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Motivation

Question.

Given a smooth projective curve C/Q,

can we algorithmically decide whether C(Q) = ∅ or not?

General Remarks.

• If g(C) = 0, the Hasse Principle holds =⇒ OK.

• If g(C) = 1, then problem is related to determining rankE(Q)

for elliptic curves E (another open problem).

• First interesting case is g(C) = 2:

C : y2 = f(x) with deg f = (5 or) 6, f squarefree.

Practical Remarks.

• If C(Q) 6= ∅, we can find a point =⇒ OK.

• If C(Qv) = ∅ for some place v, then C(Q) = ∅ =⇒ OK.

• If ∀v : C(Qv) 6= ∅, but apparently C(Q) = ∅, we can try descent.



Descent 1

Let π : D → C be a finite étale, geometrically Galois covering

(more precisely: a C-torsor under a finite Q-group scheme G).

This covering has twists πξ : Dξ → C for ξ ∈ H1(Q, G).

More concretely, a twist πξ : Dξ → C of π : D → C is another covering of C

that over Q̄ is isomorphic to π : D → C.

Example. Consider C : y2 = g(x)h(x) with deg g, degh even.

Then D : u2 = g(x), v2 = h(x) is a C-torsor under Z/2Z,

and the twists are Dd : u2 = d g(x), v2 = d h(x), d ∈ Q×/(Q×)2.

Every rational point on C lifts to one of the twists,

and there are only finitely many twists such that Dd(Qv) 6= ∅ for all v.



Descent 2

More generally, we have the following result.

Theorem.

• C(Q) =
⋃

ξ∈H1(Q,G) πξ(Dξ(Q)).

• Selπ(Q, C) := {ξ ∈ H1(Q, G) : Dξ(AQ) 6= ∅} is finite (and computable).

(Fermat, Chevalley-Weil, . . . )

If we find Selπ(Q, C) = ∅, then C(Q) = ∅ =⇒ OK.

More specifically, we can consider n-coverings of C:

Coverings obtained through pull-back of n-coverings

of the principal homogeneous space Pic1
C under the Jacobian of C.

Let Sel(n)(Q, C) denote the corresponding Selmer set.

Conjecture. If C(Q) = ∅, then Sel(n)(Q, C) = ∅ for some n ≥ 1.



The Experiment

Question. How far can we get in practice?

Consider all “small” genus 2 curves C : y2 = f(x)

where f has coefficients in {−3,−2,−1,0,1,2,3}.

There are 196171 isomorphism classes.

Try to decide for each of them whether there are rational points or not!

Outline of Procedure.

Step 1. Look for rational points.

Step 2. Check for local points.

Step 3. Do a 2-descent.

Step 4. Apply the Mordell-Weil sieve.



Rational Points

Step 1. Look for rational points.

Points are found on 137490 of the curves.

There remain 56681 curves which we suspect have no rational points.

Remark. The largest points found were (1519
601 , 4816728814

6013 ) on

C : y2 = 3x6 − 2x5 − 2x4 − x2 + 3x− 3

and (193
436, 165847285

4363 ) on

C : y2 = 3x6 − 3x5 − x4 − x3 − 3x2 + x− 3 .

All other smallest points have height < 80.

It remains to show C(Q) = ∅ for the 56681 remaining curves!



A Simple Way To Show a Set is Empty

Step 2. Check for local points (over R = Q∞ and Qp).

Lemma. If f : A → B is a map and B = ∅, then A = ∅.

We use the obvious maps C(Q) ↪→ C(Qv).

Among the 56681 curves without apparent rational point,

we find 29278 curves that do have points everywhere locally.

(Hence they will provide counterexamples to the Hasse Principle,

once we have proved they have no rational points!)



A Sophisticated Way To Show a Set is Empty

Lemma. Consider the following diagram:

A //

��

B

β

��

C
γ

// D

If the diagram commutes and the images of β and γ are disjoint,

then A = ∅.

We will apply this in two instances with A = C(Q),

where the upper horizontal map is a “global” map

and the lower horizontal map is a “local” map.



2-Descent

Step 3. Do a 2-descent.

Let C : y2 = f(x), let L = Q[T ]/(f(T )), let θ ∈ L be the image of T .

Define F : C(Q)→ L×

Q×(L×)2
, (x, y) 7→ (x− θ)Q×(L×)2.

With Lv = L⊗Q Qv, we have similar “local” maps Fv : C(Qv)→ L×v
Q×v (L×v )2

.

Consider
C(Q) F //

��

L×

Q×(L×)2

��∏
v

C(Qv)
∏

Fv
//
∏
v

L×v
Q×v (L×v )2

Remark. This implicitly computes Sel(2)(Q, C)

(as a subset of L×/Q×(L×)2).

Result. Among the 29278 curves that remained after Step 2,

there are 1492 that have Sel(2)(Q, C) 6= ∅.



Mordell-Weil Sieve

Step 4. Apply the Mordell-Weil sieve.

Let J be the Jacobian of C. Assume:

• We know generators of J(Q).

• We know a rational divisor (class) D of degree 1 on C.

Then we have a Q-defined embedding ι : C → J, P 7→ [P −D].

Let S be a finite set of primes of good reduction for C and consider

C(Q)

��

ι // J(Q)

ρ

��∏
p∈S

C(Fp)
ι //

∏
p∈S

J(Fp)

(Scharaschkin, Flynn)

Remark. If X(Q, J) is finite, then a variant of the MW sieve is equivalent

to descent with respect to all n-coverings of C.



Satisfying the Assumptions

By a 2-descent on J, we obtain upper bounds on rank J(Q).

To get lower bounds, we have to find points in J(Q).

These generators can be very large, so a “näıve” search is not sufficient.

We also need to find a rational point on Pic1
C

(= a rational divisor class of degree 1).

To do this, we work on the dual Kummer surface Pic1
C /(hyp. invol.).

Note: D ∈ Pic1
C(Q) gives P = 2D −K ∈ J(Q) (K = canonical class).

If unsuccessful, we can do a 2-descent on Pic1
C, using the x−T map again.

The largest generator found has (logarithmic) canonical height > 95.



Examples of Large Generators

For

C : y2 = −3x6 + x5 − 2x4 − 2x2 + 2x + 3

J(Q) is infinite cyclic generated by P1 + P2 −W ,

where the x-coordinates of P1 and P2 are the roots of

x2+37482925498065820078878366248457300623
34011049811816647384141492487717524243 x+581452628280824306698926561618393967033

544176796989066358146263879803480387888 .

The canonical logarithmic height of this generator is 95.26287.

The second largest example is

C : y2 = −2x6 − 3x5 + x4 + 3x3 + 3x2 + 3x− 3

with J(Q) generated by a point coming from

x2 + 83628354341362562860799153063
26779811954352295849143614059 x + 852972547276507286513269157689

321357743452227550189723368708 .

The canonical height of this generator is 77.33265.



Some Statistics

For all but 47 curves, we can determine J(Q) in this way.

For the remaining 47 curves, we suspect 2- or even 4-torsion in X(Q, J):

conj. X(Q, J) 0 (Z/2Z)2 (Z/4Z)2 total

rankJ(Q) = 0 3 36 39

rankJ(Q) = 1 516 5 5 526

rankJ(Q) = 2 772 1 773

rankJ(Q) = 3 152 152

rankJ(Q) = 4 2 2

all ranks 1445 5 42 1492

The cases with X(Q, J) = (Z/2Z)2 can be dealt with by visualization.

For the remaining 42 cases, assuming the BSD Conjecture,

we find Pic1
C(Q) = ∅, hence C(Q) = ∅ as well.



Mordell-Weil Sieve: Practice

The main problem here is to keep the combinatorics in check.

First pick a promising set S of (good) primes

(primes p below a given bound such that #J(Fp) is smooth).

For the computation, work with groups J(Q)/BJ(Q), J(Fp)/BJ(Fp),

with a sequence 1 = B0, B1, . . . , Bn of values for B

such that Bi+1 = qi+1Bi with suitable primes qi.

A preliminary heuristic computation produces a suitable sequence (Bi).

We then successively compute the subsets of J(Q)/BiJ(Q), i = 0,1, . . . ,

that map into the image of C(Fp) in J(Fp)/BiJ(Fp) for all p ∈ S.

We stop when we reach the empty set.

This worked for all the curves (as predicted by Bjorn Poonen’s heuristics).

(Maximal computing time for a single curve was ∼ 16 hours.)



Conclusions

• We were able to decide existence of rational points for all our curves

(assuming BSD in 42 cases).

• If C(Q) 6= ∅ for one of our curves,

then C has a rational point of x-coordinate height ≤ 1519.

• There are 29278 counterexamples to the Hasse Principle

among our curves.

• The Brauer-Manin obstruction is the only one

against rational points for our curves

(assuming finiteness of X(Q, J) in 1492 cases and BSD in 42 cases).

• Our result provides support for the conjecture

that existence of rational points on smooth projective curves

should be decidable.


