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Millennium Prize Problems

“To celebrate mathematics in the new millen-

nium, CMI identifies seven old and important

mathematics questions that resisted all past

attempts to solve them. Clay Mathematics In-

stitute designates the $7 million prize fund for

their solution, with $1 million allocated to each

Millennium Prize Problem.

The Clay Mathematics Institute (CMI) is a pri-

vate, non-profit foundation, dedicated to in-

crease and to disseminate mathematical knowl-

edge. The formation of CMI grew from the

vision of Boston businessman Landon T. Clay

working together with mathematician Arthur

M. Jaffe: mathematics embodies the quintessence

of human knowledge; mathematics reaches into

every field of human endeavor; and the fron-

tiers of mathematical understanding evolve to-

day in deep and unfathomable ways.



Fundamental advances in mathematical knowl-

edge go hand in hand with discoveries in all

fields of science.

Technological applications of mathematics un-

derpin our daily life, including our ability to

communicate and to travel, our health and

well-being, our security, and our global pros-

perity.

The evolution of mathematics today will re-

main a central ingredient in shaping our world

tomorrow. To appreciate the scope of mathe-

matical truth challenges the capabilities of the

human mind.

CMI attempts to further the beauty, the power,

and the universality of mathematical thought.

Toward this end, CMI currently pursues a series

of programs.”
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6. RIEMANN HYPOTHESIS

Some numbers have the special property that

they cannot be expressed as the product of two

smaller numbers, e.g., 2, 3, 5, 7, etc. Such

numbers are called prime numbers, and they

play an important role, both in pure mathe-

matics and its applications.

The distribution of such prime numbers among

all natural numbers does not follow any regular

pattern, however the German mathematician

G.F.B. Riemann (1826 - 1866) observed that

the frequency of prime numbers is very closely

related to the behavior of an elaborate function

ζ(s) called the Riemann Zeta function.



The Riemann hypothesis asserts that all inter-

esting solutions of the equation

ζ(s) = 0

lie on a straight line. This has been checked for

the first 1,500,000,000 solutions. A proof that

it is true for every interesting solution would

shed light on many of the mysteries surround-

ing the distribution of prime numbers.





More about the RIEMANN HYPOTHESIS

Ask any professional mathematician to name

the most important unsolved problem of math-

ematics and the answer is virtually certain to

be, “the Riemann Hypothesis.”

Keith Devlin – The Millennium Problems –

2002



On the Number of Prime Numbers less

than a Given Quantity.

(Ueber die Anzahl der Primzahlen unter

einer gegebenen Grösse.)

Bernhard Riemann

[Monatsberichte der Berliner Akademie,

November 1859.]

Translated by David R. Wilkins

”One now finds indeed approximately this num-

ber of real roots within these limits, and it is

very probable that all roots are real. Certainly

one would wish for a stricter proof here; I have

meanwhile temporarily put aside the search for

this after some fleeting futile attempts, as it

appears unnecessary for the next objective of

my investigation.”
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The Holy Grail

The Holy Grail in mathematics is the Riemann

Hypothesis. The problem, formulated in 1859

by Bernard Riemann, one of the extraordinary

mathematical talents of the 19th century, makes

a very precise connection between two seem-

ingly unrelated objects, and if solved, would

tell us something profound about the nature

of mathematics and, in particular, prime num-

bers.

Why is the Riemann Hypothesis so important?

Why is it the problem that mathematicians

would make a pact with the devil to solve?

There are a number of great old unsolved prob-

lems in mathematics but none of them have

quite the stature of the Riemann Hypothesis –

for a variety of reasons both mathematical and

cultural.



In common with the other old great unsolved

problems, the Riemann Hypothesis is clearly

very hard. It has resisted solution for 150 years

and has been attempted by many of the great-

est minds in mathematics.

A feature of the mathematics related to the

Riemann Hypothesis is that certain phenomena

that appear likely true and that can be tested

in part computationally are false but only false

past computational range.



Accept for a moment that the Riemann Hy-

pothesis is the greatest unsolved problem in

mathematics and that the greatest achieve-

ment any young graduate student could aspire

to is to solve it. Why isn’t it better known?

Why hasn’t it permeated public consciousness?

(The way black holes and unified field theory

have, at least to some extent.)

Part of the reason for this is it is hard to state

precisely. It requires most of an undergradu-

ate degree in mathematics to be familiar with

enough of the mathematical objects to even

accurately state the Riemann Hypothesis. Our

suspicion is that only a minority of professional

mathematicians –perhaps a quarter – can state

the Riemann Hypothesis if asked.



The Liouville λ function and RH

For <s > 1, the Riemann zeta function is de-

fined by

ζ(s) =
∞
∑

n=1

1

ns
, (1)

The Riemann Hypothesis is usually given as:

the nontrivial zeros of the Riemann zeta func-

tion lie on the line =s > 1.

(There is already, of course, the problem that

the above series doesn’t converge on this line

so one is already talking about an analytic con-

tinuation.)



Our immediate goal is to give as simple an

(equivalent) statement of the Riemann Hypoth-

esis as we can.

Loosely the statement is ” the number of in-

tegers with an even number of prime factors

is the same as the number of integers with an

odd number of prime factors.”

This is made precise in terms of the Liouville

Function.

The Riemann Hypothesis is equivalent to the

statement that an integer has equal probability

of having an odd number or an even number of

distinct prime factors, a statement with some

intuitive appeal.



The Liouville Function gives the parity of the

number of prime factors.

The Liouville Function is defined by

λ(n) = (−1)ω(n)

where ω(n) is the number of distinct prime fac-

tors in n with multiple factors counted multiply.

So

λ(1) = λ(2) = λ(5) = λ(7) = λ(8) = −1

and

λ(4) = λ(6) = λ(9) = λ(10) = 1.

(Alternatively one can define λ as the com-

pletely multiplicative function with λ(p) = −1

for any prime p.)



The connection between the Liouville function

and the Riemann Hypothesis were explored by

Landau in his doctoral thesis of 1899.

Theorem 1 The Riemann Hypothesis is equiv-

alent to

γ(n) := λ(1) + λ(2) + · · · + λ(n) � n1/2+ε,

for every positive ε.

This is saying that the sequence

{λ(i)}i=1 := {1,−1,−1,1,−1, . . .}

behaves more-or-less like a random sequence of

of plus and minus ones in that the difference

between the number of plus one’s and minus

ones is not much larger that the square root

of the number of terms.



The proof of the equivalence is relatively easy.
We give the proof that the growth of γ(n) im-
plies the Riemann Hypothesis.

proof It is well known (Hardy and Wright p
255) and not very hard that

ζ(2s)

ζ(s)
=

1
∏

p prime(1 + p−s)

= 1 − 1

2s
− 1

3s
+

1

4s
− 1

5s
− · · ·

=
∞
∑

n=1

λ(n)

ns
.

and we have

ζ(2s)

ζ(s)
:=

∫ ∞

0
x−sdW (x)

where W is the Stieltjes measure defined as
follows. W is a step function, W (0) = 0 and
W has a jump of λ(n) at n. Also

W (n − ε) + W (n + ε)

2
=

1

2
λ(n) +

n−1
∑

j=1

λ(j).



Now, if, for some δ > 0

|W (x)| � xδ

then the above integral actually converges for

<(s) > δ. So

ζ(2s)

ζ(s)
= s

∫ ∞

0
W (x)x−s−1dx

continues analytically for <(s) > δ and thus

ζ(s) can’t vanish here.



Landau in his doctoral thesis of 1899 also proved

the following.

Theorem 2 (Landau)

λ(1) + λ(2) + · · · + λ(n)

n
→ 0

is equivalent to the Prime Number Theorem

This can be made the basis for an elementary

(though not easy)proof of the Prime Number

Theorem.

One also has

Theorem 3 (Landau)

∞
∑

n=1

λ(n)

n

converges is equivalent to the the Prime Num-

ber Theorem.



Turán’s conjecture

Turán conjectured that that for all n

n
∑

i=1

λ(i)

i
> 0.

This would imply the Riemann Hypothesis. How-

ever it is provably false.

Though no actual counterexample was known

til now. It is true at least up to n = 1012 and

is a cautionary example on not trusting the

numbers.

The first place where the sum hits zero is

n = 72196252762111.



Opinions and Quotations

One now finds indeed approximately this

number of real roots within these lim-

its, and it is very probable that all roots

are real. Certainly one would wish for

a stricter proof here; I have meanwhile

temporarily put aside the search for this

after some fleeting futile attempts, as

it appears unnecessary for the next ob-

jective of my investigation.

Bernard Riemann 1859.



If I were to awaken after having slept

for a thousand years, my first question

would be: Has the Riemann hypothesis

been proven?

David Hilbert.



Whoever can prove either the truth or

the falsehood of this conjecture [The

Riemann Hypothesis] will cover himself

in glory.

C. de la Vallee Poussin, 1916.



There have probably been very few at-

tempts at proving the Riemann hypoth-

esis, because, simply, no one has ever

had any really good idea for how to go

about it!.

Atle Selberg.



I believe this to be false. There is

no evidence whatever for it (unless one

counts that it is always nice when any

function has only real roots). One should

not believe things for which there is

no evidence. In the spirit of this an-

thology I should also record my feeling

that there is no imaginable reason why

it should be true. Titchmarsh devised

a method, of considerable theoretical

interest, for calculating the zeros. The

method reveals that for a zero to be

off the critical line a remarkable num-

ber of ’coincidences’ have to happen. I

have discussed the matter with several

people who know the problem in rela-

tion to electronic calculation; they are

all agreed that the chance of finding a

zero off the line in a lifetime’s calcula-

tion is millions to one against.



It looks then as if we may never know.

It is true that the existence of an in-

finity of L-functions raising the same

problems creates a remarkable situa-

tion.

Nonetheless life would be more com-

fortable if one could believe firmly that

the hypothesis is false.

J. Littlewood, 1962.



It wouild be very discouraging if some-

where down the line you could ask a

computer if the Riemann hypothesis is

correct and it said, ’Yes, it is true, but

you won’t be able to understand the

proof.’

Ronald Graham



The failure of the Riemann hypothesis

would create havoc in the distribution

of prime numbers. This fact alone sin-

gles out the Riemann hypothesis as the

main open question of prime number

theory.

E. Bombieri



Mother Nature has such beautiful har-

monies, so you couldn’t say that some-

thing like [the Riemann Hypothesis] is

false.

H. Iwaniec



Right now, when we tackle problems

without knowing the truth of the Rie-

mann hypothesis, it’s as if we have a

screwdriver. But when we have it, it’ll

be more like a bulldozer.

P. Sarnak



You must know that Hardy had a run-

ning feud with God. In Hardy’s view

God had nothing more important to do

than frustrate Hardy.

This led to a sort of insurance pol-

icy for Hardy one time when he was

trying to get back to Cambridge af-

ter a visit to [Herald] Bohr in Den-

mark. The weather was bad and there

was only a small boat available. Hardy

thought there was a real possibility the

boat would sink. So he sent a post-

card to Bohr saying, ”I proved the Rie-

mann Hypothesis. G.H. Hardy.” That

way if the boat sank, everyone would

think that Hardy had proved the Rie-

mann Hypothesis. God could not allow

so much glory for Hardy so he could

not allow the boat to sink.

George Polya



Advice ...

If you want to climb the Matterhorn,

you might first wish to go to Zermat,

where those who have tried are buried

George Polya



...I don’t believe or disbelieve the Rie-

mann Hypothesis. I have a certain amount

of data and a certain amount of facts.

These facts tell me definitely that the

thing has not been settled. Until it’s

been settled it’s a hypothesis, that’s

all. I would like the Riemann Hypoth-

esis to be true, like any decent mathe-

matician, because it’s a thing of beauty,

a thing of elegance, a thing that would

simplify many proofs and so forth, but

that’s all.

A. Ivic



Now, fifty years after the publication of

Riemann’s great paper ”On the num-

ber of prime numbers less than a given

quantity”, we have only just begun to

understand and absorb what Riemann’s

supremely creative imagination produced.

Progress along the path that Riemann

blazed so fearlessly has been hesitant

and slow; and the justly famous hy-

pothesis that lies at the kernel of that

thesis has resisted all efforts at proof.

E. Landau, 1909



So for all practical purposes, the Rie-

mann zeta function does not show its

true colours in the range available by

numerical investigations. You should

go up to the height 1010000 then I would

be much more convinced if things were

still pointing strongly in the direction of

the Riemann Hypothesis. So numerical

calculations are certainly very impres-

sive, and they are a triumph of comput-

ers and numerical analysis, but they are

of limited capacity. The Riemann Hy-

pothesis is a very delicate mechanism.

It works as far as we know for all ex-

isting zeros, but we cannot, of course,

verify numerically an infinity of zeros,

so other theoretical ways of approach

must be found, and for the time being

they are insufficient to yield any posi-

tive conclusion.

A. Ivic



Timeline

1738,1742 Euler and Maclaurin invent

the “Euler-Maclaurin summation”.

1742 Goldbach proposes the Goldbach

Conjecture to Euler in a letter.

* 1792 Gauss proposes the Prime Num-

ber Theorem.

1802 Haros discovers and proves results

concerning the general properties

of Farey Series.

1816 Farey re-discovers Farey series and

is given credit for their invention.

Hardy writes,

“Farey is immortal because he failed

to understand a theorem which

Haros had proved perfectly four-

teen years before .”



1845 Bertrand postulates that for a >

1 there is always a prime that lies

between a and 2a.

* 1850 Chebyshev proves Bertrand’s Pos-

tulate using elementary methods.

* 1859 Riemann publishes his Ueber die

Anzahl der Primzahlen unter einer

gegebenen Grösse in which he pro-

poses the RH.

“One now finds indeed approxi-

mately this number of real roots

within these limits, and it is very

probable that all roots are real.

Certainly one would wish for a

stricter proof here; I have mean-

while temporarily put aside the

search for this after some fleeting

futile attempts, as it appears un-

necessary for the next objective

of my investigation ”



Riemann’s paper contains the func-

tional equation,

π− s
2Γ

(

s

2

)

ζ(s)

= π−1−s
2 Γ

(

1 − s

2

)

ζ(1 − s)

and the formula,

ξ(t) =
1

2
s(s − 1)π− s

2Γ

(

s

2

)

ζ(s)

for s = 1
2 + it.

His work also contains analysis of

the Riemann zeta function.

Some of Riemann’s analysis is over-

looked until it is re-invigourated

by Siegel (see 1932).



* 1885 Stieltjes claims to have proof

of what would later be called the

Mertens Conjecture. His proof is

never published, nor found amongst

his papers posthumously.

The Mertens Conjecture implies

the Riemann Hypothesis. This is

perhaps the first significant failed

attempt at a proof.

1890-1920 Sometime in this range Lin-

delöf proposed the Lindelöf Hy-

pothesis. His hypothesis is weaker

than the actual Hypothesis, and

concerns the distribution of the

zeros of Riemann’s zeta.

It is still unproven.



* 1896 Hadamard and de la Vallée Poussin

independently prove the Prime Num-

ber Theorem. The proof relies on

showing that ζ(s) has no zeros of

the form 1 + it for t ∈ R.

1897 Mertens publishes the Mertens Con-

jecture. (This conjecture is proved

incorrect by Odlyzko and te Riele,

see 1985).

1901 von Koch publishes that the Rie-

mann Hypothesis is equivalent to

the statement that,

π(x) =
∫ x

2

dt

log t
+ O(

√
x log x).



* 1903 Gram calculates the first 15 ze-

ros of ζ(s) on the critical line.

* 1903-1912 Gram, Backlund and Hutchin-

son independently use Euler-Maclaurin

summation to calculate ζ(s) and

to verify the RH for t ≤ 300 (where

s = 1
2 + it).

1912 Littlewood proves that the Mertens

Conjecture implies the RH.

1912 Littlewood proves that π(n) < Li(n)

fails for some n.

1912 Backlund develops a method of

determining the number of zeros

of ζ(s) in the critical strip 0 <

<(s) < 1 up to a given height.

This method is used through 1932.

* 1914 Backlund calculates the first 79

zeros of ζ(s) on the critical line.



* 1914 Littlewood proves that π(n) <

Li(n) fails for infinitely many n.

1914 Bohr and Landau prove that if

N(σ, T ) is the number of zeros of

ζ(s) in the rectangle 0 ≤ =(s) ≤
T, 1

2 ≤ σ ≤ 1 then N(σ, T ) =

O(T ) for any fixed σ.

* 1919 Pólya conjectures that the sum-

matory Liouville function, L(x),

satisfies L(x) ≤ 0 for x ≥ 2. (This

conjecture is proved incorrect by

Haselgrove, see 1958).

1920 Carlson proves the density theo-

rem.

N(σ, T ) = O(T4σ(1−σ)+ε) for any

fixed ε > 0, 1
2 ≤ σ ≤ 1.

1922 Hardy and Littlewood show that

the gRH implies Goldbach’s Weak

Conjecture.



* 1923 Hardy and Littlewood prove that

if the gRH is true, then almost all

even numbers are the sum of two

primes.

Specifically, if E(N) denotes the

number of even integers, n < N ,

that are not the sum of two primes,

then E(N) � N
1
2+ε.

1924 Franel and Landau discover an

equivalence to the RH involving

Farey series. The details are not

complicated, but are rather lengthy.

1925 Hutchinson calculates the first 138

zeros of ζ(s) on the critical line.



1928 Littlewood shows that assuming

the gRH gives bounds on LD(1, χ),

where LD(1, χ) is the Dirichlet L-

series,

LD(1, χ) =
∞
∑

n=1

χD(n)

n
,

and χD is a non-principal number

theoretic character with modulus

D. Littlewood bounds |LD(1, χ)|
as,

1

log logD
� |LD(1, χ)| � log logD.



* 1932 Siegel analyzes Riemanns pri-

vate (and public) papers. He finds

(amongst other things) a formula

for calculating values of ζ(s) that

is more efficient than Euler-Maclaurin

summation. The method is re-

ferred to as the Riemann-Siegel

Formula and is used in some form

up to the present.

Siegel is credited with re-invigourating

Riemann’s most important results

regarding ζ(s).

In the words of Edwards,

“It is indeed fortunate that Siegel’s

concept of scholarship derived from

the older tradition of respect for

the past rather than the contem-

porary style of novelty.”



1934 Speiser publishes that the Rie-

mann Hypothesis is equivalent to

the non-vanishing of

ζ′(s)

in 0 < σ < 1
2.

* 1935 Titchmarsh calculates the first

1,041 zeros of ζ(s) on the critical

line.

1937 Vinogradov proves the following

result related to Goldbach’s Con-

jecture without assuming any vari-

ant of the RH.

Every sufficiently large odd num-

ber, N ≥ N0, is the sum of 3

prime numbers.

1940 Ingham shows that

N(σ, T ) = O(T
31−σ

2−σ log5 T ).



This is still the best known result

for 1
2 ≤ σ ≤ 3

4.

1942 Ingham publishes a paper build-

ing on the conjectures of Mertens

and Pólya. He proves that not

only do both conjectures imply

the truth of the Hypothesis, and

the simplicity of the zeros, but

they also imply a linear depen-

dence between the imaginary parts

of the zeros.

1943 Alan Turing publishes two impor-

tant developments. The first is

an algorithm for computing ζ(s)

(made obsolete by better estimates

to the error terms in the Riemann-

Siegel Formula). The second is a

method for calculating N(T ), and

gives a powerful tool for verifying

the RH up to a given height.



* 1943 Time magazine publishes a short

article detailing a recent failed at-

tempt at a proof of the RH. The

proof was submitted for review

and publication to Transactions

of the American Mathematical So-

ciety by Hans Rademacher and

subsequently withdrawn.

* 1948 Turán shows that if for all N

sufficiently large, the N th partial

sum of ζ(s) does not vanish for

σ > 1 then the Riemann Hypoth-

esis follows.



* 1948 Weil proves that the Riemann

Hypothesis is true for function fields.

* 1949-1950 Selberg and Erdös inde-

pendently find an ‘elementary’ proof

of the Prime Number Theorem.

This adds to the heuristic evidence

supporting the RH (as the RH im-

plies the PNT).

* 1953 Turing calculates the first 1,104

zeros of ζ(s) on the critical line.

* 1955 Skewes bounds the first n such

that π(n) < Li(n) fails. This bound

is improved in the future, but re-

tains the name ‘Skewes number’.

1955 A. Beurling finds the Nyman-Beurling

equivalent form.

* 1956 Lehmer calculates the first 15,000

zeros of ζ(s) on the critical line.



* 1956 Lehmer calculates the first 25,000

zeros of ζ(s) on the critical line.

* 1958 Meller calculates the first 35,337

zeros of ζ(s) on the critical line.

1958 Haselgrove disproves Pólya’s con-

jecture.

1966 Lehman improves Skewes bound.

* 1966 Lehman calculates the first 250,000

zeros of ζ(s) on the critical line.

1967 Hooley proves that Artin’s Con-

jecture holds under the assump-

tion of the eRH. Artin’s Conjec-

ture is,

Every a ∈ Z, where a is not square

and a 6= −1, is a primitive root

modulo p for infinitely many primes

p.



* 1968 Rosser, Yohe and Schoenfeld

calculate the first 3,500,000 ze-

ros of ζ(s) on the critical line.

1968 Louis de Branges makes the first

of his several failed attempts to

prove the RH.

1973 Montgomery conjectures that the

correlation for the zeros of the

zeta function is,

1 − sin2(πx)

(πx)2
.

* 1973 Chen proves that every suffi-

ciently large even integer is the

sum of a prime and the product

of at most two primes.



1974 The probabilistic Solovay-Strassen

algorithm for primality testing is

published. It can be made deter-

ministic under the gRH.

1975 The probabilistic Miller-Rabin al-

gorithm for primality testing is pub-

lished. It runs in polynomial time

under the gRH.

1977 Redheffer shows that the Riemann

Hypothesis is equivalent to the

statement that,

det (Rn) =
n

∑

k=1

µ(k)

where Rn is the n×n matrix with

entries,

(i, j) =







1 if j = 1 or if i|j
0 otherwise.



* 1977 Brent calculates the first 40,000,000

zeros of ζ(s) on the critical line.

* 1979 Brent calculates the first 81,000,001

zeros of ζ(s) on the critical line.

* 1982 Brent, van de Lune, te Riel

and Winter calculate the first 200,000,001

zeros of ζ(s) on the critical line.

1983 van de Lune and te Riele calcu-

late the first 300,000,001 zeros

of ζ(s) on the critical line.

1983 H. Montgomery proves that the

1948 approach of Turán will not

lead to a proof of the RH. This is

because for any positive c < 4
π −1

the N th partial sum of ζ(s) has

zeros in the half-plane σ > 1 +

clog logN
logN .



1984 Ram Murty and Gupta prove that

Artin’s Conjecture holds for in-

finitely many a without assuming

any variant of the Riemann Hy-

pothesis.

* 1985 Odlyzko and te Riele prove that

the Mertens conjecture is false.

They speculate that, while not

impossible, it is improbable that

M(n) = O(n
1
2). The Riemann

Hypothesis is in fact equivalent to

the conjecture, M(n) = O(n
1
2+ε)

* 1986 van de Lune, te Riele and Win-

ter calculate the first 1,500,000,001

zeros of ζ(s) on the critical line.

1986 de Branges publishes another ‘proof’.

1986 Heath-Brown proves that Artin’s

Conjecture fails for at most two

primes.



1988 Odlyzko and Schönhage publish

an algorithm for calculating val-

ues of ζ(s). The Odlyzko-Schönhage

algorithm is currently the most

efficient algorithm for determin-

ing values t ∈ R for which ζ(1
2 +

it) = 0. It uses the fact that

the most computationally com-

plex part of the evaluation using

the Riemann-Siegel formula are

computations of the form,

g(t) =
M
∑

k=1

k−it.

The proposed algorithm makes use

of the FFT to convert sums of

this type into rational functions.

The algorithm presented computes

the first n zeros of ζ(1
2 + it) in

O(n1+ε) (as opposed to O(n
3
2) us-

ing previous methods).



1988 Barratt, Forcade and Pollington

formulate a graph theoretic equiv-

alent to the Riemann Hypothesis

through Redheffer matrices.

* 1989 Odylzko computes 175 million

consecutive zeros around t = 1020.

* 1989 Conrey proves that more than

40% of the nontrivial zeros of ζ(s)

lie on the critical line.

1992 de Branges publishes again.

1993 Julio Alcántara-Bode shows that

the Riemann Hypothesis is true if

and only if the operator Aρ is in-

jective. Aρ is the Hilbert-Schmidt

integral operator on L2(0,1) given

by,

[Aρf ](θ) =

∫ 1

0
ρ

(

θ

x

)

f(x)dx.



1994 de Branges publishes again.

1994 Verjovsky proves that the Riemannn

Hypothesis is equivalent to a prob-

lem about the rate of convergence

of certain discrete measures.

1995 Volchov proves that the state-

ment,
∫ ∞

0
(1−12t2)(1+4t2)−3

∫ ∞
1
2

ln |ζ(σ + it)|

=
π(3 − γ)

32

is equivalent to the Riemann Hy-

pothesis, where γ is Euler’s con-

stant.

1997 Hardy and Littlewood’s 1922 re-

sult concerning Goldbach’s Con-

jecture is improved by Deshouillers,



Effinger, te Riele and Zinoviev.

They prove,

Assuming the gRH, every odd num-

ber greater than 5 can be expressed

as a sum of 3 prime numbers.

2000 Conrey and Li prove that the ap-

proach used by de Branges can-

not lead to proof of the RH.

2000 Bays and Hudson lower Skewes

number.

* 2001 van de Lune calculates the first

10,000,000,000 zeros of ζ(s) on

the critical line.

* 2005 Wedeniwski calculates the first

1,000,000,000,000 zeros of ζ(s)

on the critical line.
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