k:=Integers(); Py:=PolynomialRing(k,5); Pt:=PolynomialRing(k,3); Ka:=FunctionField(k,4); KaX:=PolynomialRing(Ka); //the defining homogeneous equation of the model of the Burkhardt Quartic we use: B:=y0^4+y0*y1^3+y0*y2^3+y0*y3^3+3*y1*y2*y3*y4+y0*y4^3; //A description of a birational map A^3->B given by (y0:y1:y2:y3:y4) //as polynomials in (t1,t2,t3) phi:=[t1^3-3*t1^2*t3-3*t1*t2^2-3*t1*t2*t3-t2^3-1, -t1^3+3*t1^2*t3-3*t1*t3^2+t2^3+1, -t1^4+t1^3*t2+3*t1^3*t3-3*t1^2*t2*t3-3*t1^2*t3^2-2*t1*t2^3-3*t1*t2^2*t3+t1-t2^4-t2, -t1^4+4*t1^3*t3+3*t1^2*t2^2+3*t1^2*t2*t3-3*t1^2*t3^2+t1*t2^3-3*t1*t2^2*t3-3*t1*t2*t3^2+t1-t2^3*t3-t3, -t1^4-t1^3*t2+2*t1^3*t3+3*t1^2*t2*t3+t1*t2^3+3*t1*t2^2*t3+t1+t2^4+t2^3*t3+t2+t3]; //A list of descriptions of a birational map B->P^3 //given as a list of lists (t0:t1:t2:t3) as homogeneous polynomials in //(y0:y1:y2:y3:y4) psis:=[[y0^3-y0^2*y1+y0*y1^2, -y0^2*y3-y0^2*y4+y0*y1*y2, y0^2*y2-y0*y1*y2+y0*y1*y3+y0*y1*y4, -y0^2*y4+y0*y1*y2-y0*y1*y3+y1^2*y3 ],[ 3*y0*y2^2*y4-3*y0*y3^2*y4+3*y0*y3*y4^2-3*y0*y4^3-3*y1*y2^2*y4-3*y1*y2*y3*y4-3*y1*y2*y4^2, -3*y0^3*y4-3*y0^2*y1*y4-3*y2^3*y4-3*y2^2*y3*y4-3*y2^2*y4^2, 3*y0^2*y1*y4+3*y0*y1^2*y4+3*y2^3*y4-3*y2*y3^2*y4+3*y2*y3*y4^2-3*y2*y4^3, y0^3*y2+y0^3*y3-2*y0^3*y4-3*y0^2*y1*y4+y1^3*y2+y1^3*y3+y1^3*y4+y2^4+y2^3*y3-2*y2^3*y4- 3*y2^2*y4^2+y2*y3^3+y2*y4^3+y3^4-2*y3^3*y4+3*y3^2*y4^2-2*y3*y4^3+y4^4 ],[ 3*y0^2*y2*y4-3*y0*y1*y2*y4+3*y1^2*y2*y4, -3*y0*y2*y3*y4-3*y0*y2*y4^2+3*y1*y2^2*y4, 3*y0*y2^2*y4-3*y1*y2^2*y4+3*y1*y2*y3*y4+3*y1*y2*y4^2, -y0^3*y1-3*y0*y2*y4^2-y1^4-y1*y2^3+3*y1*y2^2*y4-3*y1*y2*y3*y4-y1*y3^3-y1*y4^3 ],[ -y0^2*y2*y3-y0^2*y2*y4-y0^2*y3^2+y0^2*y3*y4-y0^2*y4^2-y0*y1*y2^2+y0*y1*y3^2-y0*y1*y3*y4+ y0*y1*y4^2, y0^2*y1^2+y0*y1^3+y0*y2*y3^2+2*y0*y2*y3*y4+y0*y2*y4^2+y0*y3^3+y0*y4^3+3*y1*y2*y3*y4, y0^3*y1-y0*y1^3-y0*y2^2*y3-y0*y2^2*y4-y0*y2*y3^2+y0*y2*y3*y4-y0*y2*y4^2-3*y1*y2*y3*y4, y0^2*y1^2+y0*y1^3+y0*y2*y3*y4+y0*y2*y4^2+y0*y3^2*y4-y0*y3*y4^2+y0*y4^3-y1*y2^2*y3+ 3*y1*y2*y3*y4+y1*y3^3-y1*y3^2*y4+y1*y3*y4^2]]; //Below we give 4 lists [H,lambda,G], where lambda is a rational function in (a1,...,a4) //and H,G are polynomials in X with coefficients that are rational functions in (a1,...,a4). //The expression G^2+4*lambda*H^3 yields the same sextic in X for each triple [H,lambda,G]. //When (1:a1:a2:a3:a4) is a point on B that does not lie in a j-plane and has a4 != 0 //then this corresponds to the 3-torsion point corresponding to the j-plane y[0]=y[i]=0 //(for i=1,...,4, in the order given) //(The article describes H,G as homogeneous forms in (x,z), of degrees 2 and 3 respectively. //Here we set (x,z)=(X,1) to get a more compact representation) HLGs:=[[(a1^3*a3*a4^3+a1^2*a2^2*a4^5+a1^2*a2^2*a4^2+2*a1*a2*a3^2*a4^4-a1*a2*a3^2*a4-a2^3*a3+ a3^4*a4^3)*X^2+(a1^4*a4^4+2*a1^2*a2*a3*a4^5-a1^2*a2*a3*a4^2+2*a1*a2^3*a4^4+a1*a2^3*a4+ 2*a1*a3^3*a4^4+a1*a3^3*a4+2*a2^2*a3^2*a4^3+2*a2^2*a3^2)*X+a1^3*a2*a4^3+a1^2*a3^2*a4^5+ a1^2*a3^2*a4^2+2*a1*a2^2*a3*a4^4-a1*a2^2*a3*a4+a2^4*a4^3-a2*a3^3, (-a4^3-1)/(a1^6*a4^6-6*a1^4*a2*a3*a4^4-2*a1^3*a2^3*a4^3-2*a1^3*a3^3*a4^3+9*a1^2*a2^2*a3^2*a4^2+ 6*a1*a2^4*a3*a4+6*a1*a2*a3^4*a4+a2^6+2*a2^3*a3^3+a3^6), (a1^6*a4^6+3*a1^4*a2*a3*a4^7-3*a1^4*a2*a3*a4^4+2*a1^3*a2^3*a4^9+4*a1^3*a2^3*a4^6+3*a1^3*a3^3*a4^6 +a1^3*a3^3*a4^3+6*a1^2*a2^2*a3^2*a4^8+3*a1^2*a2^2*a3^2*a4^5+6*a1^2*a2^2*a3^2*a4^2- 3*a1*a2^4*a3*a4^4+3*a1*a2^4*a3*a4+6*a1*a2*a3^4*a4^7+a2^6-3*a2^3*a3^3*a4^3-a2^3*a3^3+ 2*a3^6*a4^6+a3^6*a4^3)/(a1^3*a4^3-3*a1*a2*a3*a4-a2^3-a3^3)*X^3+(3*a1^5*a2*a4^8+ 3*a1^5*a2*a4^5+6*a1^4*a3^2*a4^7+6*a1^4*a3^2*a4^4+6*a1^3*a2^2*a3*a4^9+6*a1^3*a2^2*a3*a4^6+ 6*a1^2*a2^4*a4^8+9*a1^2*a2^4*a4^5+3*a1^2*a2^4*a4^2+12*a1^2*a2*a3^3*a4^8+3*a1^2*a2*a3^3*a4^5- 9*a1^2*a2*a3^3*a4^2+12*a1*a2^3*a3^2*a4^7+9*a1*a2^3*a3^2*a4^4-3*a1*a2^3*a3^2*a4+6*a1*a3^5*a4^7+ 6*a1*a3^5*a4^4-3*a2^5*a3*a4^3-3*a2^5*a3+6*a2^2*a3^4*a4^6+9*a2^2*a3^4*a4^3+ 3*a2^2*a3^4)/(a1^3*a4^3-3*a1*a2*a3*a4-a2^3-a3^3)*X^2+(3*a1^5*a3*a4^8+3*a1^5*a3*a4^5+ 6*a1^4*a2^2*a4^7+6*a1^4*a2^2*a4^4+6*a1^3*a2*a3^2*a4^9+6*a1^3*a2*a3^2*a4^6+12*a1^2*a2^3*a3*a4^8 +3*a1^2*a2^3*a3*a4^5-9*a1^2*a2^3*a3*a4^2+6*a1^2*a3^4*a4^8+9*a1^2*a3^4*a4^5+3*a1^2*a3^4*a4^2+ 6*a1*a2^5*a4^7+6*a1*a2^5*a4^4+12*a1*a2^2*a3^3*a4^7+9*a1*a2^2*a3^3*a4^4-3*a1*a2^2*a3^3*a4+ 6*a2^4*a3^2*a4^6+9*a2^4*a3^2*a4^3+3*a2^4*a3^2-3*a2*a3^5*a4^3-3*a2*a3^5)/(a1^3*a4^3- 3*a1*a2*a3*a4-a2^3-a3^3)*X+(a1^6*a4^6+3*a1^4*a2*a3*a4^7-3*a1^4*a2*a3*a4^4+3*a1^3*a2^3*a4^6 +a1^3*a2^3*a4^3+2*a1^3*a3^3*a4^9+4*a1^3*a3^3*a4^6+6*a1^2*a2^2*a3^2*a4^8+3*a1^2*a2^2*a3^2*a4^5 +6*a1^2*a2^2*a3^2*a4^2+6*a1*a2^4*a3*a4^7-3*a1*a2*a3^4*a4^4+3*a1*a2*a3^4*a4+2*a2^6*a4^6+ a2^6*a4^3-3*a2^3*a3^3*a4^3-a2^3*a3^3+a3^6)/(a1^3*a4^3-3*a1*a2*a3*a4-a2^3-a3^3) ],[ a1*a4*X^2+a2*X-a3, -a1^3*a4^9-a1^3*a4^6+3*a1*a2*a3*a4^7+3*a1*a2*a3*a4^4+a2^3*a4^6+a2^3*a4^3+a3^3*a4^6+a3^3*a4^3, (2*a1^3*a4^6+a1^3*a4^3-3*a1*a2*a3*a4^4+a2^3-a3^3*a4^3)*X^3+(3*a1^2*a2*a4^5+3*a1^2*a2*a4^2- 3*a2^2*a3*a4^3-3*a2^2*a3)*X^2+(-3*a1^2*a3*a4^5-3*a1^2*a3*a4^2+3*a2*a3^2*a4^3+3*a2*a3^2)*X- a1^3*a4^3-3*a1*a2*a3*a4^4-a2^3*a4^3-2*a3^3*a4^3-a3^3 ],[ a2*X^2-a3*X-a1*a4, a1^3*a4^9+a1^3*a4^6-3*a1*a2*a3*a4^7-3*a1*a2*a3*a4^4-a2^3*a4^6-a2^3*a4^3-a3^3*a4^6-a3^3*a4^3, (a1^3*a4^3+3*a1*a2*a3*a4^4+2*a2^3*a4^3+a2^3+a3^3*a4^3)*X^3+(3*a1^2*a2*a4^5+3*a1^2*a2*a4^2- 3*a2^2*a3*a4^3-3*a2^2*a3)*X^2+(-3*a1^2*a3*a4^5-3*a1^2*a3*a4^2+3*a2*a3^2*a4^3+3*a2*a3^2)*X- 2*a1^3*a4^6-a1^3*a4^3+3*a1*a2*a3*a4^4+a2^3*a4^3-a3^3 ],[ (a1*a2^2*a4^3+a1*a2^2)*X^2+(a1^3*a4^2+a1*a2*a3*a4^3-2*a1*a2*a3+a2^3*a4^2+a3^3*a4^2)*X+ a1*a3^2*a4^3+a1*a3^2, (-a1^3*a4^3+3*a1*a2*a3*a4+a2^3+a3^3)/(a1^6+6*a1^4*a2*a3*a4+2*a1^3*a2^3+2*a1^3*a3^3+ 9*a1^2*a2^2*a3^2*a4^2+6*a1*a2^4*a3*a4+6*a1*a2*a3^4*a4+a2^6+2*a2^3*a3^3+a3^6), (a1^6*a4^3+6*a1^4*a2*a3*a4^4+2*a1^3*a2^3*a4^6+5*a1^3*a2^3*a4^3+a1^3*a2^3+2*a1^3*a3^3*a4^3+ 9*a1^2*a2^2*a3^2*a4^5+3*a1*a2^4*a3*a4^4-3*a1*a2^4*a3*a4+6*a1*a2*a3^4*a4^4-a2^6+a2^3*a3^3*a4^3 -a2^3*a3^3+a3^6*a4^3)/(a1^3+3*a1*a2*a3*a4+a2^3+a3^3)*X^3+(3*a1^5*a2*a4^5+3*a1^5*a2*a4^2+ 3*a1^3*a2^2*a3*a4^6-3*a1^3*a2^2*a3+3*a1^2*a2^4*a4^5+3*a1^2*a2^4*a4^2+3*a1^2*a2*a3^3*a4^5+ 3*a1^2*a2*a3^3*a4^2+9*a1*a2^3*a3^2*a4^4+9*a1*a2^3*a3^2*a4+3*a2^5*a3*a4^3+3*a2^5*a3+ 3*a2^2*a3^4*a4^3+3*a2^2*a3^4)/(a1^3+3*a1*a2*a3*a4+a2^3+a3^3)*X^2+(-3*a1^5*a3*a4^5- 3*a1^5*a3*a4^2-3*a1^3*a2*a3^2*a4^6+3*a1^3*a2*a3^2-3*a1^2*a2^3*a3*a4^5-3*a1^2*a2^3*a3*a4^2- 3*a1^2*a3^4*a4^5-3*a1^2*a3^4*a4^2-9*a1*a2^2*a3^3*a4^4-9*a1*a2^2*a3^3*a4-3*a2^4*a3^2*a4^3- 3*a2^4*a3^2-3*a2*a3^5*a4^3-3*a2*a3^5)/(a1^3+3*a1*a2*a3*a4+a2^3+a3^3)*X+(-a1^6*a4^3- 6*a1^4*a2*a3*a4^4-2*a1^3*a2^3*a4^3-2*a1^3*a3^3*a4^6-5*a1^3*a3^3*a4^3-a1^3*a3^3- 9*a1^2*a2^2*a3^2*a4^5-6*a1*a2^4*a3*a4^4-3*a1*a2*a3^4*a4^4+3*a1*a2*a3^4*a4-a2^6*a4^3- a2^3*a3^3*a4^3+a2^3*a3^3+a3^6)/(a1^3+3*a1*a2*a3*a4+a2^3+a3^3)]]; //Below is a triple (H,lambda,G) such that G^2+4*lambda*H^3 is -3*F, where F is the sextic //defined by HLGs above. This triple corresponds to the 3-torsion points that the j-plane //y0+...+y4=y0+y4=0 marks if (1:a1:a2:a3:a4) is a point on the Burkhardt quartic. Note that //the identity of the sextics holds regardless of whether (1:a1:a2:a3:a4) satisfy the Burkhardt //relation. We do need the Burkhardt relation to get the other cyclic order 3 subgroups defined //over the base field. HLGdual:=[(a1^2*a4^2+a1*a2*a4^3-a1*a2*a4^2-a1*a2*a4-a1*a3*a4^2+a2^2+a2*a3*a4+a3^2*a4^2)*X^2+(-a1^2*a4^3+ a1^2*a4^2+a1*a2*a4^3+a1*a2*a4+a1*a3*a4^3+a1*a3*a4+a2^2*a4^2-a2^2*a4-2*a2*a3+a3^2*a4^2- a3^2*a4)*X+a1^2*a4^2-a1*a2*a4^2+a1*a3*a4^3-a1*a3*a4^2-a1*a3*a4+a2^2*a4^2+a2*a3*a4+a3^2, (-3*a1^2*a4^4+3*a1^2*a4^3-3*a1^2*a4^2-3*a1*a2*a4^3+3*a1*a2*a4^2-3*a1*a2*a4-3*a1*a3*a4^3+ 3*a1*a3*a4^2-3*a1*a3*a4-3*a2^2*a4^2+3*a2^2*a4-3*a2^2+3*a2*a3*a4^2-3*a2*a3*a4+3*a2*a3- 3*a3^2*a4^2+3*a3^2*a4-3*a3^2)/(a1^2*a4^4+2*a1^2*a4^3+a1^2*a4^2-2*a1*a2*a4^3-4*a1*a2*a4^2- 2*a1*a2*a4-2*a1*a3*a4^3-4*a1*a3*a4^2-2*a1*a3*a4+a2^2*a4^2+2*a2^2*a4+a2^2+2*a2*a3*a4^2+ 4*a2*a3*a4+2*a2*a3+a3^2*a4^2+2*a3^2*a4+a3^2), (-3*a1^4*a4^5+3*a1^4*a4^4-6*a1^3*a2*a4^6+6*a1^3*a2*a4^5-3*a1^3*a2*a4^4-3*a1^3*a2*a4^3+ 6*a1^3*a3*a4^5-3*a1^3*a3*a4^4+3*a1^3*a3*a4^3+6*a1^2*a2^2*a4^6+6*a1^2*a2^2*a4^4+6*a1^2*a2^2*a4^2+ 3*a1^2*a2*a3*a4^6-3*a1^2*a2*a3*a4^5+6*a1^2*a2*a3*a4^4+6*a1^2*a2*a3*a4^3-6*a1^2*a2*a3*a4^2- 6*a1^2*a3^2*a4^5+6*a1^2*a3^2*a4^4-6*a1^2*a3^2*a4^3-6*a1*a2^3*a4^4+6*a1*a2^3*a4^3-3*a1*a2^3*a4^2- 3*a1*a2^3*a4-3*a1*a2^2*a3*a4^5+3*a1*a2^2*a3*a4^4-6*a1*a2^2*a3*a4^3-6*a1*a2^2*a3*a4^2+ 6*a1*a2^2*a3*a4+9*a1*a2*a3^2*a4^5-3*a1*a2*a3^2*a4^4-6*a1*a2*a3^2*a4^3+6*a1*a2*a3^2*a4^2+ 3*a1*a3^3*a4^5-3*a1*a3^3*a4^4+6*a1*a3^3*a4^3-3*a2^4*a4+3*a2^4-6*a2^3*a3*a4^2+3*a2^3*a3*a4- 3*a2^3*a3-6*a2^2*a3^2*a4^3+6*a2^2*a3^2*a4^2-6*a2^2*a3^2*a4-3*a2*a3^3*a4^4+3*a2*a3^3*a4^3- 6*a2*a3^3*a4^2+3*a3^4*a4^4-3*a3^4*a4^3)/(a1*a4^2+a1*a4-a2*a4-a2-a3*a4-a3)*X^3+(6*a1^4*a4^6 -6*a1^4*a4^5+6*a1^4*a4^4+3*a1^3*a2*a4^7-9*a1^3*a2*a4^6+12*a1^3*a2*a4^5-9*a1^3*a2*a4^4+ 3*a1^3*a2*a4^3-6*a1^3*a3*a4^6+12*a1^3*a3*a4^5-12*a1^3*a3*a4^4+6*a1^3*a3*a4^3+3*a1^2*a2^2*a4^6- 15*a1^2*a2^2*a4^5+18*a1^2*a2^2*a4^4-15*a1^2*a2^2*a4^3+3*a1^2*a2^2*a4^2+9*a1^2*a2*a3*a4^6- 9*a1^2*a2*a3*a4^5+9*a1^2*a2*a3*a4^3-9*a1^2*a2*a3*a4^2+6*a1^2*a3^2*a4^6-12*a1^2*a3^2*a4^5+ 18*a1^2*a3^2*a4^4-12*a1^2*a3^2*a4^3+6*a1^2*a3^2*a4^2+12*a1*a2^3*a4^5-6*a1*a2^3*a4^4+ 12*a1*a2^3*a4^3+6*a1*a2^3*a4+3*a1*a2^2*a3*a4^5+3*a1*a2^2*a3*a4^4+3*a1*a2^2*a3*a4^2+ 3*a1*a2^2*a3*a4+6*a1*a2*a3^2*a4^5-12*a1*a2*a3^2*a4^4+6*a1*a2*a3^2*a4^2-12*a1*a2*a3^2*a4+ 6*a1*a3^3*a4^5-12*a1*a3^3*a4^4+12*a1*a3^3*a4^3-6*a1*a3^3*a4^2-6*a2^4*a4^3+6*a2^4*a4^2-6*a2^4*a4 -3*a2^3*a3*a4^4+3*a2^3*a3*a4^3-12*a2^3*a3*a4^2+9*a2^3*a3*a4-9*a2^3*a3+9*a2^2*a3^2*a4^4- 9*a2^2*a3^2*a4^3+18*a2^2*a3^2*a4^2-9*a2^2*a3^2*a4+9*a2^2*a3^2+12*a2*a3^3*a4^3-12*a2*a3^3*a4^2+ 12*a2*a3^3*a4+6*a3^4*a4^4-6*a3^4*a4^3+6*a3^4*a4^2)/(a1*a4^2+a1*a4-a2*a4-a2-a3*a4-a3)*X^2+ (6*a1^4*a4^6-6*a1^4*a4^5+6*a1^4*a4^4-6*a1^3*a2*a4^6+12*a1^3*a2*a4^5-12*a1^3*a2*a4^4+ 6*a1^3*a2*a4^3+3*a1^3*a3*a4^7-9*a1^3*a3*a4^6+12*a1^3*a3*a4^5-9*a1^3*a3*a4^4+3*a1^3*a3*a4^3+ 6*a1^2*a2^2*a4^6-12*a1^2*a2^2*a4^5+18*a1^2*a2^2*a4^4-12*a1^2*a2^2*a4^3+6*a1^2*a2^2*a4^2+ 9*a1^2*a2*a3*a4^6-9*a1^2*a2*a3*a4^5+9*a1^2*a2*a3*a4^3-9*a1^2*a2*a3*a4^2+3*a1^2*a3^2*a4^6- 15*a1^2*a3^2*a4^5+18*a1^2*a3^2*a4^4-15*a1^2*a3^2*a4^3+3*a1^2*a3^2*a4^2+6*a1*a2^3*a4^5- 12*a1*a2^3*a4^4+12*a1*a2^3*a4^3-6*a1*a2^3*a4^2+6*a1*a2^2*a3*a4^5-12*a1*a2^2*a3*a4^4+ 6*a1*a2^2*a3*a4^2-12*a1*a2^2*a3*a4+3*a1*a2*a3^2*a4^5+3*a1*a2*a3^2*a4^4+3*a1*a2*a3^2*a4^2+ 3*a1*a2*a3^2*a4+12*a1*a3^3*a4^5-6*a1*a3^3*a4^4+12*a1*a3^3*a4^3+6*a1*a3^3*a4+6*a2^4*a4^4- 6*a2^4*a4^3+6*a2^4*a4^2+12*a2^3*a3*a4^3-12*a2^3*a3*a4^2+12*a2^3*a3*a4+9*a2^2*a3^2*a4^4- 9*a2^2*a3^2*a4^3+18*a2^2*a3^2*a4^2-9*a2^2*a3^2*a4+9*a2^2*a3^2-3*a2*a3^3*a4^4+3*a2*a3^3*a4^3- 12*a2*a3^3*a4^2+9*a2*a3^3*a4-9*a2*a3^3-6*a3^4*a4^3+6*a3^4*a4^2-6*a3^4*a4)/(a1*a4^2+a1*a4- a2*a4-a2-a3*a4-a3)*X+(-3*a1^4*a4^5+3*a1^4*a4^4+6*a1^3*a2*a4^5-3*a1^3*a2*a4^4+3*a1^3*a2*a4^3 -6*a1^3*a3*a4^6+6*a1^3*a3*a4^5-3*a1^3*a3*a4^4-3*a1^3*a3*a4^3-6*a1^2*a2^2*a4^5+6*a1^2*a2^2*a4^4- 6*a1^2*a2^2*a4^3+3*a1^2*a2*a3*a4^6-3*a1^2*a2*a3*a4^5+6*a1^2*a2*a3*a4^4+6*a1^2*a2*a3*a4^3- 6*a1^2*a2*a3*a4^2+6*a1^2*a3^2*a4^6+6*a1^2*a3^2*a4^4+6*a1^2*a3^2*a4^2+3*a1*a2^3*a4^5- 3*a1*a2^3*a4^4+6*a1*a2^3*a4^3+9*a1*a2^2*a3*a4^5-3*a1*a2^2*a3*a4^4-6*a1*a2^2*a3*a4^3+ 6*a1*a2^2*a3*a4^2-3*a1*a2*a3^2*a4^5+3*a1*a2*a3^2*a4^4-6*a1*a2*a3^2*a4^3-6*a1*a2*a3^2*a4^2+ 6*a1*a2*a3^2*a4-6*a1*a3^3*a4^4+6*a1*a3^3*a4^3-3*a1*a3^3*a4^2-3*a1*a3^3*a4+3*a2^4*a4^4- 3*a2^4*a4^3-3*a2^3*a3*a4^4+3*a2^3*a3*a4^3-6*a2^3*a3*a4^2-6*a2^2*a3^2*a4^3+6*a2^2*a3^2*a4^2- 6*a2^2*a3^2*a4-6*a2*a3^3*a4^2+3*a2*a3^3*a4-3*a2*a3^3-3*a3^4*a4+3*a3^4)/(a1*a4^2+a1*a4-a2*a4- a2-a3*a4-a3)]; //magma code to verify that the expressions given indeed satisfy the relations claimed, L:=[[Evaluate(p,phi):p in q]:q in psis]; assert {[Pt|c/l[1]: c in l]:l in L} eq{[1,t1,t2,t3]}; assert Evaluate(B,phi) eq 0; V:={c[3]^2+4*c[2]*c[1]^3:c in HLGs}; assert #V eq 1; F:=Rep(V); G:=c[3]^2+4*c[2]*c[1]^3 where c:=HLGdual; assert G/F eq -3;