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ABSTRACT
Efficient algorithms are known for many operations on trun-
cated power series (multiplication, powering, exponential,
. . . ). Composition is a more complex task. We isolate a
large class of power series for which composition can be
performed efficiently. We deduce fast algorithms for con-
verting polynomials between various bases, including Euler,
Bernoulli, Fibonacci, and the orthogonal Laguerre, Hermite,
Jacobi, Krawtchouk, Meixner and Meixner-Pollaczek.

Categories and Subject Descriptors:
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation – Algebraic Algorithms

General Terms: Algorithms, Theory

Keywords: Fast algorithms, transposed algorithms, basis
conversion, orthogonal polynomials.

1. INTRODUCTION
Through the Fast Fourier Transform, fast polynomial mul-

tiplication has been the key to devising efficient algorithms
for polynomials and power series. Using techniques such
as Newton iteration or divide-and-conquer, many problems
have received satisfactory solutions: polynomial evaluation
and interpolation, power series exponentiation, logarithm,
. . . can be performed in quasi-linear time.

In this article, we discuss two questions for which such fast
algorithms are not known: power series composition and
change of basis for polynomials. We isolate special cases,
including most common families of orthogonal polynomials,
for which our algorithms reach quasi-optimal complexity.

Composition. Given a power series g with coefficients in
a field K, we first consider the map of evaluation at g

Evalm,n(., g) : A ∈ K[x]m 7→ A(g) mod xn ∈ K[x]n.

Here, K[x]m is the m-dimensional K-vector space of polyno-
mials of degree less than m. We note Evaln for Evaln,n.

To study this problem, as usual, we denote by M a mul-
tiplication time function, such that polynomials of degree
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less than n can be multiplied in M(n) operations in K. We
impose the usual super-linearity conditions of [17, Chap. 8].
Using Fast Fourier Transform algorithms, M(n) can be taken
in O(n log(n)) over fields with suitable roots of unity, and
O(n log(n) log log(n)) in general [31, 14].

If g(0) = 0, the best known algorithm, due to Brent and
Kung, uses O(

√
n lognM(n)) operations in K [11]; in small

characteristic, a quasi-linear algorithm is known [5]. There
are however special cases of power series g with faster algo-
rithms: evaluation at g = λx takes linear time; evaluation
at g = xk requires no arithmetic operation. A non-trivial
example is g = x + a, which takes time O(M(n)) when
the base field has characteristic zero or large enough [1].
Brent and Kung [11] also showed how to obtain a cost in
O(M(n) log(n)) when g is a polynomial; this was extended
by van der Hoeven [22] to the case where g is algebraic over
K(x). In §2, we prove that evaluation at g = exp(x)− 1 and
at g = log(1 + x) can also be performed in O(M(n) log(n))
operations over fields of characteristic zero or larger than n.

Using associativity of composition and the linearity of
the map Evalm,n, we show in §2 how to use these spe-
cial cases as building blocks, to obtain fast evaluation al-
gorithms for a large class of power series. This idea was
first used by Pan [28], who applied it to functions of the
form (ax+ b)/(cx+ d). Our extensions cover further exam-
ples such as 2x/(1 + x)2 or (1 −

√
1− x2)/x, for which we

improve the previously known costs.

Bivariate problems. Our results on the cost of evalu-
ation (and of the transposed operation) are applied in §3
to special cases of a more general composition, reminiscent
of umbral operations [30]. Given a bivariate power series
F =

P
j≥0 ξj(x)tj , we consider the linear map

Evaln(.,F, t) : (a0, . . . , an−1) 7→
X
j<n

ξj(x)aj mod xn.

For instance, with

F =
1

1− tg(x)
=
X
j≥0

g(x)jtj ,

this is the map Evaln(., g) seen before. For general F, the
conversion takes quadratic time (one needs n2 coefficients
for F). Hence, better algorithms can only been found for
structured cases; in §3, we isolate a large family of bivari-
ate series F for which we can provide such fast algorithms.
This approach follows Frumkin’s [16], which was specific to
Legendre polynomials.

Change of basis. Our framework captures in particular
the generating series of many classical polynomial families,
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for which it yields at once conversion algorithms between
the monomial and polynomial bases, in both directions.

Thus, we obtain in §4 change of basis algorithms of cost
only O(M(n)) for all of Jacobi, Laguerre and Hermite or-
thogonal polynomials, as well as Euler, Bernoulli, and Mott
polynomials (see Table 3). These algorithms are derived in
a uniform manner from our composition algorithms; they
improve upon the existing results, of cost O(M(n) log(n)) or
O(M(n) log2(n)) at best (see below for historical comments).

We also obtain O(M(n) log(n)) conversion algorithms for a
large class of Sheffer sequences [30, Chap. 2], including actu-
arial polynomials, Poisson-Charlier polynomials and Meix-
ner polynomials (see Table 4).

Transposition. A key aspect of our results is their heavy
use of transposed algorithms. Introduced under this name
by Kaltofen and Shoup, the transposition principle is an
algorithmic theorem with the following content: given an
algorithm that performs an r×s matrix-vector product b 7→
Mb, one can deduce an algorithm with the same complexity,
up to O(r+s) operations, and that performs the transposed
matrix-vector product c 7→M tc. In other words, this relates
the cost of computing a K-linear map f : V → W to that
of computing the transposed map f t : W ∗ → V ∗.

For the transposition principle to apply, some restrictions
must be imposed on the computational model: we require
that only linear operations in the coefficients of b are per-
formed (all our algorithms satisfy this assumption). See [12]
for a precise statement, Kaltofen’s “open problem” [23] for
further comments and [7] for a systematic review of some
classical algorithms from this viewpoint.

To make the design of transposed algorithms transparent,
we choose as much as possible to describe our algorithms
in a “functional” manner. Most of our questions boil down
to computing linear maps K[x]m → K[x]n; expressing algo-
rithms as a factorization of these maps into simpler ones
makes their transposition straightforward. In particular,
this leads us to systematically indicate the dimensions of
the source (and often target) space as a subscript.

Previous work. The question of efficient change of ba-
sis has naturally attracted a lot of attention, so that fast
algorithms are already known in many cases.

Gerhard [18] provides O(M(n) log(n)) conversion algori-
thms between the falling factorial basis and the monomial
basis: we recover this as a special case. The general case of
Newton interpolation is discussed in [6, p. 67] and developed
in [9]. The algorithms have cost O(M(n) log(n)) as well.

More generally, if (Pi) is a sequence of polynomials satis-
fying a recurrence relation of fixed order (such as an orthog-
onal family), the conversion from (Pi) to the monomial basis
(xi) can also be computed in O(M(n) log(n)) operations: an
algorithm is given in [29], and an algorithm for the trans-
pose problem is in [15]. Both operate on real or complex
arguments, but the ideas extend to more general situations.
Alternative algorithms, based on structured matrices tech-
niques, are given in [21]. They perform conversions in both
directions in cost O(M(n) log2(n)).

The overlap with our results is only partial: not all fam-
ilies satisfying a fixed order recurrence relation fit in our
framework; conversely, our method applies to families which
do not necessarily satisfy such recurrences (the work-in-
progress [8] specifically addresses conversion algorithms for
orthogonal polynomials).

Besides, special algorithms are known for converting be-

tween particular families, such as Chebyshev, Legendre and
Bézier [27, 4], with however a quadratic cost. Floating-point
algorithms are known as well, of cost O(n) for conversion
from Legendre to Chebyshev bases [2] and O(n log(n)) for
conversions between Gegenbauer bases [25], but the results
are approximate. Approximate conversions for the Hermite
basis are discussed in [26], with cost O(M(n) log(n)).

Note on the base field. For the sake of simplicity, in all
that follows, the base field is supposed to have character-
istic 0. All results actually hold more generally, for fields
whose characteristic is sufficiently large with respect to the
target precision of the computation. However, completely
explicit estimates would make our statements cumbersome.

2. COMPOSITION
Associativity of composition can be read both ways: in

the identity A(f ◦ g) = A(f) ◦ g, f is either composed on
the left of g or on the right of A. In this section, we discuss
the consequences of this remark. We first isolate a class of
operators f for which both left and right composition can
be computed fast. Most results are known; we introduce
two new ones, regarding exponentials and logarithms. Us-
ing these as building blocks, we then define composition se-
quences, which enable us to obtain more complex functions
by iterated compositions. We finally discuss the cost of the
map Evaln and of its inverse for such functions, showing how
to reduce it to O(M(n)) or O(M(n) log(n)).

2.1 Basic Subroutines
We now describe a few basic subroutines that are the

building blocks in the rest of this article.

Left operations on power series. In Table 1, we list
basic composition operators, defined on various subsets of
K[[x]]. Explicitly, any such operator o is defined on a domain
dom(o), given in the third column. Its action on a power
series g ∈ dom(o) is given in the second column, and the
cost of computing o(g) mod xn is given in the last column.

Operator Action Domain Cost
Aa (add) a+ g K[[x]] 1
Mλ (mul) λg K[[x]] n
Pk (power) gk K[[x]] O(log k + M(n))

Rk,α,r (root) g1/k αkxrk(1 + xK[[x]]) O(M(n))
Inv (inverse) 1/g K∗ + xK[[x]] O(M(n))
E (exp.) exp(g)− 1 xK[[x]] O(M(n))
L (log.) log(1 + g) xK[[x]] O(M(n))

Table 1: Basic Operations on Power Series

Some comments are in order. For addition and multipli-
cation, we take a ∈ K and λ in K∗. To lift indeterminacies,
the value of Rk,α,r(g) is defined as the unique power series
with leading term αxr whose kth power is g; observe that to
compute Rk,α,r(g) mod xn, we need g modulo xn+r(k−1) as
input. Finally, we choose to subtract 1 to the exponential so
as to make it the inverse of the logarithm. All complexity re-
sults are known; they are obtained by Newton iteration [10].

Right operations on polynomials. In Table 2, we de-
scribe a few basic linear maps on K[x]m (observe that the di-
mension m of the source is mentioned as a subscript). Their
action on a polynomial

A(x) = a0 + · · ·+ am−1x
m−1 ∈ K[x]m
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Name Notation Action Cost

Powering Powerm,k A(xk) 0
Reversal Revm xm−1A(1/x) 0
Mod modm,n A mod xn 0
Scale Scaleλ,m A(λx) O(m)
Diagonal ∆m(., si)

P
aisix

i m
Multiply Mulm,n(., P ) AP mod xn M(max(n,m))
Shift Shifta,m A(x+ a) M(m) +O(m)

Table 2: Basic Operations on Polynomials

is described in the third column. In the case of powering,
it is assumed that k ∈ N>0. Here and in what follows, we
freely identify K[x]m and Km, through the isomorphismX

i<m

aix
i ∈ K[x]m ↔ (a0, . . . , am−1) ∈ Km.

All of the cost estimates are straightforward, except for the
shift, which, in characteristic 0, can be deduced from the
other ones by the factorization [1]:

Shifta,m = ∆m(Revm(Mulm,m(Revm(∆m(., i!)), P )), 1/i!),

where P is the polynomial
Pn−1
i=0 a

ixi/i!. We continue with
some equally simple operators, whose description however
requires some more detail. For k ∈ N>0, any polynomial A
in K[x] can be uniquely written as

A(x) = A0/k(xk) +A1/k(xk)x+ · · ·+Ak−1/k(xk)xk−1.

Inspecting degrees, one sees that if A is in K[x]m, then Ai/k
is in K[x]mi , with

mi = bm/kc+

(
1 if i ≤ m mod k,

0 otherwise.
(1)

This leads us to define the map Splitm,k :

A ∈ K[x]m 7→ (A0/k, . . . , Ak−1/k) ∈ K[x]m0×· · ·×K[x]mk−1 .

It uses no arithmetic operation. We also use linear com-
bination with polynomial coefficients. Given polynomials
G0, . . . , Gk−1 in K[x]m, we denote by

Combm(., G0, . . . , Gk−1) : K[x]km → K[x]m

the map sending (A0, . . . , Ak−1) ∈ K[x]km to

A0G0 + · · ·+Ak−1Gk−1 mod xm ∈ K[x]m.

It can be computed in O(kM(m)) operations. Finally, we ex-
tend our set of subroutines on polynomials with the following
new results on the evaluation at exp(x)− 1 and log(1 + x).

Proposition 1. The maps

Expm,n : A ∈ K[x]m 7→ A(exp(x)− 1) mod xn ∈ K[x]n,

Logm,n : A ∈ K[x]m 7→ A(log(1 + x)) mod xn ∈ K[x]n

can be computed in O(M(n) log(n)) arithmetic operations.

Proof. We start by truncating A modulo xn, since

Expm,n(A) = Expm,n(A mod xn).

After shifting by −1, we are left with the question of evalu-
ating a polynomial in K[x]n at

P
i<n x

i/i!. Writing its ma-

trix shows that this map factors as ∆n(MultiEvaltn(.), 1/i!),
where MultiEvaln is the map

A ∈ K[x]n 7→ (A(0), . . . , A(n− 1)) ∈ Kn.

To summarize, we have obtained that

Expm,n(A) = ∆n(MultiEvaltn(Shift−1,n(modm,n(A))), 1/i!).

Using fast transposed evaluation [13, 7], Expm,n(A) can thus
be computed in O(M(n) log(n)) operations. Inverting these
computations leads to the factorization

Logm,n(A) = Shift1,n(Interptn(∆n(modm,n(A), i!))),

where Interpn is interpolation at 0, . . . , n − 1. Using algo-
rithms for transpose interpolation [24, 7], this operation can
be done in time O(M(n) log(n)). �

2.2 Associativity Rules
For each basic power series operation in Table 1, we now

express Evalm,n(A, o(g)) in terms of simpler operations; we
call these descriptions associativity rules. We write them
in a formal manner: this formalism is the key to automati-
cally design complex composition algorithms, and makes it
straightforward to obtain transposed associativity rules, re-
quired in the next section. Most of these rules are straight-
forward; care has to be taken regarding truncation, though.

Scaling, Shift and Powering.

Evalm,n(A,Mλ(g)) = Evalm,n(Scaleλ,m(A), g), (A1)

Evalm,n(A,Aa(g)) = Evalm,n(Shifta,m(A), g), (A2)

Evalm,n(A,Pk(g)) = Evalk(m−1)+1,n(Powerm,k(A), g). (A3)

Inversion. From A(1/g) = (Revm(A))(g)/gm−1 and writ-
ing h = g1−m mod xn, we get

Evalm,n(A, Inv(g)) = Muln,n(Evalm,n(Revm(A), g), h),
(A4)

Root taking. For g and h in K[[x]], if g = hk, one has
A(h) = A0/k(g) + A1/k(g)h+ · · ·+ Ak−1/k(g)hk−1. We de-
duce the following rule, where the indices mi are defined in
Equation (1).

hi = hi mod xn for 0 ≤ i < k

A0, . . . , Ak−1 = Splitm,k(A)

Bi = Evalmi,n(Ai, g) for 0 ≤ i < k

(A5)

Evalm,n(A,Rk,α,r(g)) = Combn(B0, . . . , Bk−1, 1, . . . , hk−1).

Exponential and Logarithm.

Evalm,n(A,E(g)) = Evaln(Expm,n(A), g), (A6)

Evalm,n(A, L(g)) = Evaln(Logm,n(A), g). (A7)

2.3 Composition sequences
We now describe more complex evaluations schemes, ob-

tained by composing the former basic ones.

Definition 1. Let O be the set of actions from Table 1.
A sequence o = (o1, . . . , oL) with entries in O is defined
at a series g ∈ K[[x]] if g is in dom(o1), and for i ≤ L,
oi−1(· · · o1(g)) is in dom(oi). It is a composition sequence
if it is defined at x; in this case, o computes the power series
g1, . . . , gL, with g0 = x and gi = oi(gi−1); it outputs gL.

Examples. As mentioned in [28], the rational series g =
(ax+ b)/(cx+ d) ∈ K[[x]], with cd 6= 0, decomposes as

ax+ b

cx+ d
=

e

cx+ d
+ f with e = b− ad

c
and f =

a

c
.
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This shows that g is output by the composition sequence
(Mc,Ad, Inv,Me,Af ). A more complex example is

g =
2x

(1 + x)2
=

1

2

 
1−

„
1− 2

1 + x

«2
!
,

which shows that g is output by the composition sequence

(A1, Inv,M−2,A1,P2,M−1,A1,M1/2).

Finally, consider g = log((1 + x)/(1− x)). Using

g = log

„
1 +

„
−2− 2

x− 1

««
,

we get the composition sequence (A−1, Inv,M−2,A−2, L).

Computing the associated power series. Our main
algorithm requires truncations of the series g1, . . . , gL asso-
ciated to a composition sequence. The next lemma discusses
the cost of their computation. In all complexity estimates,
the composition sequence o is fixed ; hence, our estimates
hide a dependency in o in their constant factors.

Lemma 1. If o = (o1, . . . , oL) is a composition sequence
that computes power series g1, . . . , gL, one can compute all
gi mod xn in time O(M(n)).

Proof. All operators in O preserve the precision, except for
root-taking, since the operator Rk,α,r loses r(k−1) terms of
precision. For i ≤ L, define εi = r(k − 1) if oi has the form
Rk,α,r, εi = 0 otherwise, and define nL = n and inductively
ni−1 = ni + εi. Starting the computations with g0 = x, we
iteratively compute gi mod xni from gi−1 mod xni−1 .

Inspecting the list of possible cases, one sees that com-
puting gi always takes time O(M(ni−1)). For powering, this
estimate is valid because we disregard the dependency in o:
otherwise, terms of the form log(k) would appear. For the
same reason, O(M(ni−1)) is in O(M(n)), as is the total cost,
obtained by summing over all i. �

Composition using composition sequences. We now
study the cost of computing the map Evaln(., g), assuming
that g ∈ K[[x]] is output by a composition sequence o. The
cost depends on the operations in o. To keep simple expres-
sions, we distinguish two cases: if o contains no operation E
or L, we let To(n) = M(n); otherwise, To(n) = M(n) log(n).

Theorem 1 (Composition). Let o = (o1, . . . , oL) be a
composition sequence that outputs a series g ∈ K[[x]]. Given
o, one can compute the map Evaln(., g) in time O(To(n)).

Proof. We follow the algorithm of Figure 1. The main func-
tion first computes the sequence G = g1, . . . , gL modulo xn,
using a subroutine ComputeG(o, n) that follows Lemma 1.
The cost O(M(n)) of this operation is in O(To(n)). Then,
we call the auxiliary Eval aux function.

On input A,m, n, `, o,G, this latter function computes
Evalm,n(A, g`). This is done recursively, applying the appro-
priate associativity rule (A1) to (A7); the pseudo-code uses
a C-like switch construct to find the matching case. Even if
the initial polynomial A is in K[x]n, this may not be the case
for the arguments passed to the next calls; hence the need
for the extra parameter m. For root-taking, the subroutine
FindDegrees computes the quantities mi of Eq. (1).

Since we write the complexity as a function of n, the cost
analysis is simple: even if several recursive calls are gener-
ated (k for kth root-taking), their total number is still O(1).

Eval aux(A,m, n, `, o,G)

if ` = 0 return A mod xn

`′ = `− 1
switch(o`)
case(Mλ): B = Scaleλ,m(A)

return Eval aux(B,m, n, `′, o,G)
case(Aa): B = Shifta,m(A)

return Eval aux(B,m, n, `′, o,G)
case(Pk): B = Powerm,k(A)

return Eval aux(B, km− k + 1, n, `′, o,G)
case(Inv): B = Revm(A)

C = Eval aux(B,m, n, `′, o,G)
return Muln,n(C, g1−m

`′ mod xn)
case(Rk,α,r): m0, . . . ,mk−1 = FindDegrees(m, k)

h0 = 1
for i = 1, . . . , k − 1 do
hi = hhi−1 mod xn

A0, . . . , Ak−1 = Splitm,k(A)
for i = 0, . . . , k − 1 do
Bi = Eval aux(Ai,mi, n, `

′, o,G)
return Combn(B0, . . . , Bk−1, h0, . . . , hk−1)

case(E): B = Expm,n(A)
return Eval aux(B,n, n, `′, o,G)

case(L): B = Logm,n(A)
return Eval aux(B,n, n, `′, o,G)

Eval(A,n, o)

G = ComputeG(o, n)
return Eval aux(A,n, n, L, o,G)

Figure 1: Algorithm Eval.

Similarly, the degree of the argument A passed through the
recursive calls may grow, but only like O(n).

Two kinds of operations contribute to the cost: precompu-
tations of g1−m

`−1 mod xn (for Inv) or of 1, g`, . . . , g
k−1
` mod xn

for Rk,α,r, and linear operations on A: shifting, scaling, mul-
tiplication . . . The former take O(M(n)), since the exponents
involved are in O(n). The latter operations take O(M(n)) if
no Exp or Log operation is performed, and O(M(n) log(n))
otherwise. This concludes the proof. �

2.4 Inverse map
The map Evaln(., g) is invertible if and only if g′(0) 6= 0

(hereafter, g′ is the derivative of g). We discuss here the
computation of the inverse map.

Theorem 2 (Inverse). x Let o = (o1, . . . , oL) be a
composition sequence that outputs g ∈ K[[x]] with g′(0) 6= 0.
One can compute the map Eval−1

n (., g) in time O(To(n)).

Proof. If h is the power series h =
P
i≥i0 hix

i, with hi0 6= 0,

val(h) = i0 is the valuation of h, lc(h) = hi0 its leading
coefficient and lt(h) = hi0x

i0 its leading term. We also
introduce an equivalence relation on power series: g ∼ h if
g(0) = h(0) and lt(g − g(0)) = lt(h − h(0)). The proof of
the next lemma is immediate by case inspection.

Lemma 2. For o in O, if h ∼ g and g is in dom(o), then
h is in dom(o) and o(h) ∼ o(g).

Series tangent to the identity. We prove the proposition
in two steps. For series of the form g = x mod x2, it suffices
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to “reverse” step-by-step the computation sequence for g.
The following lemma is crucial.

Lemma 3. Let g be in K[[x]], with g = x mod x2, and let
o = (o1, . . . , oL) be a sequence defined at g. Then o is a
composition sequence.

Proof. We have to prove that o is defined at x, i.e., that
all of o1(x), o2(o1(x)), . . . are well-defined. This follows by
applying the previous lemma inductively. �

We can now work on the inversion property proper. Let thus
o = (o1, . . . , oL) be a computation sequence, that computes
g1, . . . , gL and outputs g = gL, with g = x mod x2. We de-
fine operations õ1, . . . , õL through the following table (note
that we reverse the order of the operations):

operation oi õL+1−i
Add Aa A−a
Mul Mλ M1/λ

Powering Pk Rk,lc(gi−1),val(gi−1)

Root Rk,α,r Pk
Inverse Inv Inv
Exp. E L
Log. L E

Lemma 4. The sequence õ = (õ1, . . . , õL) is a composi-
tion sequence and outputs a series g̃ such that g̃(g) = x.

Proof. One sees by induction that for all i, õi−1(· · · õ1(g))
is in dom(õi) and õi(· · · õ1(g)) = gL−i. This shows that the
sequence õ is defined at g and that õL(· · · õ1(g)) = x. From
Lemma 3, we deduce that õ is defined at x. Letting g̃ be
the output of õ, the previous equality gives g̃(g) = x, which
concludes the proof. �

Since To = Tõ, and in view of Theorem 1, the next lemma
concludes the proof of Theorem 2 in the current case.

Lemma 5. With g and g̃ as above, the map Evaln(., g̃) is
the inverse of Evaln(., g).

Proof. Let F be in K[x]n and let G = Evaln(F, g), so that
F (g) = G + H, with val(H) ≥ n. Evaluating at g̃, we get
F = G(g̃) +H(g̃) = G(g̃) mod xn, since val(g̃) = 1. �

General case. Lemma 5 fails when val(g) = 0. We can
however reduce the general case to that where val(g) = 1.
Let us write g = g0 + g1x + · · · , with g1 6= 0, and define
g̃ = (g− g0)/g1, so that g̃ = x mod x2. If o is a composition
sequence for g, then õ = (o,A−g0 ,M1/g1) is a composition
sequence for g̃, and we have Tõ = To. Thus, by the previous
point, we can use this composition sequence to compute the
map Eval−1

n (., g̃) in time O(To(n)). From the equality

Evaln(A, g) = Evaln(Scaleg1,n(Shiftg0,n(A)), g̃),

we deduce

Eval−1
n (A, g) = Shift−g0,n(Scale1/g1,n(Eval−1

n (A, g̃))).

Since scaling and shifting induce only an extra O(M(n))
arithmetic operations, this finishes the proof of Theorem 2.

3. CHANGE OF BASIS
This section applies our results on composition to change

of basis algorithms, between the monomial basis (xi) and
various families of polynomials (Pi), with deg(Pi) = i, for
which we reach quasi-linear complexity. As an intermediate
step, we present a bivariate evaluation algorithm.

3.1 Main Theorem
Let F ∈ K[[x, t]] be the bivariate power series

F =
P
i,j≥0 Fi,jx

itj =
P
j≥0 ξj(x)tj .

Associated with F, we consider the map

Evaln(.,F, t) : (a0, . . . , an−1) 7→
P
j<n ξj(x)aj mod xn.

The matrix of this map is [Fi,j ]i,j<n. The following the-
orem shows that for a large class of series F, the opera-
tion Evaln(.,F, t) and its inverse can be performed efficiently.
The proof relies on a transposition argument, given in §3.3.

Theorem 3 (Main theorem). Let f, g, h, u, v ∈ K[[z]]
be such that

• g and h are given by composition sequences og and oh;

• f , u and v can be computed modulo zn in time T(n);

• g(0)h(0) = 0 and g′(0), h′(0), u(0), v(0) are non-zero;

• all coefficients of f are non-zero.

Then the series F(x, t) = u(x) v(t) f
`
g(x)h(t)

´
is well-defi-

ned. Besides, one can compute the map Evaln(.,F, t) and its
inverse in time O(T(n) + Tog (n) + Toh(n)).

Proof. Write f =
P
k≥0 fkz

k,

g(x)k =
X
i≥0

gk,ix
i and h(t)k =

X
j≥0

hk,jt
j .

Since g(0)h(0) = 0, we have that either hk,j = 0 for k > j,
or gk,i = 0 for k > i. Thus, the coefficient F ?i,j of F? is
well-defined and

F ?i,j =
X
k≤n

fkgk,ihk,j .

These coefficients are those of a product of three matrices,
the middle one being diagonal; we deduce the factorization

Evaln(.,F?, t) = Evaln(., g) ◦∆n(., fi) ◦ Evaltn(., h).

The assumptions on f , g and h further imply that the map
Evaln(.,F?, t) is invertible, of inverse

Eval−1
n (.,F?, t) = Eval−tn (., h) ◦∆n(., f−1

i ) ◦ Eval−1
n (., g).

By Theorems 1 and 2, as well as Theorem 4 stated below,
Evaln(.,F?, t) and its inverse can thus be evaluated in time
O(T(n) + Tog (n) + Toh(n)). Now, from the identity F =
u(x)v(t)F?, we deduce that

Evaln(.,F, t) = Muln,n(., u) ◦ Evaln(.,F?, t) ◦Multn,n(., v).

Our assumptions on u and v make this map invertible, and

Eval−1
n (.,F, t) = Multn,n(., b) ◦ Eval−1

n (.,F?, t) ◦Muln,n(., a),

with a(x) = 1/u mod xn and b(t) = 1/v mod tn. The extra
costs induced by the computation of u, v, their inverses, and
the truncated products fit in O(T(n) + M(n)). �

3.2 Change of Basis
To conclude, we consider polynomials (Pi)i≥0 in K[x],

with deg(Pi) = i, with generating series defined in terms
of series u, v, f, g, h as in Theorem 3 by

P =
X
i≥0

Pi(x)ti = u(x) v(t) f
`
g(x)h(t)

´
.
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Eval auxt(A,m, n, `, o,G)

if ` = 0 return A mod xm

`′ = `− 1
switch(o`)
case (Mλ): B = Eval auxt(A,m, n, `′, o,G)

return Scaleλ,m(B)
case (Aa): B = Eval auxt(A,m, n, `′, o,G)

return Shiftta,m(B)
case (Pk): B = Eval auxt(A,mk −m+ 1, n, `′, o,G)

return Powertm,k(B)
case (Inv): B = Multn,n(A, g1−m

`′ mod xn)
C = Eval auxt(B,m, n, `′, o,G)
return Revm(C)

case (Rk,α,r): m0, . . . ,mk−1 = FindDegrees(m, k)
h0 = 1
for i = 1, . . . , k − 1 do
hi = hhi−1 mod xn

A0, . . . , Ak−1 = Combtn(A, h0, . . . , hk−1)
for i = 0, . . . , k − 1 do
Bi = Eval auxt(Ai,mi, n, `

′, o,G)
return Splittm,k(B0, . . . , Bk−1)

case (E): B = Eval auxt(A,n, n, `′, o,G)
return Exptm,n(B)

case (L): B = Eval auxt(A,n, n, `′, o,G)
return Logtm,n(B)

EvalMaint(A,n, o)

G = ComputeG(o, n)
return Eval auxt(A,n, n, L, o,G)

Figure 2: Algorithm Evalt.

Corollary 1. Under the above assumptions, one can
perform the change of basis from (xi)i≥0 to (Pi)i≥0, and
conversely, in time O(T(n) + Tog (n) + Toh(n)).

A surprisingly large amount of classical polynomials fits into
this framework (see next section). An important special
case is provided by Sheffer sequences [30, Chap. 2], whose
exponential generating function has the formX

i≥0

Pi(x)

i!
ti = v(t)exh(t).

Examples include the actuarial, Laguerre, Meixner and Pois-
son-Charlier polynomials, and the Bernoulli polynomials of
the second kind (see Tables 3 and 4). In this case, if h
is output by the composition sequence o and v(t) can be
computed modulo tn in time T(n), one can perform the
change of basis from (xi)i≥0 to (Pi)i≥0, and conversely, in
time O(T(n) + To(n)).

3.3 Transposed evaluation
The following completes the proof of Theorem 3.

Theorem 4 (Transposition). Let o = (o1, . . . , oL) be
a composition sequence that outputs g ∈ K[[x]]. Given o, one
can compute the map Evaltn(., g) in time O(To(n)).

Proof. This result follows directly from the transposition
principle. However, we give an explicit construction of the
transposed map Evaltn(., g) in Figure 2. Non-linear precom-
putations are left unchanged. The terminal case ` = 0

is dealt with by noting that the transpose of modm,n is
modn,m. To conclude, it suffices to give transposed asso-
ciativity rules for our basic operators. The formal approach
we use to write our algorithms pays off now, as it makes this
transposition process automatic.

Recall that our algorithms deal with polynomials. The
dual of K[x]m can be identified with K[x]m itself: to a
K-linear form ` over K[x]m, one associates

P
i<m `(x

i)xi.
Hence, transposed versions of algorithms acting on polyno-
mials are seen to act on polynomials as well. Remark also
that diagonal operators are their own transpose.

Multiplication. In [7], following [19], details of the trans-
posed versions of plain, Karatsuba and FFT multiplications
are given, with a cost matching that of the direct product.
Without relying on such techniques, by writing down the
multiplication matrix, one sees that Multn,m(., P ) is

A ∈ K[x]m 7→ (ARevd+1(P ) mod xn+d) div xd ∈ K[x]n,

if P has degree d. Using standard multiplication algorithms,
this formulation leads to slower algorithms than those of [7].
However, in our usage cases, n, m and d are of the same
order of magnitude, and only a constant factor is lost.

Scale. The operator Scaleλ,n is diagonal; through transpo-
sition, the associativity rule becomes:

Evaltm,n(A,Mλ(g)) = Scaleλ,m(Evaltm,n(A, g)). (At
1)

Shift. The transposed map Revtn of the reversal operator
coincides with Revn itself, since this operator is symmetric.
By transposing the identity for Shift, we deduce

Shiftta,n(A) = ∆n(Revn(Multn,n(Revn(∆n(A, 1/i!)), P )), i!).

This algorithm for the transpose operation, though not de-
scribed as such, was already given in [18]. This yields:

Evaltm,n(A,Aa(g)) = Shiftta,m(Evaltm,n(A, g)). (At
2)

Powering. The dual map Powertn,k maps A ∈ K[x]k(n−1)+1

to A0/k ∈ K[x]n (with the notation of §2.1). We deduce:

Evaltm,n(A,Pk(g)) = Powertm,k(Evaltk(m−1)+1,n(A, g)). (At
3)

Inversion. The transposed version of the rule for Inv is

Evaltm,n(A, Inv(g)) = Revm(Evaltm,n(Multn,n(A, g1−m), g)).
(At

4)

Root taking. Considering its matrix, one sees that Splittm,k
maps (A0, . . . , Ak−1) ∈ K[x]m0 × · · · ×K[x]mk−1 to

A0(xk) +A1(xk)x+ · · ·+Ak−1(xk)xk−1 ∈ K[x]m.

Besides, since the map Comb is the direct sum of the maps

Muln,n(., Gi) : K[x]n → K[x]n,

its transpose Combtn(., G0, . . . , Gk−1) sends A ∈ K[x]n to

(Multn,n(A,Gi))0≤i≤k−1 ∈ K[x]kn.

Putting this together gives the transposed associativity rule

hi = hi mod xn for 0 ≤ i < k

A0, . . . , Ak−1 = Combtn(A, h0, . . . , hk−1)

Bi = Evaltmi,n(Ai, g) for 0 ≤ i < k

Evaltm,n(A,Rk,α,r(g)) = Splittm,k(B0, . . . , Bk−1)

(At
5)
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Exponential and Logarithm. From the proof of Propo-
sition 1, we deduce the transposed map of Expm,n, Logm,n
and their associativity rules

Exptm,n(A) = modn,m(Shiftt−1,n(MultiEval(∆n(A, 1/i!)))),

Evaltm,n(A,E(g)) = Exptm,n(Evaltn,n(A, g)); (At
6)

Logtm,n(A) = modn,m(∆n(Interpn(Shiftt1,n(A)), i!)),

Evaltm,n(A, L(g)) = Logtm,n(Evaltn,n(A, g)). (At
7)

4. APPLICATIONS
Many generating functions of classical families of poly-

nomials fit into our framework. To obtain conversion algo-
rithms, it is sufficient to find suitable composition sequences.
Table 3 lists families of polynomials for which conversions
can be done in time O(M(n)) with our method (see e.g. [30,
3] for more on these classical families). In Table 4, a similar
list is given, leading to conversions of cost O(M(n) logn);
most of these entries are actually Sheffer sequences. Many
other families can be obtained as special cases (e.g., Gegen-
bauer, Legendre, Chebyshev, Mittag-Leffler, etc).

The entry marked by (?) is from [18]; the entries marked
by (??) are orthogonal polynomials, for which one conver-
sion (from the orthogonal to the monomial basis) is already
mentioned with the same complexity in [15, 29].

In all cases, the pre-multiplier u(x)v(t) depends on t only
and can be computed at precision n in time O(M(n)); all our
functions f can be expanded at precision n in time O(n).
Regarding the functions g(x) and h(t), most entries are easy
to check; the only explanations needed concern some series
h(t). Rational functions are covered by the first example of
§2.3; the second example of §2.3 deals with Jacobi polynomi-
als and Spread polynomials; the last example of §2.3 shows
how to handle functions with logarithms. For Fibonacci
polynomials, the function h(t) = t/(1− t2) satisfies

(2h)2 =
“1 + t2

1− t2
”2

− 1.

From this, we deduce the sequence for h:

(P2,M−1,A1, Inv,M2,A−1,P2,A−1,R2,2,1,M1/2).

For Mott polynomials the series h(t) = (1−
√

1− t2)/t can
be rewritten as

h =

s
2

1 +
√

1− t2
− 1.

This yields the composition sequence

(P2,M−1,A1,R2,1,0,A1, Inv,M2,A−1,R2,1,0).

5. EXPERIMENTS
We implemented the algorithms for change of basis using

NTL [32]; the experiments are done for coefficients defined
modulo a 40 bit prime, using the ZZ_p NTL class (our al-
gorithms still work for degrees small with respect to the
characteristic). All timings reported here are obtained on a
Pentium M, 1.73 Ghz, with 1 GB memory.

Our implementation follows directly the presentation of
the former sections. We use the transposed multiplication
implementation of [7]. The Newton iteration for inverse is
built-in in NTL; we use the standard Newton iteration for

square root [10]. Exponentials are computed using the al-
gorithm of [20]. Powers are computed through exponential
and logarithm [10], except when the arguments are binomi-
als, when faster formulas for binomial series are used. For
evaluation and interpolation at 0, . . . , n−1, and their trans-
poses, we use the implementation of [7].

We use the Jacobi and Mittag-Leffler orthogonal polyno-
mials (a special case of Meixner polynomials, with β = 0 and
c = −1), with the composition sequences of §2.3. Our algo-
rithm has cost O(M(n)) for the former and O(M(n) log(n))
for the latter. We compare this to the naive approach of
quadratic cost in Figure 3 and 4, respectively. Timings are
given for the conversion from orthogonal to monomial bases;
those for the inverse conversion are similar.

Figure 3: Jacobi polynomials.

Figure 4: Mittag-Leffler polynomials.

Our algorithm performs better than the quadratic one.
The crossover points lie between 100 and 200; this large
value is due to the constant hidden in our big-Oh estimates:
in both cases, there is a contribution of about 20M(n), plus
an additional M(n) log(n) for Mittag-Leffler.

6. DISCUSSION
This article provides a flexible framework for generating

new families of conversion algorithms: it suffices to add new
composition operators to Table 1 and provide the corre-
sponding associativity rules. Still, several questions need
further investigation. Several of the composition sequences
we use are non-trivial: this raises in particular the questions
of characterizing what functions can be computed by a com-
position sequence, and of determining such sequences algo-
rithmically. Besides, the costs of our algorithms are mea-
sured only in terms of arithmetic operations; the questions
of numerical stability (for floating-point computations) or of
coefficient size (when working over Q) require further work.
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polynomial generating series u(x)v(t) f(z) g(x) h(t)
Laguerre Lαn

P
n≥0 L

α
n(x)tn (1− t)−1−α exp(z) −x t(1− t)−1

Hermite Hn
P
n≥0

1
n!
Hn(x)tn exp(−t2) exp(z) 2x t

Jacobi P
(α,β)
n

P
n≥0

(α+β+1)n
(β+1)n

P
(α,β)
n (x)tn (1 + t)−α−β−1

2F1(α+β+1
2

, α+β+2
2

;β + 1; z) 1 + x 2t(1 + t)−2

Fibonacci Fn
P
n≥0 Fn(x)tn (1− t2)−1 (1− z)−1 x t(1− t2)−1

Euler Eαn
P
n≥0

1
n!
Eαn (x)tn 2α(et + 1)−α exp(z) x t

Bernoulli Bαn
P
n≥0

1
n!
Bαn (x)tn tα(et − 1)−α exp(z) x t

Mott Mn

P
n≥0

1
n!
Mn(x)tn 1 exp(z) −x (1−

√
1− t2)/t

Spread Sn
P
n≥0 Sn(x)tn (1 + t)(1− t)−1 z(1 + 4z)−1 x t(1− t)−2

Bessel pn
P
n≥0

1
n!
pn(x)tn 1 exp(z) x 1−

√
1− 2t

Table 3: Polynomials with conversion in O(M(n))

polynomial generating series u(x)v(t) f(z) g(x) h(t)
Falling factorial (x)n (?)

P
n≥0

1
n!

(x)nt
n 1 exp(z) x log(1 + t)

Bell φn
P
n≥0

1
n!
φn(x)tn 1 exp(z) x exp(t)− 1

Bernoulli, 2nd kind bn
P
n≥0

1
n!
bn(x)tn t/log(1 + t) exp(z) x log(1 + t)

Poisson-Charlier cn(x; a)
P
n≥0

1
n!
cn(x; a)tn exp(−t) exp(z) x log(1 + t/a)

Actuarial a
(β)
n

P
n≥0

1
n!
a
(β)
n (x)tn exp(βt) exp(z) −x exp(t)− 1

Narumi N
(a)
n

P
n≥0

1
n!
N

(a)
n (x)tn talog(1 + t)−a exp(z) x log(1 + t)

Peters P
(λ,µ)
n

P
n≥0

1
n!
P

(λ,µ)
n (x)tn (1 + (1 + t)λ)−µ exp(z) x log(1 + t)

Meixner-Pollaczek P
(λ)
n (x;φ) (??)

P
n≥0 P

(λ)
n (x;φ)tn (1 + t2 − 2t cosφ)−λ exp(z) ix log( 1−teiφ

1−te−iφ )

Meixner mn(x;β, c) (??)
P
n≥0

(β)n
n!

mn(x;β, c)tn (1− t)−β exp(z) x log( 1−t/c
1−t )

Krawtchouk Kn(x; p,N) (??)
P
n≥0

`
N
n

´
Kn(x; p,N)tn (1 + t)N exp(z) x log( p−(1−p)t

p(1+t)
)

Table 4: Polynomials with conversion in O(M(n) log(n))
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