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Let C be a curve over K, a number field. We want to determine C(K), the K-rational points
on C. General program (Bruin, Flynn, Macallum, Poonen, S., Stoll, Wetherell, etc.):

Let J be the Jacobian of C. J = Div0(C)/Princ(C). Note J = J(K). Elliptic curves are
Jacobians: E ∼= Div0(E)/Princ(E) by P 7→ [P − 0].

We know J(K) ∼= Zr ⊕ J(K)tors where r and #J(K)tors are finite.

1. Determine J(K)tors. Easy in practice.

2. Find a Selmer group to give an upper bound for r. (Focus of this talk.)

3. Find independent points of infinite order in J(K) to give a lower bound for r.

If those bounds are the same, then you have r and a set of points in J(K) generating a
subgroup of finite index. Let’s assume this.

(How could this go wrong? i) Perhaps you can’t find r independent points of infinite order
in J(K). ii) Perhaps the r-torsion of the Shafarevich-Tate group of J over K is non-trivial,
so the Serlm group’s upper bound for r will be too big.)

4. Use pseudo-generating points and a Chabauty argument

on C if r < genus(C)
on covers of C if r ≥ genus(C)

to determine C(K) (not guaranteed to work).

How to use a Selmer group to find an upper bound for r when J(K) ∼= Zr ⊕ J(K)tors. Let p
be prime. Assume we know J(K)tors. If we knew J(K)/pJ(K) then we’d know r. There is no
known effective algorithm for determining J(K)/pJ(K). There is an effectively computable
(in theory) group called the Selmer group containing this group.

We have an exact sequence

0 → J(K)[p] → J(K)
p→ J(K) → 0

of Gal(K/K)-modules. Taking Gal(K/K)-invariants gives us

. . . J(K)
p→ J(K)

δ→ H1(Gal(K/K), J [p])

→ H1(Gal(K/K), J(K))
p→ H1(Gal(K/K), J(K)) . . .

Giving us a short exact sequence

0 → J(K)/pJ(K)
δ→ H1(K, J [p]) → H1(K, J)[p] → 0.

(Note abbreviation of Gal(K/K) in H1.)

We’d like to find J(K)/pJ(K). Equivalently, find its image in H1(K, J [p]). Let S be the
set of primes of K containing primes over p, primes of bad reduction of C and if p = 2,
infinite primes. Image of J(K)/pJ(K) is contained in H1(K, J [p]; S), a finite group (this is
the subgroup of cocycle classes unramified outside S).

Approximate image locally.
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J(K)/pJ(K)
δ

↪→ H1(K, J [p]; S)

↓
∏

αs ↓
∏

ress

∏
s∈S

J(Ks)/pJ(Ks)
∏

δs

↪→
∏
s∈S

H1(Ks, J [p])

Want image of J(K)/pJ(K) in H1(K, J [p]; S). Define Sp(K, J) = {γ ∈ H1(K, J [p]; S) |
ress(γ) ∈ δs

(
J(Ks)/pJ(Ks)

)
∀ s ∈ S}.

Problems: 1) H1(K, J [p]; S) hard to work in.

2) δs hard to evaluate.

Solution: Replace group and map.

Replace H1(K, J [p]):

Let A be the étale K-algebra that is the set of maps from J [p] \ 0 to K. Let A be its
Gal(K/K)-invariants.

What does it look like? Let J [p] \ 0 = {T1, . . . , Tl} . Concretely, A =
∏♦ K(Ti) where

∏♦

means take one representative from each Gal(K/K)-orbit of {T1, . . . , Tl}.
Let µp(A) be the maps from J [p] \ 0 to µp.

Let w : J [p] → µp(A) by P 7→
(
Ti 7→ ep(P, Ti)

)
.

This induces a map ŵ : H1(K, J [p]) → H1(K, µp(A)).

Kummer theory induces an isomorphism k : H1(K, µp(A)) → A×/(A×)p.

Have H1(K, J [p])
ŵ→ H1(K, µp(A))

k→ A×/(A×)p.

Concerns: 1) Sure helps if ŵ is injective (doesn’t have to be, though w is).

2) Need to find image of H1(K, J [p]) in A×/(A×)p ( can be difficult if smallest Galois-invariant
spanning set of J [p] is much larger than a basis).

3) Really need image of H1(K, J [p]; S) in A(S, p) ⊂ A×/(A×)p. Requires class group/unit
group information in number fields making up A. (Note if L is a number field then L(S, p) is
the subgroup of L×/L×p of elements for which if you adjoin a pth root, you get an extension
unramified outside of prime lying over primes in S. Since A is a product of number fields,
we extend this definition to A.)

Let’s assume ŵ is injective and we’ve found the image of H1(K, J [p]; S) in A(S, p). (I predict
having a non-trivial kernel of ŵ will be a problem for this general method in the future.)

Have isomorphic image of H1(K, J [p]; S) in A(S, p) ⊂ A×/(A×)p. Need to replace map

J(K)/pJ(K)
δ→ H1(K, J [p])

ŵ→ H1(K, µp(A))
k→ A×/(A×)p.

Assume C(K) non-empty. Then can choose divisors D1, . . . , Dl, with [Di] = Ti ∈ J [p] \ 0
and pDi = divfi

and where {fi} ∼= J [p] \ 0 as Gal(K/K)-sets.

We call D a good divisor if D ∈ Div0(C)(K) and its support does not intersect any of the
divfi

’s.

Define f : { good divisors } → A∗ by D 7→
(
Ti 7→ fi(D)

)
.
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Theorem: The map f induces a well defined homomorphism from J(K)/pJ(K) → A(S, p) ⊂
A×/(A×)p that is the same as kŵδ.

Equivalently we have

J(K)/pJ(K)
∏♦ fi→

∏♦ K(Ti)(S, p) ⊂ K(Ti)
×/(K(Ti)

×)p.

Note, we have A(S, p) =
∏♦ K(Ti)(S, p).

J(K)/pJ(K)
f

↪→ A(S, p)

↓
∏

αs ↓
∏

βs

∏
s∈S

J(Ks)/pJ(Ks)
f

↪→
∏
s∈S

A×
s/(A

×
s )p

We have Sp(K, J) = {γ ∈ image of H1(K, J [p]) in A(S, p) | βs(γ) ∈ f
(
J(Ks)/pJ(Ks)

)
, ∀s ∈

S}.
Notes:

1. If have isogeny φ : B → J over K where B is an abelian variety then can use this
technique to find Sφ(K, B).

2. Instead of using all of J [p] \ 0 can use a Galois-invariant spanning set of J [p]. Will get
lower degree A.

Important related method.

Above, had div(fi) = pDi. What if div(fi) = pDi −D′ where Di effective and D′/K?
Example: Hyperelliptic curve. Generically, a hyperelliptic curve of genus g has equation
y2 = h(x), where h(x) has degree 2g + 2.

Let h(αi) = 0 and consider fi = x − αi then div(fi) = 2(αi, 0) − (∞+ + ∞−). Then
div(fi) = 2(αi, 0)− (∞+ +∞−).

Note their differences are {2(αi, 0)− 2(αj, 0)} and the set {[(αi, 0)− (αj, 0)]} spans J [2].

Let A be the set of maps from {2(αi, 0)− (∞+ −∞−)} to K. So A ∼= K[T ]/(h(T )) and
f = x−T . (Note the degree of A over K is 2g+2 whereas a typical 2-torsion point is defined
over an extension of degree (2g + 2)(2g + 1)/2, and so if we did the previous method, we
would probably work in number fields of much higher degree.)

J(K)/2J(K)
x−T→ A×/(A×2K×).

Has kernel of size 1 or 2, depending on Galois-action on roots of h.

Example: Let C : y2 = x6 + 8x5 + 22x4 + 22x3 + 5x2 + 6x + 1. Find C(Q).

Easy to find {(0,±1), (−3,±1), ∞+,∞−} ⊆ C(Q).

#J(F3) = 9 and #J(F5) = 41 so J(Q)tors = 0. Thus J(Q) ∼= Zr.

We have A = Q[T ]/(T 6 + 8T 5 + 22T 4 + 22T 3 + 5T 2 + 6T + 1), a sextic number field. Bad
primes are S = {∞, 2, 3701}.

J(Q)/2J(Q)
x−T→ A×/(A×2Q×)

↓ ↓
∏

βp∏
p∈S

J(Qp)/2J(Qp)
x−T→

∏
p∈S

A×
p /(A×2

p Q×
p )
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Define S2
fake(Q, J) = {γ ∈ kerN : A(S, 2)/Q(S, 2) →Q×/Q×2 | βp(γ) ∈ (x−T )

(
J(Qp)

)
, ∀p ∈

S}.
From Galois action on zeros of sextic, turns out dimF2S

2(Q, J) = dimF2S
2
fake(Q, J) + 1.

Basis of A(S, 2) is {−1, u1, u2, u3, α, β1, β2, β3} with norms {1, 1, 1,−1, 23, 3701,−3701, 37013}.
Basis of kerN : A(S, 2)/Q(S, 2) → Q×/Q×2 is {u1, u3β1β2}.
So S2

fake(Q, J) ⊆ 〈u1, u3β1β2〉.
The image of J(Q3701) in A×

3701/(A
×2
3701Q

×
3701) is generated

by the image of [(−4,
√

185)−∞−]. It is a unit in each

component. So u3β1β2 and u1u3β1β2 do not map to (x−T )J(Q3701). Thus S2
fake(Q, J) ⊆ 〈u1〉.

The image of J(Q2) in A×
2 /(A×2

2 Q×
2 ) is the image of 〈[(2,

√
881) − ∞−]〉 and u1 does not

map to that.

So S2
fake(Q, J) is trivial.

Since dimF2S
2(Q, J) = dimF2S

2
fake(Q, J) + 1, we have dimF2S

2(Q, J) = 1.

Since J(Q)/2J(Q) ⊆ S2(Q, J), we have dimF2J(Q)/2J(Q) ≤ 1.

It’s easy to show that [∞+ − ∞−] has infinite order. So 1 ≤ dimF2J(Q)/2J(Q). Thus
dimF2J(Q)/2J(Q) = 1. Since J(Q) ∼= Zr we have J(Q) ∼= Z.
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