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Motivating Problem

Let K  be a number field.  

Theorem (Mordell-Weil): If E  is an elliptic curve over K , then
E(K) is a finitely generated abelian group.

Thus E(K)  is a finite group. 

Problem:  Which finite abelian groups E(K)  occur, as we vary
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tor



over all elliptic curves E=K?

 

Observation: E(K)  is a finite subgroup of C=!, so E(K)  is
cyclic or a product of two cyclic groups.

 

 

 
       

An Old Conjecture
 

Conjecture (Levi around 1908; re-made by Ogg in 1960s): 

  When K , the groups E(Q) , as we vary over all E=Q, are
the following 15 groups:

    Z=mZ                            for  or m 2

        for .

 

Note:

1. This is really a conjecture about rational points on certain
curves of (possibly) higher genus 

2. Or, it's a conjecture in arithmetic dynamics about periodic
points.

 

 
       

Modular Curves

The modular curves Y (N) and Y (N):

Let Y (N) be the affine modular curve over Q whose points
parameterize isomorphism classes of pairs (E; ), where 
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 is a cyclic subgroup of order N .
Let Y (N) be ...  of pairs (E; ), where  is a point
of order N .

Let X (N) and X (N) be the compactifications of the above affine
curves.

Observation: There is an elliptic curve E=K  with  if and
only if Y (p)(K) is nonempty.

Also, Y (N) is a quotient of Y (N), so if Y (N)(K) is empty, then
so is Y (N). 

 

       

Mazur's Theorem (1970s)

Theorem (Mazur) If  for some elliptic curve E=Q,
then .

Combined with previous work of Kubert and Ogg, one sees that
Mazur's theorem implies Levi's conjecture, i.e., a complete
classification of the finite groups E(Q) .

Here are representative curves by the way (there are infinitely many for
each j-invariant):

for ainvs in ([0,-2],[0,8],[0,4],[4,0],[0,-
1,-1,0,0],[0,1],
        [1, -1, 1, -3, 3],[7,0,0,16,0], [1,-
1,1,-14,29],
        [1,0,0,-45,81], [1, -1, 1, -122, 
1721], [-4,0],
        [1,-5,-5,0,0], [5,-3,-6,0,0], [17,-
60,-120,0,0]  ):
    E = EllipticCurve(ainvs)
    view((E.torsion_subgroup().invariants(), 
E)) 
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Mazur's Method

Theorem (Mazur) If  for some elliptic curve E=Q,
then .

Basic idea of the proof:  

1. Find a rank zero quotient A of J (p) such that...
2. ... the induced map  is a formal immersion at

infinity (this means that the induced map on complete local rings
is surjective, or equivalently, that the induced map on cotangent
spaces is surjective). 

3. Then consider the point  corresponding to a pair 
, where P  has order p.  

4. If E  has potentially good reduction at 3, get contradiction by
injecting p-torsion mod 3 since p 3, so E  has multiplicative
reduction, hence we may assume x reduces to the cusp . 

5. The image of x in A(Q) is thus in the kernel of the reduction
map mod 3.     But this kernel of reduction is a formal group,
hence torsion free.  But A(Q) (Q)  is finite, so image
of x is 0. 

6. Use that f  is a formal immersion at infinity along with step 5, to
show that , which is a contradiction since 

Mazur uses for A the Eisenstein quotient of J (p) because he is able
to prove -- way back in the 1970s! -- that this quotient has rank 0 by
doing a p-descent.   This is long before much was known toward the
BSD conjecture.  More recently one can:

Merel 1995: use the winding quotient of J (p), which is the

 ! !
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Merel 1995: use the winding quotient of J (p), which is the
maximal analytic rank 0 quotient.  This makes the arguments
easier, and we know by Kolyvagin-Logachev et al. or by Kato
that the winding quotient has rank 0.  (For p 7 they already
differ, since 67a has trivial torsion and rank 0.)

Parent 1999: use instead the winding quotient of J (p), which
leads to a similar argument as above.  This quotient has rank 0 by
Kato's theorem.  

 
       

Kamienny-Mazur

A prime p is a torsion prime for degree d if there is a number field
K  of degree d and an elliptic curve E=K  such that . 

Let .  For example, 
. 

Finding all possible torsion structure over all fields of degree  often
involves determining S(d), then doing some additional work (which
we won't go into).  E.g.,

Theorem (Frey, Faltings): If S(d) is finite, then the set of groups
E(K) , as E  varies over all elliptic curves over all number fields K
of degree  is finite. 

Kamienny and Mazur: Replace X (p) by the symmetric
power X (p)  and gave an explicit criterion in terms of
independence of Hecke operators for  to be a
formal immersion at .   A point ,
where K  has degree d, then defines a point , etc.

Theorem (Kamienny and Mazur):

,
S(d) is finite for ,
S(d) has density 0 for all d.

Abromovich soon proved that S(d) is finite for . 

Corollary (Uniform Boundedness): There is a fixed constant B such
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that if E=K  is an elliptic curve over a number field of degree ,
then .

(Very surprising!)

 

       

Torsion Structures over Quadratic Fields
Theorem (Kenku, Momose, Kamienny, Mazur): The complete list of
subgroups that appear over quadratic fields is:

            Z/mZ              for m <= 16 or m = 18
           (Z/2Z) x (Z/2vZ)   for v <= 6.
           (Z/3Z) x (Z/3vZ)   for v = 1,2
           (Z/4Z) x (Z/4vZ)

and each occurs for infinitely many j-invariants.

 

       

What is ?

Kamienny, Mazur: "We expect that , but it would
simply be too embarrassing to parade the actual astronomical finite
bound that our proof gives."

But soon, Merel in a tour de force, proves (by using the winding
quotient and a deep modular symbols argument about independence of
Hecke operators):

Theorem (Merel, 1996):  max(S(d)) , for .

thus proving the full Universal Boundedness Conjecture, which is a
huge result.

Shortly thereafter Oesterle modifies Merel's argument to get a much
better upper bound:

Theorem (Oesterle): max(S(d)) 3 ) .

for d in [1..10]:
    print '%2s%10s    %s'%(d, 
floor((3^(d/2)+1)^2), d^(3*d^2)) 

 1         7    1

!  8
#E(K)  tor ! B

S(d) 
max(S(3)) 9 ! 1

< d3d
2

d  " 2

< ( d=2 + 1 2



       

 2        16    4096
 3        38    7625597484987
 4       100    79228162514264337593543950336
 5       275   
26469779601696885595885078146238811314105987548828125
 6       784   
10973244131286950950144985197629484442993151704097425695216883638656\
69310779664367616
 7      2281   
16959454617563682698054005840792102521632243876732771232150341713141\
856731878591823809299439924812705151100914349041188035543
 8      6724   
24733040147310453406050252101964719003513134910121183991406305609289\
72251065318671703164010612430449895976714260161393393513650343067512\
09967546155101893167916606772148699136
 9     19964   
76020337568296881795356121019273424347980062229133458820966717184620\
26450847558385638399133044640009857513126790996106341658482736771462\
69252266341608361370939719058347391410024303791987065214304600142120\
7236044960360057945209303129
10     59536   
10000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000

 
       

Remark (Merel, personal communication,
2010-05-10)

1. The known bounds for S(d) are exponential in d.  However, a
polynomial bound on S(d) in d is expected. Therefore, one can
not expect to computationally determine the exact list of torsion
primes in degree for many more d's. 

2. The bound is obtained by considering (essentially) two cases
(according to the type of reduction modulo ` of your elliptic
curve) : in one case it is easily seen to be exponential in d, the
hard case finally yields a bound which is polynomial in d
(something like O(d ) in my paper, O(d ) after Oesterlé, I
suspect one can lower it to O(d )). Unsatisfying!

3. If you want a bound depending on the field K  (instead of just
the degree of K), you can obtain a bound like O(size of the
residue field of K  of smallest order).

8 6

2



 

 

       

Parent's Kamienny Method: Nailing Down
S(3)

By Oesterle, we know that .  

In 1999, Parent made Kamienny's method applied to J (p) explicit
and computable, and used this to bound S(3) explicitly, showing that 

   This makes crucial use of Kato's theorem toward
the Birch and Swinnerton-Dyer conjecture!  

In subsequent work, Parent rules out 17 finally giving the answer:

The list of groups E(K)  that occur for K  cubic is still unknown.
 However, using the notion of trigonality of modular curves (having a
degree 3 map to P ), [Jeon, Kim, and Schweizer, 2004] showed that
the groups that appear for infinitely many j-invariants are:

    Z/mZ           for m<=16, 18, 20
    Z/2Z x Z/2vZ   for v<=7

Remark: Parent also gave an explicit bound for the torsion of order powers of prime numbers in his thesis...

 

       

What about Degree 4?

By Oesterle, we know that .

Recently, Jeon, Kim, and Park (2006), again used gonality (and big
computations with Singular), to show that the groups that appear for
infinitely many j-invariants for curves over quartic fields are:

    Z/mZ           for m<=18, or m=20, m=21, m=22, m=24
    Z/2Z x Z/2vZ   for v<=9
    Z/3Z x Z/3vZ   for v<=3
    Z/4Z x Z/4vZ   for v<=2
    Z/5Z x Z/5Z 
    Z/6Z x Z/6Z

max(S(3)) 7 ! 3

1

max(S(3)) 7: ! 1

 S(3) 2; ; ; ; 1; 3g  = f 3 5 7 1 1

tor
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max(S(4)) 7 ! 9



Question: Is 

 
       

Explicit Kamienny-Parent for 

To attack the above unsolved problem about S(4), we made Parent's
(1999) approach very explicit in case d  and `  (he gives a
general criterion for any d...).  One arrives that the following (where t
is a certain explicitly computed element of the Hecke algebra).    With
` ; , we have (1 ) 5.

NOTES:

1. This looks pretty crazy, but this is really just a way of expressing
the condition that a certain map is a formal immersion. 

2. As p gets large, there are a LOT of 4-tuples of elements of the
Hecke algebra to test for independence mod 2.

3. Here is code that implements this algorithm: code.sage

 
       

S(4) 2; ; ; ; 1; 3; 7g? = f 3 5 7 1 1 1

d  = 4

= 4 = 2

= 2 d = 4 + `d=2 2 = 2



Running the Algorithm
After a few days we find that the criterion is not satisfied for
p 9; 1, but it is for . 

Conclusion:

Theorem (Kamienny, Stein):  . 

It's unclear to me, but Kamienny seems to also have a proof that rules
out 29; 1, which would nearly answer the big question for degree 4. 

 
       

Last 2-3 Days...
A complete solution!?!

Theorem (Kamienny, Stein Stoll): 

Proofs uses that rank(J (p))  for the above p, informed by
calculations from [Conrad-Edixhoven-Stein] about the arithmetic of
J (p) for small p, so one can use much more direct geometric
arguments.    This also involves some large computations with Magma
on explicit algebraic curves, e.g., Riemann-Roch spaces, enumerating
and reducing divisors, etc., built on top of Florian Hess's function
fields package.  Stoll: "Finding the degree 4 points takes about 3 hours
[...]  The other problem is that Magma crashes once in a while when
turning a point into a place. This will be fixed in the next release, but
for now, one may have to try the actual checking a few times until it
runs through."  

Related Conjecture (Stein): J (p)(Q)  is generated by differences
of rational cusps.

(See extensive data about this conjecture in Conrad-Edixhoven-Stein.)

 
       

Future Work

1. Determine if J (p)(Q)  is cuspidal.
2. Make the algorithm for showing that  much

more efficient.  Right now it takes way too long.

= 2 3 37 7 ! p ! 9

max(S(4)) 1 ! 3

3

S(4) 2; ; ; ; 1; 3; 7g = f 3 5 7 1 1 1

1 = 0

1

1 tor

1 tor

max(S(4)) 1 ! 3



3. Repeat my calculations, but for d  and hope to replace the
Oesterle bound of  by

And then?
4. Isogeny degrees -- still an open problem even over quadratic

fields!  
Cremona (a few minutes ago on Google Buzz): "I'm also
very interested in the corresponding question for X (`),
so we know what the possible prime degrees of isogenies
are for a given field (or degree). I had some interesting
correspondence about this with Parent about 6 months ago;
he says that is still wide open for quadratic fields!    My
student Kimi is implementing isogenies of degree 11, 17,
19 (the genus 1 cases) in Sage (work in progress). But to
have a genuine isogeny_class() function over any non-Q
number fields we need a bound."   and
Mazur (email): "It would be also interesting if you could,
say, rule out a few  primes p occurring as p-isogenies over
such fields (for non CM curves)?"

float((1+2^(5/2))^2) 

       44.313708498984766
previous_prime(275) 

       271
 

       

= 5
max(S(5)) 71 ! 2

max(S(5)) 3 : ! 4   (or something close)

0


