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Abstract

One of the main successes of the computer algebra community in the last 30 years has been the
discovery of algorithms, called modular methods, that allow to keep the swell of the intermediate ex-
pressions under control. Without these methods, many applications of computer algebra would not be
possible and the impact of computer algebra in scientific computing would be severely limited. Amongst
the computer algebra systems which have emerged in the 70’s and 80’s, Maple and its developers have
played an essential role in this area.

Another major advance in symbolic computation is the development of implementation techniques
for asymptotically fast (FFT-based) polynomial arithmetic. Computer algebra systems and libraries
initiated in the 90’s, such as Magma and NTL, have been key actors in this effort: they increased in a
spectacular manner the range of problems solvable by computer algebra systems.

In this report, we present modpn, a Maple library dedicated to fast arithmetic for multivariate
polynomials. The main objective of modpn is to provide highly efficient routines for supporting the
implementation of modular methods in Maple. We demonstrate in this work that modpn allows us to
re-implement core operations in Maple bringing huge performance increases and offering to Maple the
ability of solving problems which were previously out of reach.

1 The modpn library: Bringing Fast Polynomial Arithmetic into

Maple

With the need for high performance in practical problems, research in symbolic computation has entered
a new era where implementation techniques have become as important as theoretical developments. This
phenomenon is heavily accentuated by the revival and the democratization of parallel architectures. The
previous works in parallel symbolic computing are obsolete due to the emerging programing paradigms and
architectures; they had also a limited impact and, the attention of the symbolic computation community was
withdrawn from parallelism during the last decade. One of the themes of our MITACS project Mathematics
of Computer Algebra and Analysis (MOCAA) is to deliver the mathematical algorithms, implementation
techniques and software for symbolic computation to exploit these new computing resources, from SMP to
multi-core laptops.

In previous work [2, 7, 9] we have investigated the integration of asymptotically fast arithmetic operations
into the computer algebra system AXIOM. Since AXIOM is based today on GNU Common Lisp (GCL),
we took the following approach. We realized highly optimized implementations of our fast routines in C
and made them available to the AXIOM programming environment through the kernel of GCL. Therefore,
library functions written in the AXIOM high-level language could be compiled down to binary code and
then linked against our C code. To observe significant speed-up factors, it was sufficient to enhance existing
AXIOM polynomial types with our fast routines (for univariate multiplication, division, GCD etc.) and call
them in existing generic packages (for instance, for univariate square-free factorization). See [9] for details.

In the present report, we investigate the integration of fast arithmetic operations implemented in C into
Maple. Most of Maple library functions are high-level interpreted code. This is the case for those of the
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Figure 1: ModularGenericSolve2 vs. Triangularize in Z/pZ[X1, X2], pure Maple code

RegularChains library, our main focus here, which could greatly benefit from our fast routines for triangular
decompositions [10, 8]. This integration is made more difficult by the following factors.

First, compiled C code and Maple interpreted code are executed by two different runtime systems.
This leads to data conversion overheads. Secondly, end-user objects must be allocated and de-allocated by
Maple, which implies that most data conversions between C and Maple must be performed on the Maple

side. (Clearly, one would prefer to implement them on the C side, as compiled and optimized code.) The fact
that the Maple language does not enforce “modular programming” or “generic programming” is a third
disadvantage compared to AXIOM integration. Providing a Maple connection-package capable of calling
our efficient C routines will not be sufficient to speed-up all Maple libraries using polynomial arithmetic.
Clearly, high-level Maple code needs to be rewritten to call this connection-package and obtain improved
performances.

With modpn, our Maple library dedicated to fast arithmetic for multivariate polynomials, we attempt
to provide elements of answers to these issues, see [11] for a technical exposition. In this report, we focus on
the significance and outcome of modpn. We start by illustrating the impact of fast polynomial arithmetic on
a simple modular method: we compare its implementations in Maple using both classical arithmetic and
the modpn library, see Section 1. Then, we discuss the design of modpn. In particular we present the software
architecture. The last part of this report is dedicated to performances and impact: we describe how the core
operations of the RegularChains library are being re-implemented such that the modpn library could bring
huge speed-up factors.

2 The impact of fast polynomial arithmetic

To illustrate the speed-up that fast polynomial arithmetic can provide we use a basic example: the solving
of a bivariate polynomial system.

We have realized two implementations of the modular algorithm ModularGenericSolve2 of [8]. One is
based on classical polynomial arithmetic and is written entirely in Maple whereas the other one relies on
fast polynomial arithmetic provided by our C low-level routines. Figure 1 above corresponds to experiments
with the former implementation and Figure 2 with the latter. In each case, the comparison is made versus the
Triangularize command of the RegularChains library [5]. Note that, over finite fields, the Triangularize
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d1 d2 Nsols LexGB FastTriade Triangularize

10 10 50 0.280 0.044 1.276
15 15 100 1.892 0.104 16.181
20 20 150 6.224 0.208 54.183
25 25 200 15.041 4.936 115.479
15 15 100 1.868 0.100 7.492
20 20 200 14.544 0.308 47.683
25 25 300 49.763 1.268 282.249
30 30 400 123.932 1.152 907.649
20 20 150 6.176 0.188 17.105
25 25 300 50.631 1.852 117.195
30 30 450 171.746 1.341 575.647
35 35 600 445.040 7.260 2082.158
25 25 200 14.969 0.564 40.202
30 30 400 124.680 2.132 238.287
35 35 600 441.416 2.300 1164.244

Figure 2: ModularGenericSolve2 using modpn vs. Triangularize in Z/pZ[X1, X2]

command does not use any modular algorithms or fast arithmetic.
The implementation of ModularGenericSolve2 compared in Figure 1 to Triangularize is written purely

in Maple; both functions rely on Maple built-in DAG polynomials. The input systems are random and
dense; the horizontal axes correspond to the partial degrees d1 and d2. We observe that for input systems
of about 400 solutions the speed-up is about 10.

In Figure 2, ModularGenericSolve2 is renamed FastTriade and relies on the modpn library. We also provide
the timings for the command Groebner:-Basis using the plex terms order, since this produces the same
output as ModularGenericSolve2, and Triangularize on our input systems. The invoked Gröbner basis
computation consists of a degree basis (computed by the Maple code implementation of the F4 Algorithm)
followed by a change basis (computed by the Maple code implementation of the FGLM Algorithm). We
observe that for input systems of about 400 solutions the speed-up between ModularGenericSolve2 is now
about 100.

3 The design of modpn

modpn is a platform which supports general polynomial computations, and especially modular algorithms for
triangular decomposition. The high performance of modpn relies on our C package reported in [6, 2, 7, 10],
together with other new functionalities, such as fast interpolation, triangular Hensel lifting and subresultant
chains computations. In addition, modpn also integrates Maple Recursive Dense (RecDen) polynomial
arithmetic package for supporting dense polynomial operations. The calling to C and RecDen routines is
transparent to the Maple users.

We use five polynomial encodings in our implementation, shown in Figure 3. The Maple-Dag and Maple-
Recursive-Dense polynomials are Maple built-in types; the C-Dag, C-Cube and C-2-Vector polynomials are
written in C. Each encoding is adapted to certain applications; we switch between different representations at
run-time. For instance the C-Dag representation supports computations with straight-line programs in the
triangular Hensel lifting whereas the C-Cube representation supports multi-dimensional FFT computations
for fast multivariate evaluation and interpolation.

The efficiency of our C routines follows from a variety of code optimization techniques. For instance, in
order to optimize cache locality, while performing evaluation / interpolation, we transpose the data of our
C-cube polynomials, such that every single evaluation / interpolation pass goes through a block of contiguous
memory.
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Figure 3: The polynomial data representations.

4 Performances and impact

Based on the modpn library, we have developed a new module of the RegularChains library where we have
re-implemented core operations such as polynomials GCDs modulo a regular chain or invertibility test of a
polynomial modulo a regular chain. For these operations, we have transformed the original algorithms of [12]
in order to create opportunities for using fast polynomial arithmetic. We report on an example below.

For a prime number p, we consider a pair of trivariate polynomials F1, F2 ∈ Z/pZ[X1, X2, X3] of total
degrees d1, d2. We “solve” the system F1 = F2 = 0 by computing the resultant R of F1 and F2 w.r.t. X3 and
the GCD of F1 and F2 w.r.t. the square-free part of R. We compared our code (FastTriangularize) to the
Triangularize function of the Maple RegularChains package. In Magma [1], there are several ways to
obtain similar outputs: either by a triangular decomposition in K(X1)[X2, X3] (triangular decompositions
in Magma require the ideal to have dimension zero) or by computing the GCD of the input polynomials
modulo their resultant (assuming that this resultant is irreducible). Table 1 summarizes the timings (in
seconds) obtained on random dense polynomials by the approaches above (in the same order). Our new
code performs significantly better than all other ones. For completeness, we add that on these examples,
computing a lexicographic Gröbner basis in K[X1, X2, X3] in Magma takes time similar to that of the
triangular decomposition.

d1 d2 Maple Magma

Triangularize FastTriangularize Triangular decomposition Resultant + GCD

2 4 0.3 0.06 0.03 0.01
4 4 1.4 0.15 0.03 0.3
6 4 25 0.27 0.7 12
8 4 257 0.52 6.9 155
10 4 1933 1.02 46.7 1012

Table 1: Solving two equations in three variables

5 Conclusion

To our knowledge, modpn is the first library making FFT/TFT-based multivariate arithmetic available to
Maple end users. As illustrated in this short report, this can improve the implementation of modular algo-
rithms in a spectacular manner. We are currently re-implementing the core operations of the RegularChains
library by means of such algorithms creating opportunities for using the modpn library.
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