
Abstract Matrix Arithmetic

Alan P. Sexton and Volker Sorge∗

School of Computer Science
University of Birmingham

www.cs.bham.ac.uk/∼aps|∼vxs

Stephen M. Watt
Computer Science Department
University of Western Ontario

www.csd.uwo.ca/∼watt

ABSTRACT
We present an approach to basic arithmetic between ab-
stract matrices, i.e., matrices of symbolic dimension with un-
derspecified components. We define a simple basis function
that enables the representation of abstract matrices com-
posed of arbitrary regions in a single term that supports
matrix addition and multiplication by regular arithmetic on
terms. This can, in particular, be exploited to obtain general
arithmetic closure properties for classes of structured matri-
ces. We also describe an approach using alternative basis
functions that allow more compact expressions and admit
additional arithmetic simplifications.

1. INTRODUCTION
It is everyday mathematical practice to represent matrices
in an abstract way with symbolic dimensions and containing
underspecified parts described by the use of ellipses. While
reasoning about matrices in this form is mathematically rou-
tine, there is very little automated support for it. In earlier
work we have investigated the problem of representing ab-
stract matrices with certain entries given by expressions and
others given by interpolating ellipses [4, 5]. Their analysis
included determining conditions for boundaries between re-
gions and general expressions for elements within regions of
such matrices and has led to a representation that made ab-
stract matrices available as a template for concrete matrices
with fully specified dimensions and entries.

In this paper we investigate the problem of performing arith-
metic on abstract matrices with arbitrary regions of sym-
bolic size. The main challenge is treating the multiple cases
that arise when the relation between the sizes of the regions
is not known. Consider for example two 2×2 block matrices

A =

»
A1 A2

A3 A4

–
B =

»
B1 B2

B3 B4

–

of compatible symbolic dimension, for which the sizes of
the blocks Ai, Bi are again given symbolically but are not
necessarily compatible. That is, the relationship between
the horizontal and vertical extensions of the blocks in matrix
A to those in matrix B is undefined. Just computing A + B

∗The author’s work was supported in parts by the Transna-
tional Access Program of the Research Institute for Sym-
bolic Computation (RISC), Hagenberg, Austria.

leads to a number of cases for the different possible overlaps
of blocks that can be schematically depicted as:

(a)

» –
(b)

2
4

3
5 (c)

» –
(d)

2
4

3
5

In a näıve approach we could symbolically represent the sum
as a piecewise function consisting of one case for schema (a),
two cases each for (b) and (c), and four cases for (d).

As an effective alternative to this näıve approach we intro-
duce a class of basis functions that enables a straightforward
representation of abstract matrices as single sums, where
each summand represents one region given as the region en-
try together with a coefficient consisting of products of basis
functions representing the region boundaries. This allows
us to define addition and multiplication for abstract matri-
ces directly via the corresponding operations on the explicit
sums. The different cases of how regions can be combined
is given as a product of basis functions in a single explicit
formula and no longer needs to be considered discretely in
a piecewise function.

This gives rise to a natural way of executing matrix oper-
ations and we demonstrate how matrix multiplications can
effectively be computed symbolically in a form commonly
known from textbooks. We will show how our representa-
tion allows us to regain information on the structure of a
result matrix in a well defined computational manner. This
can in particular be exploited to show general arithmetic
closure properties for classes of structured matrices.

There are certain cases in which the näıve, case oriented
approach will yield a number of cases factorial in the number
of matrix components involved in the computation. In such
cases, our approach reduces this to a number of coefficients
exponential in the number of components. To address this
issue, we present the first steps towards an alternative basis
function that, in many cases, reduces this complexity to
linear.

Our work is related to previous work by Fateman in Mac-
syma [1], in which indefinite matrices can be subjected to
some basic algebraic manipulations. While his matrices are
indefinite in size, their elements are fixed to one particu-
lar functional expression and cannot be of arbitrary com-
position. The work is also similar in spirit to earlier work
by Watt [6, 7], which presented algorithms for GCD and

factorization of polynomials with terms of symbolic degree,
as well as to work by Knauers and Schneider [3, 2] on in-
definite symbolic summation using unspecified sequences of
summands.

2. BACKGROUND
In this work we are concerned with doing arithmetic on ab-
stract matrices with underspecified terms and symbolic di-
mension. We assume we have available appropriately parsed
and constructed abstract matrix structures on which to op-
erate. In [5] we have presented a parsing procedure for such
abstract matrices. In this section we give a brief introduc-
tion to some of the concepts introduced in [5], which are a
necessary prerequisite for this paper. Moreover, we simplify
some of the concepts to a level sufficient for the problem
at hand. We also omit formal definitions here and instead
illustrate the major concepts using the following matrix as
a running example:

A =

2
666666664

a11 · · · a1n 0
. . .

...
ann

b11 · · · b1m

. . .
...

0 bmm

3
777777775

(1)

The general idea of the parsing procedure is to represent an
abstract matrix as a set of regions.

Region — A region is a closed polygonal area that can be
homogeneously interpolated by a single term. For example,
Matrix A contains four regions: one triangular region with
terms of the form aij , one triangular region containing bij ,
and two 0 regions, one triangular and one rectangular. Re-
gions are related to each other by their relative positions in
the overall matrix and are constrained by the relative lengths
of their boundaries. Boundaries can be given explicitly by
concrete terms and ellipses or implicitly by the boundaries
of neighbouring regions or of the matrix. A region is given
in terms of its boundaries, its relative position with respect
to other regions in the matrix, and its content in the form
of a term schema and functions that interpolate the index
variables.

Syntax — The parsing procedure works with respect to a
well defined input syntax for abstract matrices. A matrix
can contain concrete terms, vertical, horizontal, diagonal
and antidiagonal ellipses, as well as fill terms. Ellipses have
to be bounded by concrete terms on both sides and diagonal
and antidiagonal ellipses are always interpreted to be at a
45◦ angle. For example in matrix A the upper left triangle
consists of one horizontal, one vertical and one diagonal el-
lipsis and is necessarily equilateral as the diagonal is at a
45◦ angle. Fill terms are understood to homogeneously fill a
region up to the given boundaries. In A we have two regions
given by fills terms, both 0.

Ellipsis Lengths — Ellipses in an abstract matrix can be
given explicitly by concrete terms and ellipses or implicitly
by the boundaries of neighbouring regions. Each ellipsis in
a matrix has associated integer constraint variables, repre-
senting their relative vertical and horizontal extension, plus

explicit constraint variables for height and width. The vari-
ables are related via constraints that determine their relative
length. For example, in A the ellipses bounding the trian-
gle containing the aij are all of the same length, similarly
those of the bij triangle. This in turn determines the relative
length of implicitly given boundaries of the 0 regions as well
as the value for the variables representing height and width.

Generalised Positions — Given the lengths of ellipses in
terms of integer constraint variables, we can then determine
the relative positions of start and end points of all ellipses
with respect to these variables. We call positions containing
constraint variables generalised positions. For example, the
diagonal ellipses from a11 to ann has its top left corner at
position (1, 1), while the position of its bottom right corner
is determined by the length of the diagonal ellipsis itself.
Although in general, and as explained in [5], we can not
associate ellipsis lengths directly with values of the index
variables of the terms on the ellipses, for simplicity we will
do so here and let the length of the diagonal ellipses be n.
Therefore the generalised positon of the bottom right corner
is (n, n). This in turn determines the generalised positions
of the next diagonal ellipses from b11 to bmm, which starts
at (n + 1, n + 1) and ends at (n + m, n + m).

Interpolation Functions — With both boundaries and
their generalised positions one can now establish the exact
content of a region by computing a generalisation of the
boundary terms and computing an interpolation function
for index functions if necessary. For example, the upper left
triangle of A contains terms of the form aα,β , where α, β are
unification variables that can be interpolated with respect
to the index variables of the overall matrix. Thus let i, j be
the index variables of A, then we can map α �→ i and α �→ j
and all the terms of the region can be expressed as aij . On
the other hand for the lower right triangle we have to take
the offset given by generalised positions into account and it
can therefore be interpolating by b(i−n)(j−n). Observe also
that regions can have a simple term associated with them
like the 0 regions in A where no interpolation is necessary.

Abstract Matrix — An abstract matrix is represented as
a set of regions, a set of constraints for the variables referred
to in these regions, and a (partial) set of bindings for the
variables. Two of the variables always present in an abstract
matrix are its width and height, although these may or may
not have concrete bindings. The width and height variables
are used to control the various summations in the algorithms
for abstract matrix operations.

3. A SIMPLE BASIS FUNCTION
We wish to represent matrices and vertices in terms of ex-
pressions for their component elements. However, these ex-
pressions do not record the (symbolic) dimensions of the
matrices themselves whereas our internal datastructures do.
Therefore we introduce a notation that does precisely that
and which limits the extent of the horizontal and vertical in-
dices. These limits will be used explicitly in the summations
that occur in vector and matrix addition and multiplication
and, hence, guarantee that no term outside the range of the
matrices are ever accessed or referred to.

(i−q1)+(j−r1)≥(q2−q1)

(i−q1)+(j−r1)≤(q2−q1)

q2, r1

q1, r2

i−q1≥(j−r1)

i−q1≤(j−r1)

q2, r2

q1, r1

j≤r1

j≥r1

q2, r1

q1, r1 i≤q1

i≥q1

q1, r1

q1, r2

Figure 1: Half plane constraints.

Definition 1

[xi,j]
n,m
i,j ::=

2
64

x1,1 · · · x1,m

...
...

xn,1 · · · xn,m

3
75

where i and j are the names of the index variables used in the
expression and range from 1 to n and m respectively. Fur-
thermore, the pair of possible values of the index variables
define the dimensions of the matrix, even if those variables
do not appear in the element term.

As an example, note that [1]2,3
i,j describes the matrix with 2

rows, 3 columns and and in which all the cells contain the
value 1.

Definition 2 Let x, y ∈ N then we define

σ(x, y) ::=

(
1 if x � y

0 otherwise

For convenience, we introduce σx,y as a more compact no-
tation for the function σ(x, y)

Let U = [u1, u2, . . . , uh, u′
1, u

′
2, . . . , u

′
n−h]. This vector con-

tains two regions, characterised by their respective gener-
alised terms ui and u′

i. We represent it as the sum of two
terms, where the basis functions control in which part of the
vector a particular generalised term is active.

U =
ˆ
σi,hui + σh+1,iu

′
i−h

˜1,n

i,j
(2)

Representing general structured matrices pose a slightly more
involved problem. Regions are specified by convex polygons,
and containment within a region by the conjunction of half
planes defined by the equations of the lines of the polygon
(c.f. Fig. 1). Containment within a half-plain can be neatly
captured by a single σ function, and containment within a
region by a product of σs. Hence the elements of the matrix
in equation (1) can be written as

A = [σ1,iσj,nσi,jaij + σn+1,iσj,n+mσi,jbi−n,j−n]m+n,m+n
i,j

More explictly, considering the first summand only, σ1,i re-
stricts the region to be on or below the top boundary of the a
triangular region, σj,n restricts the region to be on or to the
left of the right boundary of the triangle, and σi,j restricts
it to be on or to the upper right of the diagonal boundary. If
any of these half plane constraints are not satisfied, at least
one of the σs will force the value of the summand to 0.

Note that the term for A above contains some redundancies.
Since i and j are limited to the bounds of the matrix, the σ1,i

of the first summand and the σj,n+m will always evaluate to

1. Hence we can optimise the expression by removing the
unnecessary σs, as we have already done in Equation (2):

A = [σj,nσi,jaij + σn+1,iσi,jbi−n,j−n]m+n,m+n
i,j (3)

In manipulating terms with basis functions, we will make
use of a number of basic properties which we present here
without proof.

σx,x = 1 (4)

σx,y = σx+z,y+z (5)

σx,y = σ−y,−x (6)

σx,yσy,x = 1 ⇔ x = y (7)

σy+1,xσx,y = 0 (8)

Note that we can get full logical combinations of our basis
functions: given we are using true = 1, false = 0, we have
A ∧ B = A × B, ¬A = 1 − A and A ∨ B = A + B − A × B.
Thus we can get unions, complements and intersections of
our regions. This, in turn, lets us handle min and max nicely.

σx,min(y,z) = σx,yσx,z (9)

σx,max(y,z) = σx,y + σx,z − σx,yσx,z (10)

σmin(x,y),z = σx,z + σy,z − σx,zσy,z (11)

σmax(x,y),z = σx,zσy,z (12)

4. MATRIX ADDITION
Consider addition on two vectors, UT + V T , where

UT =
ˆ
u1, u2, . . . , uh, u′

1, u
′
2, . . . , u

′
n−h

˜
=
ˆ
σj,h uj + σh+1,j u′

j−h

˜1,n

i,j

V T =
ˆ
v1, v2, . . . , vk, v′

1, v
′
2, . . . , v

′
n−k

˜
=
ˆ
σj,k vj + σk+1,j v′

j−k

˜1,n

i,j

(13)

A näıve approach leads to dealing with a case analysis, with
one form of the result for each ordering of h and k. Namely,
when h � k, we get a sum of three terms, for 1 � i � h,
we get ui + vi, for h + 1 � i � k, we get u′

i + vi, while for
k � i � n, we get u′

i + v′
i. Similar reasoning leads to the

form for the case k < h:

UT + V T

=

2
664
8>><
>>:

h � k
σj,h (uj + vj) + σh+1,jσj,k

`
u′

j + vj

´
+ σk+1,jσj,n

`
u′

j + v′
j

´
k < h

σj,k (uj + vj) + σk+1,jσj,h

`
uj + v′

j

´
+ σh+1,jσj,n

`
u′

j + v′
j

´
3
775

1,n

i,j

However, there is a better, and simpler approach. We simply
plug the representations into the standard matrix addition

definition:

[ai,j]
m,n
i,j + [bi,j]

m,n
i,j = [ai,j + bi,j]

m,n
i,j (14)

Our use of the σ basis functions, allows us to encode the
cases in a simpler expression:

UT + V T

=
ˆ
σj,h uj + σh+1,j u′

j−h + σj,k vj + σk+1,j v′
j−k

˜1,n

i,j

=

»
σj,min(h,k) (uj + vj) + σh+1,jσj,k

`
u′

j + vj

´
+

σk+1,jσj,h

`
uj + v′

j

´
+ σmax(h,k)+1,jσj,n

`
u′

j + v′
j

´ –1,n

i,j

=

»
σj,hσj,k (uj + vj) + σh+1,jσj,k

`
u′

j + vj

´
+

σk+1,jσj,h

`
uj + v′

j

´
+ σh+1,jσk+1,jσj,n

`
u′

j + v′
j

´ –1,n

i,j

Observe that at least one of the middle two summands must
reduce to zero as, for both to be non-zero, we must have that
h+1 � k∧k+1 � h. Therefore, if the variables h and k are
eventually bound to concrete numbers, at least one of the
summands will disappear. Both will disappear if and only if
h = k. In this way, the multiple cases of the näıve approach
is reduced to a single expression without cases.

Finally, consider the problem of adding vectors V (i), i =
1, . . . , m, where each vector A(i) has components given by
one function of the index up to the point ki and by another
function of the index from that point on. Depending on the
relative order of the values k1, ..., km, the sum

Pm
i=1 A(i) may

take on any of m! different forms. In a symbolic setting,
the order of the ki is not known so, näıvely, the sum is
given by a piece-wise function with m! cases. Using our
approach, however, reduces the m! number of cases to a
single expression without cases; namely a sum of 2m terms.

5. MATRIX MULTIPLICATION
For multiplication we express the formal product

[ai,j]
m,n
i,j [bi,j]

n,p
i,j =

"
nX

k=1

ai,kbk,j

#m,p

i,j

(15)

We take, as an example, UT × V where U and V are taken,
appropriately transposed, from Equation (13).

UT V =

"
nX

l=1

`
σl,h ul + σh+1,l u′

l−h

´ `
σl,k vl + σk+1,l v′

l−k

´#1,1

i,j

as the result is a 1× 1 matrix, we drop the matrix structure
and present it as a value

=
nX

l=1

σl,hσl,k ulvl + σl,hσk+1,l ulv

′
l−k +

σh+1,lσl,k u′
l−hvl + σh+1,lσk+1,l u′

l−hv′
l−k

!

Again we observe that the two cases coresponding to the two
possible orderings of h and k are encoded more efficiently in
the resulting term without need for case expressions.

To demonstrate how our representation allows us to compute
even complex results symbolically we present the example
of polynomial multiplication: Let p = anxn + an−1x

n−1 +

· · · + a0 and q = bmxm + bm−1x
m−1 + · · · + b0. Then,

pq =

m+nX
l=0

xl
lX

k=0

al−kbk =

m+nX
l=0

(
X

μ+ν=l

aμ−νbμ)xl (16)

where the ai and bi are considered to be infinite sequences,
defined as zero for i > m, n, respectively. This equation can
be written in matrix form as:

xT Ab =
ˆ
xm+n . . . x0

˜
2
6666664

an 0
...

. . .

a0 an

. . .
...

0 a0

3
7777775

2
64

bm

...
b0

3
75 (17)

Next we write x, A and b in our notation:

xT =
h
xm+n+1−j

i1,m+n+1

i,j

A = [σj,iσi,j+n an−i+j]
m+n+1,m+1
i,j

b = [bm+1−i]
m+1,1
i,j

Observe that we do not need any σ functions in the terms for
xT and b since they completely fill their respective matrix
cells and the matrix bounds provide the only constraints
necessary. Thus we get

Ab =

"
m+1X
k=1

σk,iσi,k+n an−i+kbm+1−k

#m+n+1,1

i,j

(18)

which, not surprisingly, only varies in i since it is a column
vector. We then multiply this expression with x:

xT Ab =

"
m+n+1X

l=1

xm+n+1−l
m+1X
k=1

σk,lσl,k+n an−l+kbm+1−ka

#1,1

i,j

Since the result is a 1× 1 matrix, we can treat it as a single
value rather than a matrix. Furthermore we can reindex
both sums by l → l + 1 and k → k + 1, respectively:

=

m+nX
l=0

xm+n−l
mX

k=0

σk+1,l+1σl+1,k+1+n an−l−1+k+1bm+1−k−1

We then simplify indices and σ functions using property (5)
and reverse the order of the summands of the first sum:

=

m+nX
l=0

xl
mX

k=0

σk,m+n−lσm+n−l,k+n an−(m+n−l)+kbm−k

After further simplification and reordering we get:

=
m+nX
l=0

xl
mX

k=0

σ−k,n−lσ−l,−k al−kbk

Here we simplify the σ functions using property (6):

=
m+nX
l=0

xl
mX

k=0

σl−n,kσk,l al−kbk

A final application of property (5) gives us:

=

m+nX
l=0

xl
mX

k=0

σl−k,nσk,l al−kbk

At this point we have the closest expression possible to the
standard presentation, Equation (16), without relying on
the coefficients outside their specified range to be zero. The
next step is to eliminate the first σ. To do so, we merely
have to observe that if l − k �� n, then al−k = 0:

=

m+nX
l=0

xl
mX

k=0

σk,l al−kbk

We still need to eliminate the final σ and correct the inner
summation limit. We start by splitting the inner sum into
two:

=

m+nX
l=0

xl

0
@min(l,m)X

k=0

σk,l al−kbk +
mX

k=min(l,m)+1

σk,l al−kbk

1
A

In the first inner sum, k is always less than or equal to l
so the σ can be eliminated. In the second inner sum, the
lower bound of the summation implies that either m < k ⇒
bk = 0, or l < k ⇒ l − k < 0 ⇒ al−k = 0. Hence the
second inner sum is always zero irrespective of the σ term
and irrespective of the upper bound. Thus we can safely
eliminate the σ and change its upperbound to l:

=

m+nX
l=0

xl

0
@min(l,m)X

k=0

al−kbk +

lX
k=min(l,m)+1

al−kbk

1
A

Finally we can recombine the inner sums to get the desired
result:

=

m+nX
l=0

xl
lX

k=0

al−kbk

6. SHOWING STRUCTURAL PROPERTIES
Up to this point, we have shown how, using our basis func-
tions, we can provide a simple unified approach to comput-
ing with abstract matrices that does not involve having to
carry out complex analyses with combinatorially prohibitive
numbers of cases. However, the question remains of whether
we can recover the region oriented structural description
from the result of arithmetic combinations of abstract ma-
trices, thereby obtaining closure for abstract matrix opera-
tions. For example, can we tell, after multiplying two upper
triangular abstract matrices, that the result is upper tri-
angular, and indeed, construct the corresponding abstract
matrix object for it. We can, and the basis for doing so
is to organise the term computed into the form of a sum
of terms, where each term is an arithmetic combination of
generalised terms of the operand abstract matrices, which
become the generalised term of the new region, multiplied
by a product of basis functions, where these basis function
products describe shapes which are disjoint from the corre-
sponding shapes of the other terms. This shape becomes the
shape of the new region. The ability to reconstruct abstract
matrices from the underlying expressions allows exploring
and demonstrating structural properties of classes of ma-
trice. We demonstrate this approach with an example of
matrix multiplication.

Consider matrices of a structure similar to matrix A given
in section 2, Equation (1). Let us suppose we want to exam-
ine the arithmetic properties of structured matrices of this
classes and concentrate on the multiplication. Assume that
we multiply matrix A with the following matrix B.

B =

2
666666664

c11 · · · c1m 0
. . .

...
cmm

d11 · · · d1n

. . .
...

0 dnn

3
777777775

(19)

Observe that in B we have reversed the indices n and m
and thus the size of the two triangles. This choice aims
to minimise confusion caused by employing too many vari-
able names. Although it is slightly less general than using
entirely different index variables, the example nevertheless
serves the same purpose of showing how properties of struc-
ture matrices can be computed.

We first translate both matrices A and B into our syntax:

A = [σj,nσi,j aij + σn+1,iσi,j bi−n,j−n]n+m,n+m
i,j (20)

B = [σj,mσi,j cij + σm+1,iσi,j di−m,j−m]m+n,m+n
i,j (21)

Their product, AB, is:2
6664

n+mX
k=1

0
BBB@

σk,nσi,kσj,mσk,j aikckj+

σk,nσi,kσm+1,kσk,j aikdk−m,j−m+

σn+1,iσi,kσj,mσk,j bi−n,k−nckj+

σn+1,iσi,kσm+1,kσk,j bi−n,k−ndk−m,j−m

1
CCCA
3
7775

n+m,n+m

i,j

The sum can clearly be split into 4 separate sums, one for
each of the summands in the summation. Each of the re-
sulting terms is nearly, but not quite in the form we are
looking for: a generalised term expression multiplied by a
product of basis functions, where each product describes a
disjoint shape. To get them into the correct form, we need
to find the product of all the possible σs that are implied
by the term but are independent of the summation variable.
This product will be the most general σ product that can
be moved outside the summation and will then provide us
with the required form.

First we show that that the regions associated with each
term is dijoint: Consider the full set of inequalities implied
by the σs of each term. We can do this most easily by
completing the partial order on the σ limits, and displaying
them as a set of Hasse diagrams:

mn

j

k

i

k

i

n j

m+1

i

m

j

k

n+1

k

j

m+1i

n+1

We can now see that all four partial orders are incompatible
(e.g. j � m in (1), but m + 1 � j in (2), etc.) and hence
the space defined by the possible i, j pairs describe disjoint
regions.

To extract the required most general product of σs from
each term, we generate a sigma expression from every pair

of elements in the partial order for the term, excluding only
the summation variable.

We explain the process in detail for the first region:"
n+mX
k=1

σk,nσi,kσj,mσk,j aikckj . . .

#n+m,n+m

i,j

Our task is to factor out σ functions from the sum. We gen-
erate all inequalities not featuring k from the partial order
for this term: i � j, j � m, i � n and i � m. In practice,
we only need a minimal set of inequalities that imply all
the inequalities in the list so we can omit i � m. We turn
each one of these into the corresponding σ expression and
multiply the term by it. This does not modify the meaning
of the term as these constraints were implied by it anyway.
Observe that although we add these as new coefficients, we
can nevertheless not simply remove any of the σ functions
from inside the sum, since although the inner σs imply the
outer ones, the reverse is not, in general, true. Continuing
in this way we obtain the following set of 4 outer σ products,
where, in all cases, both i and j ranges from 1 to m + n:

σj,mσi,nσi,j (S1)

σi,jσi,nσm+1,jσm+1,n (S2)

σn+1,iσi,jσj,m (S3)

σn+1,iσi,jσm+1,j (S4)

Reconstructing the shape of a region is done by translating
each σ back into one of the half-plane constraints given in
Figure 1. We consider each shape in turn

S1 σi,j means that this region is constrained to be on, or
to the upper left, of the main diagonal of the matrix.
σj,m means this region extends to the right only as far
as column m, σi,n means it extends downwards only
as far as row n. Hence, if m � n, the region will be a
triangle with its base on the main diagonal, one side
on the top boundary of the matrix (limited only be the
lower bound of 1 on i) and the remaining side being
the vertical column at j = m. If, however, n < m,
the bottom corner of the triangle will be clipped off
horizontally by the row i = n.

S2 Firstly, this region only appears at all when m < n. It
is bounded horizontally at m + 1 from the left and
vertically at n from below. In addition it is bounded
by the main diagonal. Otherwise it is bounded only by
the implied limits of the matrix. This means that the
region is a rectangle in the upper right corner of the
matrix that potentially has its lower left corner clipped
off diagonally by the main diagonal of the matrix.

S3 Note here that n < m is implied by the set of σs here,
and was only eliminated to reduce unnecessary expan-
sion of the term. Hence this region only appears if
n < m. This region is bounded above at row n + 1, to
the right at column m + 1 and also by the main diag-
onal. Thus it is a proper triangle sitting in the middle
of the matrix, above the main diagonal.

S4 This region is also bounded above at n + 1, to the left
by column m+1 and by the main diagonal. Otherwise
it goes all the way to the right edge and the bottom

of the matrix. It is therefore a triangular region that
might have its top left corner clipped horizontally.

Now that we know the form of the single regions, we are
interested in what the structure of the overall matrix looks
like and if it is always of a particular form regardless of the
concrete values of m and n. Firstly, we observe that every
region contains the term σi,j . Thus every non-zero region
is situated above the main diagonal and the matrix has an
upper triangular form.

Secondly, we note that regions S2 and S3 contain mutually
exclusive variable orders: We therefore perform a case anal-
ysis on the relation between n and m.

m < n: Region S2 is non-zero and region S3 vanishes. The
result matrix is of the form:

2
66666666666666666666664

ac · · · ac ad ad

. . .
.
.
.

.

.

.
.
.
.

ac
.
.
.

.

.

.

ad
.
.
.

. . .
.
.
.

ad . . . ad
bd . . . bd

. . .
.
.
.

0 bd

3
77777777777777777777775

Note, that we have given the matrix entries without indices.

n < m: Region 3 is non-zero and region 2 vanishes. Since
region 1 is bounded from the right, and both region 3 and
4 are bounded from the top we also get a rectangular zero
region in the top right-hand corner of size n×n. The result
matrix is therefore of the form:

2
666666666666666666666664

ac · · · ac 0
. . .

.

.

.
ac . . . ac

bc . . . bc bd . . . bd

.. .
.
.
.

.

.

.
.
.
.

bc
.
.
.

.

.

.

bd
.
.
.

. . .
.
.
.

0 bd

3
777777777777777777777775

n = m: Both region 2 and 3 vanish. The result matrix is of
a form similar to the original matrices A and B.

7. ALTERNATIVE APPROACH
The σ basis functions are well behaved, simple and easy to
manipulate, however, in certain cases they might lead to
overly complex terms. An obvious alternative is to try in-
terval, instead of half plane, basis functions. It turns out,
however, that a näıve interval function does not solve the
problem. We therefore define a variant of an interval basis
function that exhibits some interesting properties. Its basic
idea is to eliminate explicit case analysis of the results of
arithmetic operations altogether by committing to one or-
dering of index variables, and, automatically removing any
superfluous terms in case the commitment was erroneous.

Definition 3

ξ(i, y, z) =

8><
>:

1 if y � i < z

−1 if z � i < y

0 otherwise

The following properties follow immediately from the defi-
nition:

ξ(i, y, y) = 0 (22)

ξ(i, y, z) = −ξ(i, z, y) (23)

ξ(i, y, x) + ξ(i, x, z) = ξ(i, y, z) (24)

Using this basis function, we will attempt a vector addition.
Consider two vectors:

UT =
ˆ
u1, u2, . . . , uh−1, u

′
1, u

′
2, . . . , u

′
n−h

˜
V T =

ˆ
v1, v2, . . . , vk−1, v

′
1, v

′
2, . . . , v

′
n−k

˜
We can write these vectors as

UT =
ˆ
ξ(i, 1, h) × ui + ξ(i, h, n) × u′

i−h+1

˜1,n

i,j

V T =
ˆ
ξ(i, 1, k) × vi + ξ(i, k, n) × v′

i−k+1

˜1,n

i,j

Adding the vectors, we get:

UT +V T =

"
ξ(i, 1, h) × ui + ξ(i, h, n) × u′

i−h+1+

ξ(i, 1, k) × vi + ξ(i, k, n) × v′
i−k+1

#1,n

i,j

(25)

To get the benefit of using the negative values and compress-
ing into 3 cases, we have to do a different type of case anal-
ysis, rather than the obvious one, where we choose a config-
uration of h � k and use the negative values of ξ(x, y, z) to
fix the problem if it turns out that k < h.

h < k Here (25) yields a sum of three terms:

ξ(i, 1, h) × (ui + vi)

+ ξ(i, h, k) × (u′
i + vi)

+ ξ(i, k, n) × (u′
i + v′

i)

(26)

k < h Here we claim that the solution for the previous case
is also the correct solution for this case. Using the properties
shown above for ξ(x, y, z) we have:

(ξ(i, 1, k) + ξ(i, k, h)) × (ui + vi)

− ξ(i, k, h) × (u′
i + vi)

+ (ξ(i, k, h) + ξ(i, h, n)) × (u′
i + v′

i)

= ξ(i, 1, k) × (ui + vi)

+ ξ(i, k, h) × (ui + vi − u′
i − vi + u′

i + v′
i)

+ ξ(i, h, n) × (u′
i + v′

i)

= ξ(i, 1, k) × (ui + vi)

+ ξ(i, k, h) × (ui + v′
i)

+ ξ(i, h, n) × (u′
i + v′

i)

This is exactly what one gets directly from h < k.
h = k In this case, Equation (26) reduces to the correct
equation for h = k because ξ(i, h, k) = ξ(i, h, h) = 0.

A näıve, case based approach would have produced one case
for each orderings of the lengths of the first components of
the vectors: in this case, two cases, with 3 terms each. If
we were adding m such vectors, we would have one case for
each possible ordering, leading to m! different cases, each
with m + 1 terms.

Recall that the σ basis function approach produced a sum
of 4 terms, one for each of the four possible combinations
of each of the two terms from the first vector with each of
the two terms from the second, where two of the terms are
mutually exclusive in that, when the relative lengths of the
first component in each vector is resolved, one of those terms
will be reduced to zero. If we were adding m such vectors,
there are 2m possible combinations that would need terms,
hence 2m terms in the result with only one case.

When using the ξ(x, y, z) representation, we have produced
a sum of 3 terms only, which corresponds to a single ordering
of the possible first component lengths, and have shown that
this expression is exactly equal to the corresponding expres-
sion for the alternative ordering. This was possible because,
if we commit to a single ordering and choose incorrectly, the
basis functions allow reversing the direction of traversal of
elements in the vector, undoing the commitment to the first
order by subtracting the values erroneously committed to,
and applying the values of the alternative ordering. Since we
are thus encoding all possible orderings with the number of
terms necessary for only one ordering, the number of terms
necessary for adding m such vectors is m + 1 and there is
only one case.

The ξ(i, x, y) basis vectors work so well for addition because,
when the interval limits are reversed, they apply the addi-
tive inverse on to the carried term. Unfortunately, when
multiplying vectors, if we want the same trick to work we
must use the multiplicative inverse instead and thus have to
change ξ(i, x, y) to a multiplicative version:

Definition 4

ξ×(i, y, z) (e) =

8><
>:

e if y � i < z
1
e

if z � i < y

1 otherwise

It is worth noting that this definition leads to the following
relationship:

ξ×(i, y, z) (e) = eξ(i,y,z)

We have a new set of properties that correspond to the
ξ×(i, y, z) (e)

ξ×(i, y, y) (e) = 1 (27)

ξ×(i, y, z) (e) =
1

ξ×(i, z, y) (e)
(28)

ξ×(i, y, x) (e) × ξ×(i, x, z) (e) = ξ×(i, y, z) (e) (29)

Note that to construct vectors and matrices out of terms
involving ξ×(i, y, z) (e), we have to multiply them together,
instead of add them as in the case of ξ(i, y, z).

Using the same vectors as before, we get that

U =
ˆ
ξ×(i, 1, h) (ui) × ξ×(i, h, n)

`
u′

i−h+1

´˜n,1

i,j

V =
ˆ
ξ×(i, 1, k) (vi) × ξ×(i, k, n)

`
v′

i−k+1

´˜n,1

i,j

and multiplying U and V yields

U · V =
nX

i=1

„
ξ×(i, 1, h) (ui) × ξ×(i, h, n) (u′

i−h+1)×
ξ×(i, 1, k) (vi) × ξ×(i, k, n) (v′

i−k+1)

«
(30)

Just as with the additive version, we could do essentially the
same case analysis and rewrite to show that the result is a
product (rather than a sum) of 3 terms that correspond to
precisely one possible ordering of the initial vector compo-
nent lengths and that the result is equal to the expression
that one would obtain with the other order. Instead we
show a more direct derivation of the 3 term version from
the initial expression.

The procedure starts with (30) and rewrites all ξ×(i, 1, h) (e)
into ξ×(i, 1, k) (e)×ξ×(i, k, h) (e), and similarly ξ×(i, h, n) (e)
into ξ×(i, h, k) (e) × ξ×(i, k, n) (e) and simplify. This works
analogously for addition of course.

U · V =
nX

i=1

Ui × Vi

=
nX

i=1

„
ξ×(i, 1, h) (ui) × ξ×(i, h, n) (u′

i−h+1)×
ξ×(i, 1, k) (vi) × ξ×(i, k, n) (v′

i−k+1)

«

=

nX
i=1

0
BB@

ξ×(i, 1, k) (ui) × ξ×(i, k, h) (ui)×
ξ×(i, h, n) (u′

i−h+1)×
ξ×(i, 1, k) (vi)×
ξ×(i, k, h) (v′

i−k+1) × ξ×(i, h, n) (v′
i−k+1)

1
CCA

=

nX
i=1

0
@ ξ×(i, 1, k) (ui × vi)×

ξ×(i, k, h) (ui × v′
i−k+1)×

ξ×(i, h, n) (u′
i−h+1 × v′

i−k+1)

1
A

While we believe these basis functions are promising and
worthy of further study, they are not without problems. Us-
ing the additive version works well for addition, but the
undo/redo trick will not work when multiplying. The same
applies when using the multiplicative version during addi-
tion. Zero regions require careful handling for ξ×: in order
to use multiplication to combine disjoint regions into a sin-
gle matrix, we need to define ξ× to be 1 outside its area
instead of 0. Hence we need to explicitly represent regions
containing zero, unlike with the additive version or with σ.
Inversing zero regions cause difficulty for the ξ× as, when
reverting a section of zeros, there is nothing that we can
multiply 0 by to turn it into the neutral 1 so that we can
apply the alternative values. In practice we define 1

0
×0 = 1.

Finally, while the ξ× basis function works well on vector ma-
nipulations, we have not yet successfully extended them to
full matrices.

8. CONCLUSION
We have presented a computational approach to arithmetic
on abstract matrices. We have defined a simple basis func-
tion that allows us to represent every abstract matrix re-
gardless of its structural composition as a sum of region

terms. Given this representation we could define matrix ad-
dition and multiplication straightforwardly as addition and
multiplication of the sums. In fact we could show that our
representation enables symbolic computations on abstract
matrices that are considered mathematically routine but for
which only limited automated support exists. In a next step
we therefore intend to implement bespoke algorithms for ab-
stract matrix arithmetic and combine them with our parsing
procedure presented in [5]. Moreover, we intend to use our
representation as a basis for developing other operations on
abstract matrices such as computing Jordan normal forms
or determinants.

Another advantage of our representation is that the result
of an arithmetic operation on two abstract matrices can be
examined by systematic arithmetic manipulations and ex-
ploitation of the partial order structure of the basis function
to yield structural properties of the resulting matrix. This
could be further exploited to perform and automate general
proofs of closure properties for certain classes of structural
matrices in a computational manner. Furthermore, this fact
indicates that the representation could be used as a start-
ing point for translating the algebraic expression back into
a graphical representation of the abstract matrix, i.e. with
ellipses etc.

While our approach is encompassing enough to deal with
abstract matrices of arbitrary structure we have identified
cases in which the growth of terms is potentially exponen-
tial. We have started addressing this issue by investigating
an alternative basis function that can avoid this exponential
growth. Although the alternative basis function requires dis-
tinct representations of abstract matrices, depending on the
arithmetic operation we want to perform, we could already
show that it is effective for addition and multiplication on
abstract vectors. However, its correct extension to the two-
dimensional case of abstract matrices remains the subject of
future work.

9. REFERENCES
[1] R. Fateman. Manipulation of matrices symbolically.

Available from http://http.cs.berkeley.edu/
∼fateman/papers/symmat2.pdf, 2003.

[2] M. Kauers and C. Schneider. Application of unspecified
sequences in symbolic summation. In Proceedings of
ISSAC 2006, p. 177–183. ACM Press, 2006.

[3] M. Kauers and C. Schneider. Indefinite summation
with unspecified summands. Discrete Mathematics,
306(17):2021–2140, 2006.

[4] A. Sexton and V. Sorge. Processing textbook-style
matrices. In Proceedings of MKM-2006, volume 3863 of
LNCS, p. 111–125. Springer Verlag, 2005.

[5] A. Sexton and V. Sorge. Abstract matrices in symbolic
computation. In Proceedings of ISSAC 2006, p.
318–325. ACM Press, 2006.

[6] S. M. Watt. Making computer algebra more symbolic.
In Transgressive Computing, p. 43–49, 2006.

[7] S. M. Watt. Two families of algorithms for symbolic
polynomials. In Computer Algebra 2006: Latest
Advances in Symbolic Algorithms, p. 193–210. World
Scientific, 2006.

