

Rational Points on Curves of Higher Genus

Michael Stoll
Universität Bayreuth

Pacific Norhwest Number Theory Conference Simon Fraser University, Burnaby

May 8, 2010

The Problem

Let C be a (geometrically integral) curve defined over \mathbb{Q} .

(We take \mathbb{Q} for simplicity; we could use an arbitrary number field instead.)

Problem.

Determine $C(\mathbb{Q})$, the set of rational points on C!

Since a curve and its smooth projective model only differ in a computable finite set of points, we will assume that C is smooth and projective.

The focus of this talk is on the practical aspects, in the case of genus ≥ 2 .

The Structure of the Solution Set

The structure of the set $C(\mathbb{Q})$ is determined by the genus g of C. ("Geometry determines arithmetic")

- g=0: Either $C(\mathbb{Q})=\emptyset$, or if $P_0\in C(\mathbb{Q})$, then $C\cong \mathbb{P}^1$. The isomorphism parametrizes $C(\mathbb{Q})$.
- g=1: Either $C(\mathbb{Q})=\emptyset$, or if $P_0\in C(\mathbb{Q})$, then (C,P_0) is an elliptic curve. In particular, $C(\mathbb{Q})$ is a finitely generated abelian group. $C(\mathbb{Q})$ is described by generators of the group.
- $g \ge 2$: $C(\mathbb{Q})$ is finite. $C(\mathbb{Q})$ is given by listing the points.

Genus Zero and One

For curves C of genus 0, the problem is completely solved: We can decide if C has rational points or not, and if so, they can be parametrized by a map $\mathbb{P}^1 \to C$.

If C has genus 1, the situation is less favorable.

- Methods are not known to always work (but do so in principle modulo standard conjectures)
- Smallest points can be very large
- If $P_0 \in C(\mathbb{Q})$, then (C, P) is an elliptic curve. Finding the rank of $C(\mathbb{Q})$ can be hard.
- Descent methods are available that work in many cases.

Higher Genus — Finding Points

Now consider a curve C of genus $g \ge 2$. The first task is to decide whether C has any rational points.

If there is a rational point, we can find it by search.
Unlike the genus 1 case, we expect points to be small:

Conjecture (A consequence of Vojta's Conjecure: Su-Ion Ih). If $\mathcal{C} \to B$ is a family of higher-genus curves, then there is κ such that

$$H_{\mathcal{C}}(P) \ll H_B(b)^{\kappa}$$
 for all $P \in \mathcal{C}_b(\mathbb{Q})$

if the the fiber \mathcal{C}_b is smooth.

Examples

Consider a curve

$$C: y^2 = f_6 x^6 + \dots + f_1 x + f_0$$

of genus 2, with $f_j \in \mathbb{Z}$.

Then the conjecture says that there are γ and κ such that the x-coordinate p/q of any point $P \in C(\mathbb{Q})$ satisfies

$$|p|, |q| \le \gamma \max\{|f_0|, |f_1|, \dots, |f_6|\}^{\kappa}$$
.

Example (Bruin-St 2008).

Consider curves of genus 2 as above such that $f_j \in \{-3, -2, \dots, 3\}$.

If C has rational points,

then there is one whose x-coordinate is p/q with $|p|, |q| \le 1519$.

We will call these curves small genus 2 curves.

Local Points

If we do not find a rational point on C, we can check for local points (over \mathbb{R} and \mathbb{Q}_p). We have to consider primes p that are small or sufficiently bad.

Example (Poonen-St).

About 84–85 % of all curves of genus 2 have points everywhere locally. **Conjecture.**

0% of all curves of genus 2 have rational points.

So in many cases, checking for local points will not suffice to prove that $C(\mathbb{Q}) = \emptyset$.

Example (Bruin-St).

Among the 196 171 isomorphism classes of small genus 2 curves, there are 29 278 that are counterexamples to the Hasse Principle.

Coverings

To resolve these cases, we can use coverings.

Example.

Consider $C: y^2 = g(x)h(x)$ with deg g, deg h not both odd.

Then $D: u^2 = g(x), v^2 = h(x)$

is an unramified $\mathbb{Z}/2\mathbb{Z}$ -covering of C.

Its twists are $D_d: du^2 = g(x), dv^2 = h(x), d \in \mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^2$.

Every rational point on C lifts to one of the twists, and there are only finitely many twists such that D_d has points everywhere locally.

Example

Consider the genus 2 curve

$$C: y^2 = -(x^2 + x - 1)(x^4 + x^3 + x^2 + x + 2) = f(x).$$

C has points everywhere locally

$$(f(0) = 2, f(1) = -6, f(-2) = -3 \cdot 2^2, f(18) \in (\mathbb{Q}_2^{\times})^2, f(4) \in (\mathbb{Q}_3^{\times})^2).$$

The relevant twists of the obvious $\mathbb{Z}/2\mathbb{Z}$ -covering are among

$$du^2 = -x^2 - x + 1$$
, $dv^2 = x^4 + x^3 + x^2 + x + 2$

where d is one of 1, -1, 19, -19. (The resultant is 19.)

If d < 0, the second equation has no solution in \mathbb{R} ;

if d = 1 or 19, the pair of equations has no solution over \mathbb{F}_3 .

So there are no relevant twists, and $C(\mathbb{Q}) = \emptyset$.

Descent

More generally, we have the following result.

Descent Theorem (Fermat, Chevalley-Weil, ...).

Let $D \xrightarrow{\pi} C$ be an unramified and geometrically Galois covering.

Its twists $D_{\xi} \stackrel{\pi_{\xi}}{\to} C$ are parametrized by $\xi \in H^{1}(\mathbb{Q}, G)$

(a Galois cohomology set), where ${\cal G}$ is the Galois group of the covering.

We then have the following:

- $C(\mathbb{Q}) = \bigcup_{\xi \in H^1(\mathbb{Q}, G)} \pi_{\xi} (D_{\xi}(\mathbb{Q})).$
- $\mathsf{Sel}^{\pi}(C) := \{ \xi \in H^1(\mathbb{Q}, G) : D_{\xi} \text{ has points everywhere locally} \}$ is finite (and computable). This is the Selmer set of C w.r.t. π .

If we find $Sel^{\pi}(C) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.

Abelian Coverings

A covering $D \to C$ is abelian if its Galois group is abelian.

Let J be the Jacobian variety of C. Assume for simplicity that there is an embedding $\iota:C\to J$.

Then all abelian coverings of C are obtained from n-coverings of J:



We call such a covering an n-covering of C; the set of all n-coverings with points everywhere locally is denoted $Sel^{(n)}(C)$.

Practice — Descent

It is feasible to compute $Sel^{(2)}(C)$ for hyperelliptic curves C (Bruin-St).

This is a generalization of the $y^2 = g(x)h(x)$ example, where all possible factorizations are considered simultaneously.

Example (Bruin-St).

Among the small genus 2 curves, there are only 1 492 curves C without rational points and such that $Sel^{(2)}(C) \neq \emptyset$.

A Conjecture

Conjecture 1.

If $C(\mathbb{Q}) = \emptyset$, then $Sel^{(n)}(C) = \emptyset$ for some $n \ge 1$.

Remarks.

- In principle, $Sel^{(n)}(C)$ is computable for every n. The conjecture therefore implies that " $C(\mathbb{Q}) = \emptyset$?" is decidable. (Search for points by day, compute $Sel^{(n)}(C)$ by night.)
- The conjecture implies that the Brauer-Manin obstruction is the only obstruction against rational points on curves. (In fact, it is equivalent to this statement.)

An Improvement

Assume we know generators of the Mordell-Weil group $J(\mathbb{Q})$ (a finitely generated abelian group again). Then we can restrict to n-coverings of J that have rational points.

They are of the form $J \ni P \mapsto nP + Q \in J$, with $Q \in J(\mathbb{Q})$; the shift Q is only determined modulo $nJ(\mathbb{Q})$.

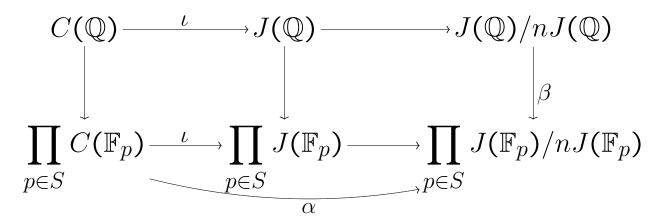
The set we are interested in is therefore

$$\{Q + nJ(\mathbb{Q}) : (Q + nJ(\mathbb{Q})) \cap \iota(C) \neq \emptyset\} \subset J(\mathbb{Q})/nJ(\mathbb{Q}).$$

We approximate the condition by testing it modulo p for a set of primes p.

The Mordell-Weil Sieve

Let S be a finite set of primes of good reduction for C. Consider the following diagram.



We can compute the maps α and β . If their images do not intersect, then $C(\mathbb{Q}) = \emptyset$. (Scharaschkin, Flynn, Bruin-St)

Poonen Heuristic/Conjecture:

If $C(\mathbb{Q}) = \emptyset$, then this will be the case when n and S are sufficiently large.

Practice — Mordell-Weil Sieve

A carefully optimized version of the Mordell-Weil sieve works well when $r = \operatorname{rank} J(\mathbb{Q})$ is not too large.

Example (Bruin-St).

For all the 1492 remaining small genus 2 curves C, a Mordell-Weil sieve computation proves that $C(\mathbb{Q}) = \emptyset$. (For 42 curves,

we need to assume the Birch and Swinnerton-Dyer Conjecture for J.)

Note: It suffices to have generators of a subgroup of $J(\mathbb{Q})$ of finite index prime to n.

This is easier to obtain than a full generating set, which is currently possible only for genus 2.

A Refinement

Taking n as a multiple of N, the Mordell-Weil sieve gives us a way of proving that a given coset of $NJ(\mathbb{Q})$ does not meet $\iota(C)$.

Conjecture 2.

If $(Q + NJ(\mathbb{Q})) \cap \iota(C) = \emptyset$, then there are $n \in N\mathbb{Z}$ and S such that the Mordell-Weil sieve with these parameters proves this fact.

So if we can find an N that separates the rational points on C, i.e., such that the composition $C(\mathbb{Q}) \stackrel{\iota}{\to} J(\mathbb{Q}) \to J(\mathbb{Q})/NJ(\mathbb{Q})$ is injective, then we can effectively determine $C(\mathbb{Q})$ if Conjecture 2 holds for C:

For each coset of $NJ(\mathbb{Q})$, we either find a point on C mapping into it, or we prove that there is no such point.

Chabauty's Method

Chabauty's method allows us to compute a separating N when the rank r of $J(\mathbb{Q})$ is less than the genus g of C.

Let p be a prime of good reduction for C. There is a pairing

$$\Omega_J^1(\mathbb{Q}_p) \times J(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p, \qquad (\omega, R) \longmapsto \int_0^R \omega = \langle \omega, \log R \rangle.$$

Since rank $J(\mathbb{Q}) = r < g = \dim_{\mathbb{Q}_p} \Omega^1_J(\mathbb{Q}_p)$, there is a differential $0 \neq \omega_p \in \Omega_C(\mathbb{Q}_p) \cong \Omega^1_J(\mathbb{Q}_p)$ that kills $J(\mathbb{Q}) \subset J(\mathbb{Q}_p)$.

Theorem.

If the reduction $\bar{\omega}_p$ does not vanish on $C(\mathbb{F}_p)$ and p > 2, then each residue class mod p contains at most one rational point.

This implies that $N = \#J(\mathbb{F}_p)$ is separating.

Practice — Chabauty + MW Sieve

When g=2 and r=1, we can easily compute $\bar{\omega}_p$.

Heuristically (at least if J is simple), we expect to find many p satisfying the condition.

In practice, such p are easily found; the Mordell-Weil sieve computation then determines $C(\mathbb{Q})$ very quickly.

Example (Bruin-St).

For the 46 436 small genus 2 curves with rational points and r = 1, we determined $C(\mathbb{Q})$. The computation takes about 8–9 hours.

Larger Rank

When $r \geq g$, we can still use the Mordell-Weil Sieve to show that we know all rational points up to very large height.

For smaller height bounds, we can also use lattice point enumeration.

Example (Bruin-St).

Unless there are points of height $> 10^{100}$, the largest point on a small genus 2 curve has height 209 040.

Note.

For these applications, we need to know generators of the full Mordell-Weil group. Therefore, this is currently restricted to genus 2.

Integral Points

If C is hyperelliptic, we can compute bounds for integral points using Baker's method.

These bounds are of a flavor like $|x| < 10^{10^{600}}$.

If we know generators of $J(\mathbb{Q})$, we can use the Mordell-Weil Sieve to prove that there are no unknown rational points below that bound. This allows us to determine the set of integral points on C.

Example (Bugeaud-Mignotte-Siksek-St-Tengely 2008).

The integral solutions to

$$\begin{pmatrix} y \\ 2 \end{pmatrix} = \begin{pmatrix} x \\ 5 \end{pmatrix}$$

have $x \in \{0, 1, 2, 3, 4, 5, 6, 7, 15, 19\}.$

Genus Larger Than 2

The main practical obstacle is the determination of $J(\mathbb{Q})$:

- Descent is only possible in special cases.
- There is no explicit theory of heights.

Example (Poonen-Schaefer-St 2007).

In the course of solving $x^2 + y^3 = z^7$, one has to determine the set of rational points on certain twists of the Klein Quartic. Descent on J is possible here; Chabauty+MWS is successful.

Example (St 2008).

The curve $X_0^{\rm dyn}(6)$ classifying 6-cycles under $x\mapsto x^2+c$ has genus 4. Assuming BSD for its Jacobian, we can show that r=3; Chabauty's method then allows to determine $X_0^{\rm dyn}(6)(\mathbb{Q})$.

Genus Larger Than 2 (cont.)

Example (Siksek-St 2009).

Primitive arithmetic progressions of type a^2, b^2, c^2, d^5 correspond to rational points on several genus 4 hyperelliptic curves. Descent on C and J plus Chabauty and a little bit of MWS are successful: The only such arithmetic progression is 1, 1, 1, 1.

Example (Bruin-Poonen-St 2010).

Consider the smooth plane quartic curve

$$x^3z + x^2y^2 + 2x^2yz + 3x^2z^2 + xy^3 + 3xy^2z + 4xyz^2 + 3xz^3 + y^3z + 3y^2z^2 + 3yz^3 + z^4 = 0$$

(It has small discriminant, but is not otherwise special.)

2-descent on J can be done

(involves computing class and unit group of a degree 28 number field).

It turns out that $J(\mathbb{Q}) \cong \mathbb{Z}/51\mathbb{Z}$, and $C(\mathbb{Q})$ can easily be found.