
The ConstructibleSetTools and ParametricSystemTools

modules of the RegularChains library in Maple

Changbo Chen1

Marc Moreno Maza1
François Lemaire2

Wei Pan1
Liyun Li1

Yuzhen Xie1

1University of Western Ontario, London ON, N6A 5B7, Canada
2Université de Lille 1, 59655 Villeneuve d’Ascq Cedex, France

Abstract

We present two new modules of the RegularChains li-

brary in Maple: ConstructibleSetTools which is the

first distributed package dedicated to the maniputation of

(parametric or not) constructible sets and Parametric-

SystemTools which is the first implementation of compre-

hensive triangular decomposition. We illustrate the func-

tionalities of these new modules by examples and describe

our software design and implementation techniques. Since

several existing packages have functionalities related to

those of our new modules, we include an overview of the al-

gorithms and software for manipulating constructible sets

and solving parametric systems.

keywords: triangular decomposition, regular chain,

constructible set, parametric polynomial system, compre-

hensive triangular decomposition, software design

1. Introduction

Solving systems of equations, algebraic or differential,

is a driving subject for symbolic computation. Many prac-

tical applications of polynomial system solving require a

description of the real solutions of an input system with

finitely many complex solutions. Due to the expected shape

of the solution set, as studied in [2], this task is typically

achieved by means of a Gröbner basis computation fol-

lowed by the real root isolation of univariate polynomials.

Computer algebra systems, such as Maple, develop more

and more efficient approaches to this end.

Many other practical and theoretical applications of

polynomial system solving require more advanced opera-

tions on ideals and varieties, such as decomposition into

components (unmixed, irreducible, . . .). Primary decompo-

sition of ideals and triangular decomposition of algebraic

varieties are concepts which provide the necessary theo-

retical framework. Algorithms for primary decomposition

involve operations on ideals, such as saturation, intersec-

tion and quotient computations; their implementation in

the computer algebra systems AXIOM, Singular, CoCoA,

MAGMA and Maple has led to packages for computing with

polynomial ideals, based on Gröbner basis techniques.

The development of triangular decomposition started in

the late 80’s with the work of W.T. Wu [39], that is, more

than 20 years after the introduction of Gröbner bases by B.

Buchberger [3]. In the early 90’s, the notion of a regular

chain, introduced independently by M. Kalkbrener in [14]

and, by L. Yang and J. Zhang [42], led to important algo-

rithmic progress and stimulated implementation activity.

Up to our knowledge, computer algebra systems pro-

vide solvers based on triangular decompositions for 12

years only, mainly in Maple, but also in AXIOM, Singular

and MAGMA. Examples of such solvers are the download-

able packages Epsilon by D.M. Wang, WSolve by D.K.

Wang, DISCOVERER by B.C. Xia and the RegularChains

library [19], which is shipped with Maple since its release

10. Highly efficient solvers based on triangular decomposi-

tion are work in progress [21, 22].

This implementation effort is supported by continuous

theoretical and algorithmic advances. The notion of com-

prehensive triangular decomposition introduced in [4] has

brought to light the fact that constructible sets play the role

for triangular decompositions that polynomial ideals play

for Gröbner bases. This fact was underlying since the early

work of W.T. Wu [38]; it became explicit in [4] where the

authors provided procedures for computing the difference

and the intersection of two constructible sets represented by

triangular decompositions. Actually, this work motivated

the realization of the software presented in this article.

Comprehensive triangular decomposition (CTD) is one

of the tools for parametric system solving, an area which

has an increasing number of applications and which is in

demand of efficient algorithms and solvers. Of course, the

classical techniques based on Gröbner bases and triangular

decompositions can process parametric systems. However,

most practical questions related to these systems require

specific theoretical and algorithmic enhancements. To illus-

trate this fact, let us consider a parametric system Σ(U, X)

of equations, where U stands for a set of parameters andX

for a set of unknowns. For simplicity, we assume that the

coefficients ofΣ(U, X) are in the fieldQ of rational numbers

and that we are looking for the solutions of Σ(U, X) with

coordinates in the field C of complex numbers. A typical

problem is to determine the values of U for which Σ(U, X)

has solutions. This brings the following difficulty: these

values of U may not form an algebraic variety, that is, they

may not form the solution set of a system of polynomial

equations. Consider, for instance, the system Σ(U, X) con-

sisting of the single bivariate equation ux − 1 = 0, with
U = {u} and X = {x}. In this case, the solution set of
our problem is given by u 6= 0, which is a constructible
set, but not an algebraic variety. Therefore, in the context

of a strongly typed language, say AXIOM, the implementa-

tion of a package for parametric systems would naturally

imply the implementation of a type “ConstructibleSet”. In

the case of Maple, the implementation of the CTD, as the

module ParametricSystemTools, has led us to realize a

second module, namely ConstructibleSetTools. This

is why these new modules of the RegularChains library

are presented jointly in this paper.
Let us consider a more advanced illustrative example

from the theory of algebraic curves. Each of the follow-
ing equations defines an elliptic curve in the complex plane
of coordinates (x, y): g1(x, y) = 0 and g2(x, y) = 0, where

g1(x, y) = x
3 +a1x−y

2 +1 and g2(x, y) = x
3 +a2x−y

2 +1.

They depend on parameters a1 and a2 respectively. In in-
variant theory, a classical question is whether there exists a
linear fractional map from the first curve to the second one:

f : (x, y) 7→

„

A x + B y + C

G x + H y + K
,

D x + E y + F

G x + H y + K

«

See [17] for details. This problem can be turned into a para-
metric system by writing that the following rational func-
tion in (x, y) must be identically zero:

g1(x, y) − (G x + H y + K)3g2(f(x, y)).

This yields a system with 10 equations, 9 unknowns
A, B, C, D, E, F, G, H, K and 2 parameters a1, a2. Moreover
we must have (G, H, K) 6= (0, 0, 0). One can also assume that
the origin is mapped to the origin which sets C = F = 0.
Hence, we have:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1 − K3 = 0
−a2 AK2 + a1 − 3 GK2 = 0
−3 HK2 − a2 BK2 = 0
GD2 − a2 G2A − A3 − G3 + 1 = 0
−3 H2K + E2K − 1 − 2 a2 BHK = 0
−3 G2K − 2a2 GAK + D2K = 0
GE2 − 2a2 GBH − a2 AH2 − 3 AB2 − 3 GH2 + 2 DEH = 0
E2H − H3 − a2 BH2 − B3 = 0
D2H − 3 G2H + 2 GDE − 2a2 GAH − 3 A2B − a2 G2B = 0
−3 GHK − a2 AHK − a2 GBK + DEK = 0

The output produced by the command Comprehensive-
Triangularize of the module ParametricSystem-

Tools is

[regular_chain,regular_chain,regular_chain,regular_chain,

regular_chain,regular_chain,regular_chain,regular_chain,

regular_chain,regular_chain,regular_chain],

[[constructible_set, [1, 2, 3, 10, 11]],

[constructible_set, [4, 5, 6, 7, 8, 9]],

[constructible_set, [1, 2, 3]]]

It consists of two parts. The first one is a triangular

decomposition dec = [T1, . . . , T11] of the input system in

Q[B, E, H, A, D, G, K, F, C, a1, a2]; each regular chain Tj en-

codes a component of dec. The second one is a list of pairs;

in each pair the first item is a constructible set Ci and the

second one is a list Li of indices such that:

1. C1, C2, C3 form a partition of the set of parameter values

at which the input system has solutions,

2. each one of the constructible sets C1, C2, C3 is given by

a triangular decomposition,

3. for all i = 1, 2, 3, the solutions of the input system
with parameter values in Ci are given by the regular

chains Tj such that j ∈ Li,

4. for all i = 1, 2, 3, for all j ∈ Li, for all parameter value

u in Ci, the regular chain Tj behaves well under spe-

cialization at u. (This concept is formally introduced

in Definition 6).

We print below the systems defining C1, C2, C3 followed by
the regular chains T1, . . . , T11, as computed by our com-
mand.

C1 : a3

1
= a3

2
= 9

C2 : a1 = a2 = 0
C3 : a3

1
= a3

2
, a2 6= 0, a3

2
6= 9 ,

T1 = B, E − 1, H, a2 A − a1 , D, G, K − 1,−a2
3 + a1

3

T2 = B, E + 1, H, a2 A − a1 , D, G, K − 1,−a2
3 + a1

3

T3 = B, E2K − 1, H, (a2 K + a2) A + a1 , D, G,

K2 + K + 1,−a2
3 + a1

3

T4 = B, E − 1, H, A2 + A + 1, D, G, K − 1, a1 , a2

T5 = B, E + 1, H, A2 + A + 1, D, G, K − 1, a1 , a2

T6 = B, E − 1, H, A − 1, D, G, K − 1, a1 , a2

T7 = B, E + 1, H, A − 1, D, G, K − 1, a1 , a2

T8 = B, E2K − 1, H, A2 + A + 1, D, G, K2 + K + 1, a1 , a2

T9 = B, E2K − 1, H, A − 1, D, G, K2 + K + 1, a1 , a2

T10 = a2 B + 3 H,−Ha2 A + DE,
`

a2
2A2 − 9 G2 + 6 a1 G

´

H2 + 3 G2 − 2 a1 G,

−a1 + a2 A + 3 G, D2 + 3 G2 − 2 a1 G,

9 + 2 a1
2G, K − 1, a1

3 + 9, a2
3 + 9

T11 = a2 B + 3 H,−Ha2 A + DE,
`

3 D2K + a2
2A2K

´

H2 − D2,
(a2 K + a2) A + (3 K + 3) G + a1 ,

(K + 1) D2 + (3 K + 3) G2 + 2 a1 G,

2 a1
2GK − 9 K − 9, K2 + K + 1, a1

3 + 9, a2
3 + 9 .

Therefore, the union of the Ci’s is the answer to our

question: for which parameter values does the input system

have solutions. Our software can also compute the union

of the Ci’s; this will produce a single component, namely

a3
1 = a3

2; interestingly, these calculations lead to another

proof of Theorem 1 in [17].

More generally our software allows the user to perform

on constructible sets the usual set theoretical operations:

union, intersection, difference, complement, and emptiness-

test. More advanced operations such as image (or pre-

image) of an algebraic variety by a polynomial map are also

available. Actually, the objective of our illustrating example

can be stated as to computing the projection of the variety

of the input system onto the parameter space.

The paper is structured as follows. Guided by ex-

amples, Sections 2 and 3 form an overview of our two

new modules of the RegularChains library in Maple:

ConstructibleSetTools and ParametricSetTools,

dedicated respectively to computing with constructible sets

and solving parametric systems. Up to our knowledge,

ConstructibleSetTools is the first distributed package

for this purpose. Of course, several existing packages have

functionalities related to ours. We attempt to give a survey

of those in Section 4. The paper is concluded with a brief

discussion on some future research problems.

2. ConstructibleSetToolsModule

The ConstructibleSetTools module is a col-

lection of commands for computing with constructible

sets. It consists of routines to build constructible sets,

and basic set operations such as Difference and

Intersection, as well as advanced functions including

MakePairwiseDisjoint, Projection, etc.

2.1. Basic Definitions

In what follows, we define the main objects that we ma-

nipulate in this package: regular chain, regular system and

constructible set. For the details of the related concepts and

their properties, please refer to [1], [4] and [26].

Let K[X] := K[X1, . . . , Xn] be the polynomial ring over

the field K and with ordered variablesX1 ≺ · · · ≺ Xn. We

denote K the algebraic closure of K. For a set of polyno-

mials F ⊂ K[X], denote by V (F) the zero set (or algebraic
variety) of F in K

n
. For a polynomial p ∈ K[X], denote

by init(p) the leading coefficient of p regarded as a univari-
ate polynomial in its main variable (the greatest variable).

Let T ⊂ K[X] be a triangular set, that is, a set of non-

constant polynomials with pairwise distinct main variables.

The saturated ideal sat(T) of T is defined to be the ideal

〈T 〉 : hT
∞, where hT is the product of initials of polyno-

mials in T .

Definition 1 (Regular Chain and Quasi-component) Let

T be a triangular set in K[X]. If T is empty, then it is a
regular chain. Otherwise, let p be the polynomial of T with

the greatest main variable and let C be the set of other

polynomials in T . We say that T is a regular chain, if C is a

regular chain and init(p), the initial of p, is regular modulo
sat(C). In addition, the quasi-component W (T) of T is
defined to be V (T) \V (hT), where hT is the product of the

initials of the polynomials in T .

Definition 2 (Regular System) A pair [T, h] is a regular
system if T is a regular chain, and h ∈ K[X] is regular
with respect to sat(T). The zero set Z(T, h) given by [T, h]
isW (T) \ V (h).

Definition 3 (Constructible Set) A constructible set ofK
n

is a finite union (A1 \ B1) ∪ · · · ∪ (Ae \ Be) where
A1, . . . , Ae, B1, . . . , Be are algebraic varieties in K

n
.

Proposition 1 ([4]) The zero set of any regular system is

unmixed and nonempty. Every constructible set can be writ-

ten as a finite union of the zero sets of regular systems.

2.2. Software Design

Our software design mimics the organization of cat-

egories and domains in the computer algebra system

AXIOM [13]. Both regular systems and constructible sets

are treated as classes of objects, regular system and con-

structible set . This follows the implementation strategy of

the RegularChains library [20], where a regular chain is

a class type regular chain. This implementation technique

enhances the extensibility and reusability of our code.

The RegularChains user-interface has been organized

into two-level modules. The ConstructibleSetTools

module lies in the second-level interface. It relies on the

top-level module RegularChains and the ChainTools

submodule as back-end engines.

We also provide flexibility in viewing the data. Since

symbolic computation generally involves large expressions,

our functions are devised to display their computing results

as the types of the objects which they represent, i.e. reg-

ular chain, regular system or constructible set . The user

can then chose to view more details by our displaying tools

such as Equations and Info.

A special design issue is on irredundancy and lazy eval-

uation. Let Z(A) denote the zero set of A, where A can

be either a regular system or a constructible set. Assume

that [A1, . . . , As] is a list of regular systems composing
a constructible set. For i, j ∈ {1, · · · , s} and i 6= j,

Z(Ai)∩Z(Aj)may not be empty. In the functions to build
a constructible set, a decision has to be made for whether

or not to have Z(Ai) ∩ Z(Aj) = ∅ hold. The same ques-
tion arises for all the basic operations on constructible sets.

Ideally one would like to have irredundant objects in the

computations all along. However, the operation to remove

these redundant objects is not cheap. Frequent calls to this

operation can even be a bottleneck to the overall process.

In this package, we apply a lazy evaluation strategy.

Removing redundant objects is not considered at all ei-

ther when constructing a constructible set or in the basic

operations. Instead, we provide an extra function named

MakePairwiseDisjoint. It takes a constructible set as

input and makes the zero sets of its defining regular sys-

tems pairwise disjoint. In case irredundant results are de-

manded, the function MakePairwiseDisjoint can be

used to clean the results by paying extra cost.

2.3. Creating Constructible Sets

In this subsection, we illustrate by examples how to cre-

ate constructible sets in different ways. Always, we read in

necessary modules and define a polynomial ring to set up

the space we are working on.
> with(RegularChains): with(ChainTools):
> with(ConstructibleSetTools):
> R := PolynomialRing([x,y,z],0):

By default, R is defined to be Q[x ≻ y ≻ z]. The second

argument 0 indicates that the ring characteristic is zero.

Example 1 (The empty constructible set)

> cs1 := EmptyConstructibleSet(R);

cs1 := constructible set

> IsEmpty(cs1,R);

true

The set cs1 created above is the unique empty set of Q
3
.

The emptiness of a constructible set can be checked via the

command IsEmpty.

Example 2 (Quasi-component of a regular chain)

The quasi-component of a regular chain is also a con-

structible set, one can make such a conversion by the func-

tion QuasiComponent. Given a system of polynomials F ,

we first use the command Triangularize to decompose

F into a list of regular chains.

> F := [x*y*z-x*y,yˆ2-y*z];

F := [xyz − xy, y2
− yz]

> dec := Triangularize(F,R);

dec := [regular chain, regular chain, regular chain]

As we mentioned before, only the type of the output will

be displayed. The procedure Info can be used to retrieve

the internal defining polynomials of a regular chain, a regu-

lar system or a constructible set. For example, we can apply

it to the second regular chain in dec.

> rc := dec[2]; Info(rc,R);

rc := regular chain

[x, y − z]

Nowwe are ready to build the quasi-component of rc.

> cs2 := QuasiComponent(rc,R);Info(cs2,R);

cs2 := constructible set

[[x, y − z], [1]]

Here cs2 is defined by one regular system in which the
defining regular chain is rc and there is no other inequation

(we put ‘[1]‘ there for this purpose), as we expected.

Example 3 (Creating a regular system)

Following the definition of a regular system, a function

RegularSystem is provided to construct a regular system

from a regular chain with a list of polynomials as inequa-

tions. Here each polynomial is assumed to be regular w.r.t.

the regular chain. To check this, one can use IsRegular

which is a function in the ChainToolsmodule.

We use those regular chains created in the last example.

Suppose that we are interested in those points each of which

is in the quasi-component of rc but its y-coordinate is not

zero. First we check if y is regular w.r.t. rc.

> IsRegular(y,rc,R);

true

Thus we can build a regular system from rc and y.

> rs := RegularSystem(rc,[y],R);

rs := regular system

> Info(rs,R);

[[x, y − z], [y]]

The regular system rs created above will encode the ex-

act points we are looking for.

Example 4 (Creating a constructible set)

A constructible set can be represented by a finite list of reg-

ular systems. The command ConstructibleSet can be

used to create this main object.

We reuse the regular chains in Example 2. First, we con-

struct a list of regular systems from a list of regular chains.

For each point in these quasi-components, we impose that

its y-coordinate does not equal to 2. That is to say, we add
y−2 into the inequation part to create new regular systems.

> lrs := map(RegularSystem,dec,[y-2],R);

lrs := [regular system , regular system , regular system]

> map(Info,lrs,R);

[[[y], [1]], [[x, y − z], [y − 2]], [[y − 1, z − 1], [1]]]

Note that there exist some simplifications during build-

ing regular systems. For example, in the first compo-

nent, y is zero and while trying to add y − 2 into the in-
equation part, the constructor will ignore this inequation

once it detect such an obvious simplification. The func-

tion ConstructibleSet is used to create a constructible

set from a list of regular systems.

> cs3 := ConstructibleSet(lrs, R);

cs3 := constructible set

> Info(cs3,R);

[[y], [1]], [[x, y − z], [y − 2]], [[y − 1, z − 1], [1]]

Example 5 (General Construct)

We provide a very synthetic way to create a constructible

set via the command GeneralConstruct which accepts

a list of polynomials as equations, a regular chain and a

list of polynomials as inequations. It constructs a con-

structible set which encodes all the points satisfying these

constraints. This function can be regarded as a generalized

Triangularize command.

Let F be the polynomial system defined in Example 2.

As follows, one can create a constructible set, each point in

which cancels all polynomials in F and its y-coordinate is

nonzero.

> cs4 := GeneralConstruct(F,[y],R);

cs4 := constructible set

> Info(cs4,R);

[[x, y − z], [z]], [[y − 1, z − 1], [1]]

Note that this function can accept different kinds of input

forms. Here the regular chain by default is empty.

2.4. Basic Operations on Constructible Sets

In this subsection, we continue introducing functions on

some set theoretical operations with constructible sets. We

define a polynomial ring R for the following examples.

> R := PolynomialRing([x,y,u,v]):

Through the following sequence of commands, we build

two constructible sets cs1 and cs2.

> G := [xˆ2+yˆ2-1, u*x-v*y];

G := [x2 + y2
− 1, ux − vy]

> cs1 := GeneralConstruct(G,[x],R);

cs1 := constructible set

> Info(cs1,R);

[[ux − vy,
`

u2 + v2
´

y2
− u2], [y, v]]

[[x − 1, y, u], [1]], [[x + 1, y, u], [1]], [[x2 + y2
− 1, u, v], [x]]

> cs2 := GeneralConstruct(G,[y],R);

cs2 := constructible set

> Info(cs2,R);

[[ux − vy,
`

u2 + v2
´

y2
− u2], [y]], [[x2 + y2

− 1, u, v], [y]]

Example 6 (Difference) The difference of two constructi-

ble sets is again a constructible set.

> cs3 := Difference(cs1,cs2,R);

cs3 := constructible set

> Info(cs3,R);

[[x − 1, y, u], [v]], [[x − 1, y, u, v], [1]],
[[x + 1, y, u], [v]], [[x + 1, y, u, v], [1]]

Based on Difference, the module provides a function

called IsContained which can be used to detect if one

constructible set is contained in another one.

> IsContained(cs3,cs1,R);

true

Example 7 (Union) The command Union will form the

union of two constructible sets, simply by putting all defin-

ing regular system together.

> cs6 := Union(cs1,cs2,R); Info(cs6,R);

cs6 := constructible set

[[ux − vy,
`

u2 + v2
´

y2
− u2], [y, v]],

[[x − 1, y, u], [1]], [[x + 1, y, u], [1]], [[x2 + y2
− 1, u, v], [x]],

[[ux − vy,
`

u2 + v2
´

y2
− u2], [y]], [[x2 + y2

− 1, u, v], [y]]

Due to our lazy evaluation strategy, the output of Union

may contain redundancy. For example, the regular system

[[ux − vy,
(

u2 + v2
)

y2 − u2], [y, v]]

is contained in the regular system

[[ux − vy,
(

u2 + v2
)

y2 − u2], [y]].

If an irreduntant result is demanded, one can call

MakePairwiseDisjoint to clean cs6.
> cs7 := MakePairwiseDisjoint(cs6,R);

cs7 := constructible set

> Info(cs7,R);

[[x2 + y2
− 1, u, v], [y]], [[x − 1, y, u], [1]],

[[x + 1, y, u], [1]], [[ux − vy,
`

u2 + v2
´

y2
− u2], [y]]

The constructible set cs7 encodes the same set of points
as cs6, but the zero sets of its defining regular systems are
pairwise disjoint.

Example 8 (Refining Partition)

There is another level of redundancy: among a list of

constructible sets in lcs, there exists intersection between

two constructible sets in this list. In this case, there is a

set-theoretical co-prime factorization problem: construct-

ing another finite list of pairwise disjoint constructible

sets out lcs such that every constructible set in in lcs

can be uniquely written as a union of several constructible

sets in out lcs. This task is achieved by the command

RefiningPartition.

> rp := RefiningPartition([cs1,cs2],R);

rp :=

2

6

6

4

constructible set [2]

constructible set [2, 1]

constructible set [1]

3

7

7

5

The above output is represented by a matrix in which the

first column are constructible sets and the second column

are indices showing where the constructible sets come from.

In the above matrix, the constructible set in the first row

with index “2” is cs2\cs1, the second one with index “1, 2”
is cs1 ∩ cs2 and the third one with index “1” is cs1\cs2.
In fact, the three constructible sets in rp is an “intersection-

free” bases of cs1 and cs2.

2.5. Two Advanced Operations

In this subsection, we show two more advanced opera-

tions related to constructible sets.

The Projection function is used to project a variety

onto its coordinate space, where the result is not necessary

a variety but a constructible set. This function is based on a

key operation for computing pre-comprehensive triangular

decompositions in the ParametricSystemToolsmodule

which will be introduced in next section.

Example 9 (Projection of a variety)
> R := PolynomialRing([x,a,b,c]);

f := a*xˆ2+b*x+c;

cs := Projection([f],3,R); Info(cs,R);

R := polynomial ring

f := ax2 + bx + c

cs := constructible set

[[], [a]], [[a], [b]], [[a, b, c], [1]]

In this example, we project the variety defined by f onto

the parameter space defined by the last 3 variables a, b, c.

The projection image cs is a constructible set which consists

of three components:

(1) a 6= 0; (2) a = 0, b 6= 0; (3) a = b = c = 0.

These results describe for what values of a, b, c, the equa-

tion f = 0 has a solution over C.
We next compute the complement of cs, obtaining a con-

structible set cs1. By cs1 we conclude that for the case
where a = b = 0 and c 6= 0, f has no solutions over C.

> cs1 := Complement(cs, R); Info(cs1,R);

cs := constructible set

[[a, b], [c]]

Remark 1 The output of Projection(F, d, R) ad-

dresses the question “for what values of the last d variables

regarded as parameters over the polynomial ring R, does

the parametric system F have solutions?”

A frequent application in Computer Graphics is the

computation of images and preimages of algebraic vari-

eties under polynomial maps. The images and preim-

ages do not have to be algebraic varieties but constructible

sets. We provide functions PolynomialMapImage and

PolynomialMapPreimage in this module to compute

these objects. The following example illustrates how to use

the function PolynomialMapImage.

Example 10 (Polynomial map image)

To begin with, we define the source space S and the target

space T where the image lives in. The polynomial map PM

is defined as a list of polynomials in S.
> S := PolynomialRing([t]);
> T := PolynomialRing([x,y,z]);
> PM := [t,tˆ2,tˆ3];

S := polynomial ring

T := polynomial ring

PM := [t, t2, t3]
> cs1 := PolynomialMapImage([],PM,S,T);
> Info(cs1,T);

cs1 := constructible set

[[−z + xy, y3
− z2], [y]], [[x, y, z], [1]]

The call to PolynomialMapImage([], PM, S, T) com-
putes the image cs1 under the polynomial map PM in the

three-dimensional space. As a constructible set, cs1 is com-
posed of two regular systems. The two regular systems to-

gether represent the variety defined by

−z + xy = 0 and y3 − z2 = 0,

which describes the well-known twisted cubic.

3. ParametricSystemToolsModule

The ParametricSystemTools module is a collection

of commands for solving polynomial systems depending on

parameters. It is a direct application of the Constructi-

bleSetToolsmodule presented in the previous section.

The main commands included in this module are

- DefiningSet,

- ComprehensiveTriangularize,

- PreComprehensiveTriangularize,

- DiscriminantSet,

- Specialize.

These functions can be used to understand the properties of

the solution set of a polynomial system F which depends

on parameters. For instance, you can answer questions like:

for which values of the parameters does F have solutions?

finitely many solutions, or N solutions for a givenN > 0?
The functions of this module are based on the concept of

comprehensive triangular decomposition (CTD) for a para-

metric polynomial system with coefficients in a field. This

notion plays the role for triangular decompositions that

comprehensive Gröbner basis [36, 25] does for Gröbner

bases. A special feature of CTD is that bad specializations

can be avoided. Indeed, CTDs have a motivation other than

counting solutions depending on parameters. This feature

can be stated as follows: above each cell in the parameter

space, each regular chain in the associated triangular de-

composition must behave well under specializations. This

concept will be illustrated in detail later in this section.

3.1. Basic Definitions

Let F be a finite set of polynomials with coefficients in

K, parameters U = U1, . . . , Ud, and unknowns X =
X1, . . . , Xm, that is F ⊂ K[U1 ≺ · · · ≺ Ud ≺ X1 ≺
. . . ≺ Xm]. Let K be the algebraic closure ofK, and let πU

be the projection from K
d+m

on the parameter space K
d
.

For each u ∈ K
d
we define V (F (u)) ⊆ K

m
the zero set

defined by F after specializing U at u.

Definition 4 (Specialize Well and Defining Set) Given a

positive integer d, a regular chain T can be splitted into

two parts. Denote by T0 the set of the polynomials in T in-

volving only the last d variables, and denote by T1 the other

polynomials of T . LetW be the quasi-component of T0.

The regular chain T specializes well at a point u ofW if

T1(u) is a regular chain after specialization and no initial of
polynomials in T1 vanishes during the specialization. The

defining set of T with respect to the last d variables consists

of the points inW at which T specializes well.

Remark 2 For a point u in W , after specializing T1 at u,

two situations arise: either T1 is not a regular chain any-

more; or T1 is still a regular chain. There is a subtle point:

after specializing T1 at u, it might happen that it is still a

regular chain, but its shape changes. In other words, the

degree of the geometric object given by T1 could change.

The term specialize well, defined above, takes these cases

into account.

In what follows, we illustrate the functionalities of the

ParametricSystemToolsmodule by examples.

The function DefiningSet computes the defining set

of a regular chain T with respect to the last d number of

variables regarded as parameters. This is a constructible set

consisting of points in the quasi-component of T0 at which

T1 specializes well.

In the following example, F is a set of polynomials in

Q[x, y, u, v]. For different values of u and v, the solution

set has different nature. For example, u = 0 can be seen as
a degenerate case, in which x = 0 and y can be any value.

To understand better on V (F), we first decompose F into

a list c of regular chains in the sense of Lazard [26], where

all solutions of F will be given by the quasi-components of

these regular chains.

Next, we call DefiningSet(c[1], 2, R) to find out the
defining set ds1 of the first regular chain c[1]with respect to
the last 2 parameters u and v. The content of ds1 shows that
c[1] is well-specialized for all values of u and v. However,

for the last regular chain c[4], its defining set is given by
u3 + v2 = 0 and v 6= 0, and the inequation is to assure that
the regular chain c[4] specializes well.

Example 11 (Defining set of a regular chain)

> R := PolynomialRing([x,y,u,v]):

F := [v*x*y+u*xˆ2+x,u*yˆ2+xˆ2]:

c := Triangularize(F,R,output=lazard);

map(Info,c,R);

c := [regular chain , regular chain,

regular chain, regular chain]

[[x, y], [x, u],

[(vy + 1) x − u2y2, 1 +
`

u3 + v2
´

y2 + 2 vy],

[(vy + 1) x − u2y2, 1 + 2 vy, u3 + v2]]

> ds1:=DefiningSet(c[1],2,R);Info(ds1,R);

ds1 := constructible set

[[], [1]]

> ds4:=DefiningSet(c[4],2,R);Info(ds4,R);

ds4 := constructible set

[[u3 + v2], [v]]

It can happen that the defining set of a regular chain T

is strictly contained in the projection ofW (T) on K
d
, that

is, T may not specialize well at some points of K
d
. This

difficulty is overcome by the notion of pre-comprehensive

triangular decomposition (PCTD). More formally, a trian-

gular decomposition pctd of a parametric system F is pre-

comprehensive if for all parameter value u: the solution set

of F (u) is the union of theW (T (u)) for all T in pctd such

that u belongs to the defining set of T .

Definition 5 A pre-comprehensive triangular decomposi-
tion of V (F) is a family of regular chains T satisfying the

following property: for each u ∈ K
d
, let Tu be the sub-

family of all regular chains in T that specialize well at u;
then

V (F (u)) =
[

T∈Tu

W(T (u)).

In the example below, F is a list of polynomials in

Q[x, y, s]. Its triangular decomposition consists of two reg-
ular chains. If s = 0, then the first regular chain, says
[(y + 1)x− s, y2 − s + y], specializes to [(y +1)x, y2 + y],
which is not a regular chain since the initial y+1 of (y+1)x
is a zerodivisor w.r.t y2 + y. This difficulty is resolved by

the call to PreComprehensiveTriangularize(F,1,R),

which computes a PCTD of F regarding the last variable s

as a parameter. There are three regular chains in the result

pctd. For all value s, the solution set of F (s) is the union
of theW (T (s)) for all T in pctd such that s belongs to the

defining set of T .

Example 12 (PCTD)
> R := PolynomialRing([x,y,s]):

F := [s-(y+1)*x,s-(x+1)*y]:

dec := Triangularize(F,R,output=lazard);

map(Info,dec,R);

dec := [regular chain, regular chain]

[[(y + 1) x − s, y2
− s + y], [x + 1, y + 1, s]]

> pctd :=

PreComprehensiveTriangularize(F,1,R);

map(Info,pctd,R);

pctd := [regular chain , regular chain, regular chain]

[[(y + 1) x − s, y2
− s + y], [x + 1, y + 1, s], [x, y, s]]

Remark 3 How is Projection function implemented?

The Projection(F, d, R) function computes the

projection image of V (F) on the parameter space defined
by the last d variables. The essence of this command is

to compute a pre-comprehensive triangular decomposition

pctd of F regarding the last d variables as parameters, and

then compute the union of the defining sets of all regular

chains in pctd.

Comparing with the notion of pre-comprehensive trian-

gular decomposition, that of comprehensive triangular de-

composition (CTD) provides additional information on the

geometry of the input parametric system F after specializa-

tion. In broad terms, a CTD is a partition of the parame-

ter space such that above each part (or cell) the geometry

of V (F) is constant. More formally, a CTD comprises a fi-
nite partition of the parameter space into cells (each of them

given by a constructible set) and for each cell C, a family of

regular chains all specialize well at any point of C and such

that the zeroes of F above C are exactly described by the

quasi-components of those regular chains.

Definition 6 (Comprehensive Triangular Decomposition)

A CTD of V (F) is given by :

1. a finite partition C of πU (V (F)),

2. for each C ∈ C a set of regular chains TC of K[U, X]
such that for u ∈ C each of the regular chains T ∈ TC

specializes well at u and we have for all u ∈ C

V (F (u)) =
[

T∈TC

W (T (u)).

The example below illustrates how the command

ComprehensiveTriangularize is used for computing a

CTD of a parametric system

F = [x2 + y2 − 1, ux − vy]

in Q[x ≻ y ≻ u ≻ v] with u and v as parameters.

The output consists of two parts, pctd and cells. pctd is a

pre-comprehensive triangular decomposition of F . cells is

a list of constructible sets with indices. All the constructible

sets together form a partition of the parameter space defined

by u and v. The list of indices attached to a constructible

set indicates that this constructible set is contained in the

defining set of the regular chains located in pctd by these

indices. In other words, above a constructible setC in cells,

the zeroes of F above C are represented by the union of the

quasi-components of the regular chains in the list of pctd in-

dexed by the indices related to C. For instance, the union of

the quasi-components of regular chains pctd[2] and pctd[3],
which are [x − 1, y, u] and [x + 1, y, u], describes exactly
the zeroes of F for the case where u = 0 but v 6= 0, given
by the second constructible set in cells.

Example 13 (CTD)
> R := PolynomialRing([x,y,u,v]):

F := [xˆ2+yˆ2-1, u*x-v*y]:

pctd,cells :=

ComprehensiveTriangularize(F,2,R);

pctd , cells := [regular chain, regular chain,

regular chain , regular chain], [[constructible set , [1]],

[constructible set , [2, 3]], [constructible set , [2, 3, 4]]]

> map(Info,pctd,R);

[[ux − vy,
`

u2 + v2
´

y2
− u2], [x − 1, y, u],

[x + 1, y, u], [x2 + y2
− 1, u, v]]

> for e in cells do Info(e[1], R);

end do;

[[], [u, u2 + v2, v]], [[v], [u]]

[[u], [v]]

[[u, v], [1]]

The ParametricSystemTools module provides a

function DiscriminantSet for determining the discrim-

inant set of a parametric polynomial system.

Definition 7 (Discriminant Set) The discriminant set of F

is defined as the set of all points u ∈ K
d
for which V (F (u))

is empty or infinite.

Example 14
> R := PolynomialRing([x,y,u,v]):

F := [xˆ2+yˆ2-1,u*x-v*y]:

cs := DiscriminantSet(F,2,R);

Info(cs,R);

cs := constructible set

[[u, v], [1]], [[u2 + v2], [v]]

4. Related Work

In this section, we describe some basic routines imple-

mented in our two new modules. Meanwhile, we summa-

rize related algorithms, implementations and packages.

4.1. Related Work for Manipulating Con-
structible Sets

Recall that a constructible set is a finite union of subsets

W = A \ B with A and B being varieties. Different repre-

sentations forW gives quite different methods to realize ba-

sic operations like difference, intersection, and projection.

Gröbner basis approach The above two varieties A and

B can be given by two reduced Gröbner bases, as in

O’Halloran and Schilmoeller [27], Kemper [16], Schauen-

burg [28], Montes [23], etc. In [23], as part of computing

canonical comprehensiveGröbner systems, the authors pro-

posed an algorithm to describe the segments (constructible

sets) in a canonical way, where a constructible set is repre-

sented by a P-tree (each node, except the root, is a prime

ideal) with some additional properties.

The problem of computing the difference or intersection

of two constructible sets boils down to manipulating poly-

nomial ideals like computing the intersection of two ideals.

In [29], the author proposed algorithms for testing inclu-

sion and equality relations between two constructible sets.

The main technique is based on radical membership tests

with Gröbner basis. Similar technique was also used in [6]

to make the constructible subsets of parameter space consis-

tent. The projection of a variety may be seen as a refinement

of classical elimination and extension theorem [9]. In [28],

the authors describe an algorithm to compute the projection

image of a variety. This approach is geometrical and there

exists certain analogy with the one based on the notion of

well-specialization in this paper.

Triangular set approach By the technique of triangular

decompositions [38], the set W can be decomposed into

the union of zero sets of triangular systems [34, 7]. Each

triangular system is a pair [T, h], where T is a triangular

set and h is a polynomial. The points encoded by the pair

[T, h] are V (T) \ V (h). A very first problem is that this set
may be empty, and there are several constraints added to a

triangular system.

In [8, 11], the triangular set is normalized, that is the

initials only involve its parameters. In [33, 34], the con-

cept (Wang) regular system was proposed in which both the

triangular set and the inequations are normalized, and all

initials of the defining polynomials will not vanish. The

complexity result in [10] shows that while decomposing a

polynomial system into a sequence of normalized triangu-

lar sets the output size is worse than that of into a sequence

of regular chains. Therefore, in [4] the authors defined the

notation of a regular system as in Definition 2. Since the

zero set of a regular system is always nonempty (in fact un-

mixed), by Proposition 1 a constructible set is empty if and

only if it is given by an empty list of regular systems. This

is a key reason that we choose the regular system represen-

tation for a constructible set.

Although the difference of two constructible sets can be

computed naively, that is, reduce the problem to compute

the union or intersection of two varieties. In [5], an efficient

algorithm was developed for computing the difference of

the zero sets of two regular systems. The basic idea there is

to make better use of the triangular structure of the input. A

similar idea applies to compute the intersection.

To compute the projection of a constructible set, one

may first decompose it into the union of zero sets of tri-

angular systems. Then it is enough to compute the pro-

jection of the zero set of each triangular system. To do

this, one can apply pseudo-division to eliminate variables

of a triangular system one by one. Such an approach was

first proposed by Wu [40] and then further developed by

other authors [7, 34, 8]. There is an interesting result stated

in [34, 35], which pointed out that the projection of the zero

set of a (Wang) regular system is simply the common zeros

of some polynomials in the regular system. This property

is called the strong projection property of a (Wang) regular

system in [35]. Despite of this good property, the cost to

maintain the strong projection property is high.

4.2 Related Work for Parametric Polyno-
mial System Solving

As a special kind of polynomial system, parametric sys-

tems of linear equations were studied carefully in [30].

There the author gave an efficient algorithm for identify-

ing all choices of parametric values for which the system is

solvable, and for each choice, solve the linear system.

In [36] and [8], general parametric polynomial systems

were considered via comprehensive Gröbner bases and tri-

angular set approaches respectively. In [15], by virtue of

constrained polynomials, the author proposed two similar

approaches for solving parametric polynomial equations,

which are parametric Gröbner basis and parametric char-

acteristic set. The concept of parametric Gröbner basis

was further developed by [6] into Partitioned-Parametric

Gröbner bases (PPGB). In [12], the Hilbert function was

used as a tool for checking the specialization of a parametric

Gröbner basis. Recently, a new technique based on Gröbner

basis with block term ordering was proposed in [18], where

the author investigated for which parameters a polynomial

system is well-behaved by computing the minimal discrim-

inant variety.

Following the direction of comprehensive Gröbner

bases, different algorithms for computing comprehensive

Gröbner bases (CGB) and comprehensive Gröbner systems

(CGS) have been proposed, such as CGB [36], BUILDTREE

(previously called DISPGB) [25, 24, 23], CCGB [37],

ACGB [31], SACGB [32], etc. Comparing with comprehen-

sive triangular decomposition, CGB or CGS maintains more

algebraic information such as multiplicity while CTD pro-

vides more geometrical information such as degree and un-

mixed dimension.

Following the direction of triangular decompositions,

there are also lots of work [41, 8, 11, 35] devoted to para-

metric polynomial systems solving. In [41] the authors

studied parametric semi-algebraic sets whereas for other pa-

pers the parametric polynomial system was the object of

study. The concept cover proposed in [8] is very similar to

pre-comprehensive triangular decomposition (PCTD) in [4].

However, the latter is based on the specializing well prop-

erty of a general regular chain while the former relies on

that of normalized regular chain.

There are a few other packages or programs available

related to parametric system solving and manipulating con-

structible sets, such as DPGB, DV, QuasiAlgebraicSet,

RootFinding[Parametric], SACGB, DISCOVERER,

Epsilon, WSolve, etc. The first five packages are

based on Gröbner basis approach while the rest three

are implemented via triangular decompositions. Except

QuasiAlgebraicSet, which is implemented in AXIOM,

all the packages are implemented in Maple.

Although there are many related implementations, to our

knowledge, there is no package which dedicates to ma-

nipulating constructible sets in a systematic way before

the development of our ConstructibleSetTools mod-

ule. On the front of solving parametric polynomial systems,

our ParametricSystemTools module provides different

features compared with tools based on Gröbner basis ap-

proach. Among the packages based on triangular decompo-

sitions, DISCOVERER focuses on real solving; WSolve does

not have dedicated functions for parametric system solving;

Epsilon can be applied to parametric polynomial system

solving, but it usually computes more than needed since the

parameters are not prescribed. Our ParametricSystem-

Toolsmodule explicitly distinguishes variables and param-

eters and is a tool particularly aiming at parametric polyno-

mial system solving.

4.3. A Small Comparison with SACGB

We report here a brief comparison of our function

ComprehensiveTriangularize with Akira Suzuki and

Yosuke Sato’s Maple implementation SACGB on compre-

hensive Gröbner basis [32]. Another comparison between

ComprehensiveTriangularize, RegSer and DISPGB

can be found in [4].

Table 1 illustrates the timing and the length of the output

regarded as a string on the 6 examples from [32]. The tests

are performed in Maple 9.5 on an Intel Pentium 4 machine

(2.60GHz CPU, 1.0GB memory).

SACGB CTD

Sys Time(s) # Segs Length Time(s) # Cells Length

1 38.1 13 120788 5.8 4 591

2 Error – – > 1 hour – –

3 > 1 hour – – > 1 hour – –

4 904.7 27 23398 2.0 9 958

5 > 1 hour – – 1.8 7 961

6 > 1 hour – – 1.3 5 864

Table 1 Comparison with SACGB on 6 examples

Here we list the defining polynomials of cells (segments)
on the parameter space for the first example in Table 1. The

output by SACGB consists of the following 13 segments:

C1 : b = 0, a 6= 0
C2 : b = 0, a4 = 0, a 6= 0
C3 : b3 = 0, a = 0, b 6= 0
C4 : 729a4 + 64b3 = 0, ab 6= 0
C5 : b = 0, a8 = 0, a 6= 0
C6 : b6 = 0, a = 0, b 6= 0
C7 : 16767a4 + 5632b3 = 0, b6 = 0, ab 6= 0
C8 : a = 0, b 6= 0
C9 : b = 0, a = 0
C10 : ab(16767a4 + 5632b3)(−4096b3 + 729a4)(729a4 + 64b3)2 6= 0
C11 : −4096b3 + 729a4 = 0, ab 6= 0
C12 : ab(16767a4 + 5632b3)(−4096b3 + 729a4)(729a4 + 64b3) 6= 0,

−2939328b3a4 − 262144b6 + 531441a8 = 0
C13 : 16767a4 + 5632b3 = 0, ab 6= 0.

The partition ComprehensiveTriangularize contains
the 4 nonempty cells,

D1 : 729a4 + 64b3 = 0, b 6= 0, a 6= 0
D2 : 729a4 + 64b3 6= 0, 729a4 − 4096b3 6= 0, b 6= 0

or b = 0, a 6= 0
D3 : 729a4 − 4096b3 = 0, b 6= 0, a 6= 0
D4 : a = 0, b = 0.

Note that there exist inconsistent segments in SACGB’s out-

put and these segments may have common part, while all

Di’s are nonempty and pairwise disjoint.

5. Discussion

This paper has presented two new modules of the Regu-

larChains library for manipulating constructible sets and

solving parametric polynomial systems. One of the main

motivations for developing a complete collection of com-

mands for handling constructible sets was the need of par-

titioning the parameter space during the computation of

a comprehensive triangular decomposition. However, the

ConstructibleSetToolsmodule is also of great interest

as an independent package. For example, as shown in the

paper [5], it serves well as a program verifier.

Currently, some functions in the ConstructibleSet-

Tools module can only accept a list of equations as input,

such as Projection and PolynomialMapImage. It is

desirable to remove this limitation, since, mathematically,

these functions apply to any constructible set. Similarly, a

comprehensive triangular decomposition for a constructible

set would be also highly interesting. In the developing ver-

sion of our modules, these limitations have been success-

fully removed and the corresponding new functions should

be available in a future release.

Another ongoing project is the development of a mod-

ule dedicated to parametric semi-algebraic sets, allowing

the manipulations of parametric polynomial systems with

equations, inequations and inequalities. The mathematical

theory of comprehensive triangular decomposition of such

sets is actually well engaged. We hope that in a near future

this newmodule will provide a helpful support for problems

in real algebraic geometry.

References

[1] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories

of triangular sets. J. Symb. Comp., 28(1-2):105–124, 1999.

[2] E. Becker, T. Mora, M. G. Marinari, and C. Traverso. The

shape of the shape lemma. In Proc. of ISSAC, pages 129–

133, New York, NY, USA, 1994. ACM Press.

[3] B. Buchberger. Ein Algorithmus zum Auffinden der Basisele-

mente des Restklassenringes nach einem nulldimensionalen

Polynomideal. PhD thesis, University of Innsbruck, 1965.

[4] C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and

W. Pan. Comprehensive Triangular Decomposition, volume

4770 of LNCS, pages 73–101. Springer Verlag, 2007.

[5] C. Chen, M. Moreno Maza, W. Pan, and Y. Xie. On the

verification of polynomial system solvers. In Proceedings

of AWFS 2007, pages 116–144, 2007.

[6] X. Chen, P. Li, L. Lin, and D. Wang. Proving geometric

theorems by partitioned-parametric Gröbner bases. In Auto-

mated Deduction in Geometry, pages 34–43, 2004.

[7] X. Chen and D. Wang. The projection of quasi variety and

its application on geometric theorem proving and formula

deduction. In ADG, pages 21–30, 2002.

[8] S. Chou and X. Gao. Solving parametric algebraic systems.

In Proc. ISSAC’92, pages 335–341, 1992.

[9] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Al-

gorithms. Spinger-Verlag, 1st edition, 1992.

[10] X. Dahan and É. Schost. Sharp estimates for triangular sets.

In ISSAC 04, pages 103–110. ACM, 2004.

[11] X. Gao and D. Wang. Zero decomposition theorems for

counting the number of solutions for parametric equation

systems. In Proc. ASCM 2003, pages 129–144, 2003.

[12] L. González-Vega, C. Traverso, and A. Zanoni. Hilbert strat-

ification and parametric Gröbner bases. In CASC, pages

220–235, 2005.

[13] R. D. Jenks and R. S. Sutor. AXIOM, The Scientific Com-

putation System. Springer-Verlag, 1992. AXIOM is a trade

mark of NAG Ltd, Oxford UK.

[14] M. Kalkbrener. A generalized euclidean algorithm for com-

puting triangular representations of algebraic varieties. J.

Symb. Comp., 15:143–167, 1993.

[15] D. Kapur. An approach for solving systems of paramet-

ric polynomial equations. In V. Saraswat and P. Van Hen-

tenryck, editors, Principles and Practice of Constraint Pro-

gramming, pages 217–243. MIT Press, London, 1995.

[16] G. Kemper. Morphisms and constructible sets: Making two

theorems of chevalley constructive. preprint, 2007.

[17] I. A. Kogan and M. Moreno Maza. Computation of canoni-

cal forms for ternary cubics. In T. Mora, editor, Proc. ISSAC

2002, pages 151–160. ACM Press, July 2002.

[18] D. Lazard and F. Rouillier. Solving parametric polynomial

systems. J. Symb. Comput., 42(6):636–667, 2007.

[19] F. Lemaire, M. Moreno Maza, and Y. Xie. The

RegularChains library. In Ilias S. Kotsireas, editor,

Maple Conference 2005, pages 355–368, 2005.

[20] F. Lemaire, M. Moreno Maza, and Y. Xie. Making a sophis-

ticated symbolic solver available to different communities of

users. In Proc. of Asian Technology Conference in Mathe-

matics’06, 2006.

[21] X. Li and M. Moreno Maza. Multithreaded parallel im-

plementation of arithmetic operations modulo a triangular

set. In Proc. PASCO’07, pages 53–59, New York, NY, USA,

2006. ACM Press.

[22] X. Li, M. Moreno Maza, and E. Schost. Fast arithmetic for

triangular sets: From theory to practice. In Proc. ISSAC’07,

pages 269–276, New York, NY, USA, 2007. ACM Press.

[23] M. Manubens and A. Montes. Minimal canonical compre-

hensive gröber system, 01-12-06. arXiv:math.AC/0611948.

[24] M. Manubens and A. Montes. Improving the dispgb al-

gorithm using the discriminant ideal. J. Symb. Comput.,

41(11):1245–1263, 2006.

[25] A. Montes. A new algorithm for discussing gröbner bases

with parameters. J. Symb. Comput., 33(2):183–208, 2002.

[26] M. Moreno Maza. On triangular decompositions of alge-

braic varieties. Technical Report TR 4/99, NAG Ltd, Ox-

ford, UK, 1999. http://www.csd.uwo.ca/∼moreno.

[27] J. O’Halloran and M. Schilmoeller. Gröbner bases for con-

structible sets. Journal of Communications in Algebra,

30(11), 2002.

[28] P. Schauenburg. A Gröbner-based treatment of elimination

theory for affine varieties. JSC, 42(9):859–870, 2007.

[29] W. Sit. Computations on quasi-algebraic sets. In R. Liska,

editor, Electronic Proceedings of IMACS ACA’98, 1998.

[30] W. Y. Sit. A theory for parametric linear systems. In Proc.

of ISSAC’91, pages 112–121, New York, USA, 1991. ACM.

[31] A. Suzuki and Y. Sato. An alternative approach to compre-

hensive Gröbner bases. JSC, 36(3-4):649–667, 2003.

[32] A. Suzuki and Y. Sato. A simple algorithm to compute com-

prehensive Gröbner bases using Gröbner bases. In ISSAC,

pages 326–331, 2006.

[33] D. Wang. Computing triangular systems and regular sys-

tems. J. Sym. Comp., 30(2):221–236, 2000.

[34] D. Wang. Elimination Methods. Springer, 2001.

[35] D. Wang. The projection property of regular systems and

its application to solving parametric polynomial systems. In

A. Dolzmann, A. Seidl, and T. Sturm, editors, Algorithmic

Algebra and Logic, pages 269–274, Herstellung und Verlag,

Norderstedt, 2005.

[36] V. Weispfenning. Comprehensive Gröbner bases. J. Symb.

Comp., 14:1–29, 1992.

[37] V. Weispfenning. Canonical comprehensive Gröbner bases.

In ISSAC 2002, pages 270–276. ACM Press, 2002.

[38] W. T. Wu. Basic principles of mechanical theorem proving

in elementary geometries. J. Sys. Sci. and Math. Scis, 4:207–

235, 1984.

[39] W. T. Wu. A zero structure theorem for polynomial equa-

tions solving. MM Research Preprints, 1:2–12, 1987.

[40] W. T. Wu. On a projection theorem of quasi-varieties in

elimination theory. Chinese Ann. Math., Ser. B.(11):220–

226, 1990.

[41] L. Yang, X. Hou, and B. Xia. A complete algorithm for au-

tomated discovering of a class of inequality-type theorems.

Science in China, Series F, 44(6):33–49, 2001.

[42] L. Yang and J. Zhang. Searching dependency between al-

gebraic equations: an algorithm applied to automated rea-

soning. Technical Report IC/89/263, International Atomic

Energy Agency, Miramare, Trieste, Italy, 1991.

