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Motivating Problem

Let K be a number field.

Theorem (Mordell-Weil): If E is an elliptic curve over K, then
E(K) is a finitely generated abelian group.

Thus E (K ), is a finite group.

Problem: Which finite abelian groups E( K ), occur, as we vary



over all elliptic curves E/ K?

Observation: E (K ), is a finite subgroup of C/A,so E(K ) is
cyclic or a product of two cyclic groups.

An Old Conjecture

Conjecture (Levi around 1908; re-made by Ogg in 1960s):

When K = Q, the groups E(Q);;, as we vary over all E/Q, are
the following 15 groups:

Z/mZ form < 10orm = 12

(Z/2Z) x (Z/20Z) forv < 4.

Note:
1. This is really a conjecture about rational points on certain
curves of (possibly) higher genus

2. Or, it's a conjecture in arithmetic dynamics about periodic
points.

Modular Curves

The modular curves Yo (N) and Y7 (N):

e Let Yy(N) be the affine modular curve over Q whose points
parameterize isomorphism classes of pairs (E, C), where C C E



is a cyclic subgroup of order N.
e Let Y1(N) be ... of pairs (E, P), where P € E(Q)is a point
of order N.

Let Xo(NV) and X1 (V) be the compactifications of the above affine
curves.

Observation: There is an elliptic curve E/ K with p | # E (K )if and
only if Y7 (p)(K) is nonempty.

Also, Yy(N) is a quotient of Y1 (N), so if Yo(IN)(K) is empty, then
sois Yg(N).

Mazur's Theorem (1970s)

Theorem (Mazur) If p | # E(Q) o for some elliptic curve E/Q,
then p < 13.

Combined with previous work of Kubert and Ogg, one sees that
Mazur's theorem implies Levi's conjecture, i.e., a complete

classification of the finite groups F (Q)tor-

Here are representative curves by the way (there are infinitely many for
each j-invariant):
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Mazur's Method

Theorem (Mazur) If p | #E(Q) o for some elliptic curve E/Q,
then p < 13.

Basic idea of the proof:

I.
2.

Find a rank zero quotient A of Jy(p) such that...

.. the induced map f : Xo(p) — Ais a formal immersion at
infinity (this means that the induced map on complete local rings
is surjective, or equivalently, that the induced map on cotangent
spaces is surjective).

. Then consider the point € Y (p)corresponding to a pair (E, (P))

, where P has order p.

. If E has potentially good reduction at 3, get contradiction by

injecting p-torsion mod 3 since p > 13, so £ has multiplicative
reduction, hence we may assume & reduces to the cusp oo.

. The image of x in A(Q) is thus in the kernel of the reduction

map mod 3.  But this kernel of reduction is a formal group,
hence torsion free. But A(Q) = A(Q)¢o, is finite, so image

of ¢ is 0.

. Use that f is a formal immersion at infinity along with step 5, to

show that = 00, which is a contradiction since € Yj(p).

Mazur uses for A the Eisenstein quotient of Jy(p) because he is able

to prove -- way back in the 1970s! -- that this quotient has rank 0 by

doing a p-descent. This is long before much was known toward the
BSD conjecture. More recently one can:



o Merel 1995: use the winding quotient of Jy(p), which is the
maximal analytic rank 0 quotient. This makes the arguments
easier, and we know by Kolyvagin-Logachev et al. or by Kato
that the winding quotient has rank 0. (For p = 67 they already
differ, since 67a has trivial torsion and rank 0.)

e Parent 1999: use instead the winding quotient of J7(p), which
leads to a similar argument as above. This quotient has rank O by
Kato's theorem.

Kamienny-Mazur

A prime p is a torsion prime for degree d if there is a number field
K of degree d and an elliptic curve E// K such thatp | #E (K)o

Let S(d) = {torsion primes for degree < d}. For example, S(1) = {2,3,5,7}

Finding all possible torsion structure over all fields of degree < d often

involves determining S(d), then doing some additional work (which
we won't go into). E.g.,

Theorem (Frey, Faltings): If S(d) is finite, then the set of groups
E (K )tor, as F varies over all elliptic curves over all number fields K
of degree < d, is finite.

Kamienny and Mazur: Replace X(p) by the symmetric

power Xo(p) (@) and gave an explicit criterion in terms of
independence of Hecke operators for f; : Xo(p)(® — Jy(p)o be a
formal immersion at (00, 00, ...,00) A pointy € Xo(p)(K)
where K has degree d, then defines a point §j € X (p) (¥ (Q) etc.

Theorem (Kamienny and Mazur):

e 5(2) ={2,3,5,7,11,13}
e S(d) is finite ford < 8,
e S(d) has density 0 for all d.

Abromovich soon proved that S(d) is finite for d < 14.

Corollary (Uniform Boundedness): There is a fixed constant B such



that if E/ K is an elliptic curve over a number field of degree < 8,
then #E (K)o < B

(Very surprising!)

Torsion Structures over Quadratic Fields

Theorem (Kenku, Momose, Kamienny, Mazur): The complete list of
subgroups that appear over quadratic fields is:

Z/mz for m <= 16 or m = 18
(2/22) x (Z2/2vZ) for v <= 6.

(2/32) x (Z/3vZ) for v = 1,2

(2/42) x (Z/4vZ)

and each occurs for infinitely many j-invariants.

What is S(d)?

Kamienny, Mazur: "We expect that max(.S(3)) < 19, but it would
simply be too embarrassing to parade the actual astronomical finite
bound that our proof gives."

But soon, Merel in a tour de force, proves (by using the winding
quotient and a deep modular symbols argument about independence of
Hecke operators):

Theorem (Merel, 1996): max(S(d)) < d3®, ford > 2.

thus proving the full Universal Boundedness Conjecture, which is a
huge result.

Shortly thereafter Oesterle modifies Merel's argument to get a much
better upper bound:

Theorem (Oesterle): max(S(d)) < (3%/2 + 1)2.

for d in [1..10]:
print '%2s%10s %s'%(d,
floor((3~(d/2)+1)"2), d*(3*d"2))
1 7 1



2 16 4096

3 38 7625597484987

4 100 792281625142643375935439503:

5 275
2646977960169688559588507814623881131410598"

6 784
1097324413128695095014498519762948444299315]1
69310779664367616

7 2281

1695945461756368269805400584079210252163224:
8567318785918238092994399248127051511009143¢
8 6724
2473304014731045340605025210196471900351313+
7225106531867170316401061243044989597671426(
09967546155101893167916606772148699136

9 19964
7602033756829688179535612101927342434798006=
2645084755838563839913304464000985751312679(
6925226634160836137093971905834739141002430:
7236044960360057945209303129

10 59536
1000000000000000000000000000000000000000000¢
000000000000000000000O0O0OOO0O0O0O0O0OOOO0O0O0O0OOOOOONC
0000000000000000000000000000000000000000000¢
0000000000000000000000000000000000000000000¢
00000000000000000000000000000

Remark (Merel, personal communication,
2010-05-10)

1. The known bounds for S(d) are exponential in d. However, a
polynomial bound on S (d) in d is expected. Therefore, one can
not expect to computationally determine the exact list of torsion
primes in degree for many more d's.

2. The bound is obtained by considering (essentially) two cases
(according to the type of reduction modulo £ of your elliptic
curve) : in one case it is easily seen to be exponential in d, the
hard case finally yields a bound which is polynomial in d
(something like O(d®) in my paper, O(d®) after Oesterlé, I
suspect one can lower it to O(dz)). Unsatisfying!

3. If you want a bound depending on the field K (instead of just
the degree of K), you can obtain a bound like O(size of the
residue field of K of smallest order).



Parent's Kamienny Method: Nailing Down
S(3)

By Oesterle, we know that max(.S(3)) < 3T7.

In 1999, Parent made Kamienny's method applied to Jy (p) explicit
and computable, and used this to bound S(3) explicitly, showing that max(.S(3)) < 17.

This makes crucial use of Kato's theorem toward
the Birch and Swinnerton-Dyer conjecture!

In subsequent work, Parent rules out 17 finally giving the answer:
S(3) =12,3,5,7,11,13}

The list of groups E( K)o, that occur for K cubic is still unknown.
However, using the notion of trigonality of modular curves (having a
degree 3 map to Pl), [Jeon, Kim, and Schweizer, 2004] showed that
the groups that appear for infinitely many j-invariants are:

Z/mZ for m<=16, 18, 20
2/22 x 2/2v% for v<=7

Remark: Parent also gave an explicit bound for the torsion of order powers of prime numbers in his thesis...

What about Degree 4?

By Oesterle, we know that max(.S(4)) < 97.

Recently, Jeon, Kim, and Park (2006), again used gonality (and big
computations with Singular), to show that the groups that appear for

infinitely many j-invariants for curves over quartic fields are:

Z/mZ for m<=18, or m=20, m=21, m=22, m=24
2/2%2 x 2/2v7%2 for v<=9

Z2/3%2 x 7Z/3vZ for v<=3

Z2/42 x Z2/4v7Z for v<=2

Z2/5%2 x 72/5%

Z2/6Z X 7Z/6%7



Question: Is S(4) = {2,3,5,7,11,13,17}7

Explicit Kamienny-Parent for d = 4

To attack the above unsolved problem about S(4), we made Parent's
(1999) approach very explicit in case d = 4 and £ = 2 (he gives a
general criterion for any d...). One arrives that the following (where t
is a certain explicitly computed element of the Hecke algebra). With

{=2,d=4,wehave (1 +£d/2)2 = 25.

Proposition 3.3. Let p > 25 be a prime and consider Hecke operators Ty, in
the Hecke algebra T = Ty, () @ Fa associated to So(I'1(p); F2). Consider the
following sequences of 4 elements of the Hecke algebra mod 2:

1. Partition 4=4: (t,tTo,tT3,tT})

2. Partition 4=1+3: (t, t(d),t(d)Ts,t(d)T3),
for1l <d<p/2.

3. Partition 4=2+2: (t,tTs, t(d),t(d)Ts),
forl <d<p/2.

4. Partition §=1+1+2: (t, t(d1), t{da),t(do)T5),
for1 <dy #ds < p/2.

5. Partition j=1+1+1+1: (t, t(d1), t{do), t(ds)),
for 1 < dy #dg#dg(p/z

If the entries in every single one of these sequences (for all choices of d;) are
linearly independent then there is no elliptic curve over a degree 4 number field
with a rational point of order p.

NOTES:

1. This looks pretty crazy, but this is really just a way of expressing
the condition that a certain map is a formal immersion.

2. As p gets large, there are a LOT of 4-tuples of elements of the
Hecke algebra to test for independence mod 2.

3. Here is code that implements this algorithm: code.sage



Running the Algorithm

After a few days we find that the criterion is not satisfied for
p = 29,31, butitis for 37 < p < 97.

Conclusion:

Theorem (Kamienny, Stein): max(S(4)) < 31

It's unclear to me, but Kamienny seems to also have a proof that rules
out 29, 31, which would nearly answer the big question for degree 4.

Last 2-3 Days...

A complete solution!?!
Theorem (Kamienny, Stein Stoll): S(4) = {2,3,5,7,11,13,17}

Proofs uses that rank(J;(p)) = 0 for the above p, informed by
calculations from [Conrad-Edixhoven-Stein] about the arithmetic of
J1(p) for small p, so one can use much more direct geometric
arguments. This also involves some large computations with Magma
on explicit algebraic curves, e.g., Riemann-Roch spaces, enumerating
and reducing divisors, etc., built on top of Florian Hess's function
fields package. Stoll: "Finding the degree 4 points takes about 3 hours
[...] The other problem is that Magma crashes once in a while when
turning a point into a place. This will be fixed in the next release, but
for now, one may have to try the actual checking a few times until it
runs through."

Related Conjecture (Stein): J1(p)(Q)or is generated by differences
of rational cusps.

(See extensive data about this conjecture in Conrad-Edixhoven-Stein.)

Future Work

1. Determine if J1(p)(Q)or is cuspidal.

2. Make the algorithm for showing that max(.5(4)) < 31much
more efficient. Right now it takes way too long.



3. Repeat my calculations, but for d = 5 and hope to replace the
Oesterle bound of max(.S(5)) < 271by

max(S(5)) <43  (or something close).

And then?
4. Isogeny degrees -- still an open problem even over quadratic

fields!

o Cremona (a few minutes ago on Google Buzz): "I'm also

very interested in the corresponding question for X (£),
so we know what the possible prime degrees of isogenies
are for a given field (or degree). I had some interesting
correspondence about this with Parent about 6 months ago;
he says that is still wide open for quadratic fields! My
student Kimi is implementing isogenies of degree 11, 17,
19 (the genus 1 cases) in Sage (work in progress). But to
have a genuine isogeny_class() function over any non-Q
number fields we need a bound." and

Mazur (email): "It would be also interesting if you could,

say, rule out a few primes p occurring as p-isogenies over
such fields (for non CM curves)?"

float ((1+27(5/2))"2)
44.313708498984766

previous prime(275)

271



