower bound for r.

If those bounds are the same, then you have r and a set of points in J(K) generating a subgroup of finite index. Let's assume this.

(How could this go wrong? i) Perhaps you can't find r independent points of infinite order in J(K). ii) Perhaps the r-torsion of the Shafarevich-Tate group of J over K is non-trivial, so the Serlm group's upper bound for r will be too big.)

4. Use pseudo-generating points and a Chabauty argument

on
$$C$$
 if $r < \text{genus}(C)$
on covers of C if $r \ge \text{genus}(C)$

to determine C(K) (not guaranteed to work).

How to use a Selmer group to find an upper bound for r when $J(K) \cong \mathbf{Z}^r \oplus J(K)_{\text{tors}}$. Let p be prime. Assume we know $J(K)_{\text{tors}}$. If we knew J(K)/pJ(K) then we'd know r. There is no known effective algorithm for determining J(K)/pJ(K). There is an effectively computable (in theory) group called the Selmer group containing this group.

We have an exact sequence

$$0 \to J(\overline{K})[p] \to J(\overline{K}) \stackrel{p}{\to} J(\overline{K}) \to 0$$

of $\operatorname{Gal}(\overline{K}/K)$ -modules. Taking $\operatorname{Gal}(\overline{K}/K)$ -invariants gives us

$$\dots J(K) \xrightarrow{p} J(K) \xrightarrow{\delta} H^1(\operatorname{Gal}(\overline{K}/K), J[p])$$

$$\to H^1(\operatorname{Gal}(\overline{K}/K), J(\overline{K})) \xrightarrow{p} H^1(\operatorname{Gal}(\overline{K}/K), J(\overline{K})) \dots$$

Giving us a short exact sequence

$$0 \to J(K)/pJ(K) \xrightarrow{\delta} H^1(K,J[p]) \to H^1(K,J)[p] \to 0.$$

(Note abbreviation of $Gal(\overline{K}/K)$ in H^1 .)

We'd like to find J(K)/pJ(K). Equivalently, find its image in $H^1(K, J[p])$. Let S be the set of primes of K containing primes over p, primes of bad reduction of C and if p = 2, infinite primes. Image of J(K)/pJ(K) is contained in $H^1(K, J[p]; S)$, a finite group (this is the subgroup of cocycle classes unramified outside S).

Approximate image locally.

$$J(K)/pJ(K) \stackrel{\delta}{\hookrightarrow} H^{1}(K, J[p]; S)$$

$$\downarrow \prod \alpha_{\mathfrak{s}} \qquad \downarrow \prod \mathrm{res}_{\mathfrak{s}}$$

$$\prod_{\mathfrak{s} \in S} J(K_{\mathfrak{s}})/pJ(K_{\mathfrak{s}}) \stackrel{\prod \delta_{\mathfrak{s}}}{\hookrightarrow} \prod_{\mathfrak{s} \in S} H^{1}(K_{\mathfrak{s}}, J[p])$$

Want image of J(K)/pJ(K) in $H^1(K,J[p];S)$. Define $S^p(K,J) = \{ \gamma \in H^1(K,J[p];S) \mid \operatorname{res}_{\mathfrak{s}}(\gamma) \in \delta_{\mathfrak{s}}(J(K_{\mathfrak{s}})/pJ(K_{\mathfrak{s}})) \quad \forall \, \mathfrak{s} \in S \}.$

Problems: 1) $H^1(K, J[p]; S)$ hard to work in.

2) $\delta_{\mathfrak{s}}$ hard to evaluate.

Solution: Replace group and map.

Replace $H^1(K, J[p])$:

Let \overline{A} be the étale K-algebra that is the set of maps from $J[p] \setminus 0$ to \overline{K} . Let A be its $\operatorname{Gal}(\overline{K}/K)$ -invariants.

What does it look like? Let $J[p] \setminus 0 = \{T_1, \dots, T_l\}$. Concretely, $A = \prod^{\diamondsuit} K(T_i)$ where \prod^{\diamondsuit} means take one representative from each $\operatorname{Gal}(\overline{K}/K)$ -orbit of $\{T_1, \dots, T_l\}$.

Let $\mu_p(\overline{A})$ be the maps from $J[p] \setminus 0$ to μ_p .

Let $w: J[p] \to \mu_p(\overline{A})$ by $P \mapsto (T_i \mapsto e_p(P, T_i))$.

This induces a map $\hat{w}: H^1(K, J[p]) \to H^1(K, \mu_p(\overline{A})).$

Kummer theory induces an isomorphism $k: H^1(K, \mu_p(\overline{A})) \to A^{\times}/(A^{\times})^p$.

Have $H^1(K, J[p]) \xrightarrow{\hat{w}} H^1(K, \mu_p(\overline{A})) \xrightarrow{k} A^{\times}/(A^{\times})^p$.

Concerns: 1) Sure helps if \hat{w} is injective (doesn't have to be, though w is).

- 2) Need to find image of $H^1(K, J[p])$ in $A^{\times}/(A^{\times})^p$ (can be difficult if smallest Galois-invariant spanning set of J[p] is much larger than a basis).
- 3) Really need image of $H^1(K, J[p]; S)$ in $A(S, p) \subset A^{\times}/(A^{\times})^p$. Requires class group/unit group information in number fields making up A. (Note if L is a number field then L(S, p) is the subgroup of $L^{\times}/L^{\times p}$ of elements for which if you adjoin a pth root, you get an extension unramified outside of prime lying over primes in S. Since A is a product of number fields, we extend this definition to A.)

Let's assume \hat{w} is injective and we've found the image of $H^1(K, J[p]; S)$ in A(S, p). (I predict having a non-trivial kernel of \hat{w} will be a problem for this general method in the future.)

Have isomorphic image of $H^1(K, J[p]; S)$ in $A(S, p) \subset A^{\times}/(A^{\times})^p$. Need to replace map

$$J(K)/pJ(K) \stackrel{\delta}{\to} H^1(K,J[p]) \stackrel{\hat{w}}{\to} H^1(K,\mu_p(\overline{A})) \stackrel{k}{\to} A^\times/(A^\times)^p.$$

Assume C(K) non-empty. Then can choose divisors D_1, \ldots, D_l , with $[D_i] = T_i \in J[p] \setminus 0$ and $pD_i = \operatorname{div}_{f_i}$ and where $\{f_i\} \cong J[p] \setminus 0$ as $\operatorname{Gal}(\overline{K}/K)$ -sets.

We call D a good divisor if $D \in \text{Div}^0(C)(K)$ and its support does not intersect any of the div_{f_i} 's.

Define $f : \{ \text{ good divisors } \} \to A^* \text{ by } D \mapsto (T_i \mapsto f_i(D)).$

Theorem: The map f induces a well defined homomorphism from $J(K)/pJ(K) \to A(S,p) \subset A^{\times}/(A^{\times})^p$ that is the same as $k\hat{w}\delta$.

Equivalently we have

 $J(K)/pJ(K) \stackrel{\prod^{\diamondsuit} f_i}{\longrightarrow} \prod^{\diamondsuit} K(T_i)(S,p) \subset K(T_i)^{\times}/(K(T_i)^{\times})^p$. Note, we have $A(S,p) = \prod^{\diamondsuit} K(T_i)(S,p)$.

$$J(K)/pJ(K)$$
 $\stackrel{f}{\hookrightarrow}$ $A(S,p)$ $\downarrow \prod \alpha_{\mathfrak{s}}$ $\downarrow \prod \beta_{\mathfrak{s}}$

$$\prod_{\mathfrak{s} \in S} J(K_{\mathfrak{s}})/pJ(K_{\mathfrak{s}}) \ \stackrel{f}{\hookrightarrow} \ \prod_{\mathfrak{s} \in S} A_{\mathfrak{s}}^{\times}/(A_{\mathfrak{s}}^{\times})^{p}$$

We have $S^p(K, J) = \{ \gamma \in \text{image of } H^1(K, J[p]) \text{ in } A(S, p) \mid \beta_{\mathfrak{s}}(\gamma) \in f(J(K_{\mathfrak{s}})/pJ(K_{\mathfrak{s}})), \forall \mathfrak{s} \in S \}.$

Notes:

- 1. If have isogeny $\phi: B \to J$ over K where B is an abelian variety then can use this technique to find $S^{\phi}(K, B)$.
- 2. Instead of using all of $J[p] \setminus 0$ can use a Galois-invariant spanning set of J[p]. Will get lower degree A.

Important related method.

Above, had $\operatorname{div}(f_i) = pD_i$. What if $\operatorname{div}(f_i) = pD_i - D'$ where D_i effective and D'/K? Example: Hyperelliptic curve. Generically, a hyperelliptic curve of genus g has equation g' = h(x), where h(x) has degree 2g + 2.

Let $h(\alpha_i) = 0$ and consider $f_i = x - \alpha_i$ then $\operatorname{div}(f_i) = 2(\alpha_i, 0) - (\infty^+ + \infty^-)$. Then $\operatorname{div}(f_i) = 2(\alpha_i, 0) - (\infty^+ + \infty^-)$.

Note their differences are $\{2(\alpha_i, 0) - 2(\alpha_j, 0)\}$ and the set $\{[(\alpha_i, 0) - (\alpha_j, 0)]\}$ spans J[2].

Let \overline{A} be the set of maps from $\{2(\alpha_i,0)-(\infty^+-\infty^-)\}$ to \overline{K} . So $A \cong K[T]/(h(T))$ and f=x-T. (Note the degree of A over K is 2g+2 whereas a typical 2-torsion point is defined over an extension of degree (2g+2)(2g+1)/2, and so if we did the previous method, we would probably work in number fields of much higher degree.)

$$J(K)/2J(K) \stackrel{x-T}{\rightarrow} A^{\times}/(A^{\times 2}K^{\times}).$$

Has kernel of size 1 or 2, depending on Galois-action on roots of h.

Example: Let $C: y^2 = x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1$. Find $C(\mathbf{Q})$.

Easy to find $\{(0, \pm 1), (-3, \pm 1), \infty^+, \infty^-\} \subseteq C(\mathbf{Q}).$

 $\#J(\mathbf{F}_3) = 9$ and $\#J(\mathbf{F}_5) = 41$ so $J(\mathbf{Q})_{\text{tors}} = 0$. Thus $J(\mathbf{Q}) \cong \mathbf{Z}^r$.

We have $A = \mathbf{Q}[T]/(T^6 + 8T^5 + 22T^4 + 22T^3 + 5T^2 + 6T + 1)$, a sextic number field. Bad primes are $S = \{\infty, 2, 3701\}$.

$$J(\mathbf{Q})/2J(\mathbf{Q}) \stackrel{x-T}{\to} A^{\times}/(A^{\times 2}\mathbf{Q}^{\times})$$

$$\downarrow \qquad \qquad \downarrow \prod \beta_p$$

$$\prod_{p \in S} J(\mathbf{Q}_p)/2J(\mathbf{Q}_p) \stackrel{x-T}{\to} \prod_{p \in S} A_p^{\times}/(A_p^{\times 2}\mathbf{Q}_p^{\times})$$

Define $S^2_{\text{fake}}(\mathbf{Q}, J) = \{ \gamma \in \text{ker} N : A(S, 2) / \mathbf{Q}(S, 2) \rightarrow \mathbf{Q}^{\times} / \mathbf{Q}^{\times 2} \mid \beta_p(\gamma) \in (x - T) (J(\mathbf{Q}_p)), \forall p \in S \}.$

From Galois action on zeros of sextic, turns out $\dim_{\mathbf{F}_2} S^2(\mathbf{Q}, J) = \dim_{\mathbf{F}_2} S^2_{\text{fake}}(\mathbf{Q}, J) + 1$.

Basis of A(S, 2) is $\{-1, u_1, u_2, u_3, \alpha, \beta_1, \beta_2, \beta_3\}$ with norms $\{1, 1, 1, -1, 2^3, 3701, -3701, 3701^3\}$.

Basis of ker $N: A(S,2)/\mathbf{Q}(S,2) \to \mathbf{Q}^{\times}/\mathbf{Q}^{\times 2}$ is $\{u_1, u_3\beta_1\beta_2\}$.

So $S_{\text{fake}}^2(\mathbf{Q}, J) \subseteq \langle u_1, u_3\beta_1\beta_2 \rangle$.

The image of $J(\mathbf{Q}_{3701})$ in $A_{3701}^{\times}/(A_{3701}^{\times 2}\mathbf{Q}_{3701}^{\times})$ is generated

by the image of $[(-4, \sqrt{185}) - \infty^{-}]$. It is a unit in each

component. So $u_3\beta_1\beta_2$ and $u_1u_3\beta_1\beta_2$ do not map to $(x-T)J(\mathbf{Q}_{3701})$. Thus $S^2_{\text{fake}}(\mathbf{Q},J)\subseteq \langle u_1\rangle$.

The image of $J(\mathbf{Q}_2)$ in $A_2^{\times}/(A_2^{\times 2}\mathbf{Q}_2^{\times})$ is the image of $\langle [(2,\sqrt{881})-\infty^-] \rangle$ and u_1 does not map to that.

So $S_{\text{fake}}^2(\mathbf{Q}, J)$ is trivial.

Since $\dim_{\mathbf{F}_2} S^2(\mathbf{Q}, J) = \dim_{\mathbf{F}_2} S^2_{\text{fake}}(\mathbf{Q}, J) + 1$, we have $\dim_{\mathbf{F}_2} S^2(\mathbf{Q}, J) = 1$.

Since $J(\mathbf{Q})/2J(\mathbf{Q}) \subseteq S^2(\mathbf{Q}, J)$, we have $\dim_{\mathbf{F}_2} J(\mathbf{Q})/2J(\mathbf{Q}) \le 1$.

It's easy to show that $[\infty^+ - \infty^-]$ has infinite order. So $1 \le \dim_{\mathbf{F}_2} J(\mathbf{Q})/2J(\mathbf{Q})$. Thus $\dim_{\mathbf{F}_2} J(\mathbf{Q})/2J(\mathbf{Q}) = 1$. Since $J(\mathbf{Q}) \cong \mathbf{Z}^r$ we have $J(\mathbf{Q}) \cong \mathbf{Z}$.

References.

General case:

Schaefer, E.F. Computing a Selmer group of a Jacobian using functions on the curve, Mathematische Annalen, **310**, 1998, 447–471.

$$y^2 = f(x)$$
 case:

Flynn, E.V., Poonen, B. and Schaefer, E.F. Cycles of quadratic polynomials and rational points on a genus-2 curve, Duke Mathematical Journal, **90**, 1997, 435–463.

$$y^p = f(x)$$
 case:

Poonen, B. and Schaefer, E.F. Explicit Descent for Jacobians of cyclic covers of the projective line, Journal für die reine und angewandte Mathematik, 488, 1997, 141–188.