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Abstract—While much is written about the importance of
sparse polynomials in computer algebra, much less is known
about the complexity of advanced (i.e. anything more than
multiplication!) algorithms for them. This is due to a variety of
factors, not least the problems posed by cyclotomic polynomials.
In this paper we state a few of the challenges that sparse
polynomials pose.

I. INTRODUCTION

Most computer algebra texts (e.g. [1], [2]) state that any
realistic representation of polynomials has to be sparse, and
then carefully explain how to add and multiply sparse polyno-
mials, often citing [3], with complexity measured in terms of
the number of monomials. They then discuss algorithms for
division, g.c.d., factorization etc., while implicitly adopting
the dense paradigm when it comes to discussing their running
time etc., even though the underlying implementations may
well still be sparse. The first author confesses to this lapse,
which was, at the time, unconscious. Sometimes black box
representations are mentioned, but they too quickly fall out of
sight.

So why do authors do this? The easy answer is that there
are no good ways of doing these operations with sparse
polynomials, but that is too facile. The purpose of this paper is
to delve somewhat deeper into this challenge: that of producing

algorithms which manipulate sparse polynomials in
ways that respect their sparsity, and whose complex-
ity is “reasonable” in terms of the (sparse) size of
the inputs.

In fact it turns out that each operation we may wish to
perform has its own difficulties here, hence the title refers
to “challenges” in the plural. We largely restrict ourselves to
univariate polynomials, since if the problems cannot be solved
for that case, there is apparently little hope elsewhere.

A. Notation

We assume our polynomial variable is x, and a polynomial
f has degree df and tf non-zero terms, mutatis mutandis
for other polynomials. So tf ≤ df + 1, but we are typically
concerned with cases where tf is much smaller than df , and
we will refer to the ratio (strictly speaking tf/ (df + 1) as the
“sparsity” of f . Let |f | be the largest coefficient in absolute
value in f .

Our coefficients will always lie in an integral domain, and
unless otherwise stated, one of characteristic zero. Our “stan-
dard model” is the typical “sparse polynomial” representation
of a list of (exponent, coefficient) pairs, as in [1, pp. 81–
83]. It should be noted that we are only considering explicit
integer exponents, though there is a lot to be said for learning
from the case of symbolic exponents as well [4]–[6]. Other
representations, such as sparse Horner form [7] and “Black
Box” models [8], are also well worth investigating

We let Φn be the n-th cyclotomic polynomial, i.e. the
polynomial whose roots are all the n-th roots of unity which
are not lesser roots:

Φn(x) =

n∏
k = 1

gcd(k,n)=1

(
x− e2πik/n

)
. (1)

We let φ(n) = dΦn , noting that this is the usual Eulerian φ
function. If we let Cn be the polynomial xn − 1, we see that
these are related by the following result.

Proposition 1: Cn(x) =
∏
d|n Φd(x) and Φn(x) =∏

d|n Cd(x)µ(n/d), where µ is the Möbius function.
The coefficients of Φn, which naı̈vely seem to be ±1, grow
quite surprisingly. [9, Theorem 1] shows that, for infinitely
many n,

log ||Φn||∞ > exp

(
(log 2)(logn)

log log n

)
, (2)

and indeed this is precisely the right order of (worst-case)
growth [10].

When we talk about the difficulties posed by cyclotomic
problems we include those posed by “scaled cyclotomics” such
as

x105 − 2105 = 2105C105(x/2) :

see [11] for more details.

II. THE TYPES OF CHALLENGES

Ther are several challenges we may meet when trying to
devise algorithms for sparse polynomials.



A. It’s not sparse?

There are three different ways in which we can have sparse
input but nevertheless ask a question where we can’t expect
the computation time to be polynomial in df and tf .

1) The ‘dumb’ kind, where we ask a simple question but
use a method with an intermediate computation whose
answer we have no reason to believe is sparse, such
as division with remainder. For example, if one checks
whether g divides f via
(q,r):=quorem(f,g)
return (r=0)

a huge amount of information (all of q and r) is
computed and immediately thrown out. The eventual
output is obviously sparse (it’s a single bit!) Here the
only answer is not to ask the question. In particular,
the paradigm of computing some extremely complex
quantity just to check if (part of) it is = 0 is definitely
to be avoided. Here some kind of efficient trial division
should be used instead.

2) The ‘degenerate’ kind, where in fact we have encoded
a different kind of problem in our polynomial problem.
A trivial example is given in section V-A: asking for an
integer r such that f = hr reduces, in the case where
f = xn, to enumerating all the factors of n, and in
particular to factoring n. Similarly, giving the degrees
of the factors of xn − 1 is tantamount to factoring n.

3) The ‘exceptional’ kind where we would normally ex-
pect the results to be sparse, but occasionally they are
not. Polynomial factorization furnishes with the best
examples. Various sporadic cases are known, e.g. a
trinomial of degree 14 with two dense factors of degree
7 [12]. However, the only known families of cases of this
sort are based around the cyclotomic polynomials. The
fundamental issue here is that a cyclotomic polynomial
Φn, while concise to write as such, has degree φ(n),
and generally φ(n) terms, which may have significantly
larger coefficients than one might expect. Elsewhere
[11], we argue that the correct solution to this difficulty
is not to write out Φn as a sparse polynomial, but rather
to admit either it or Cn as an element of our vocabulary
in the first place. In other words, we argue that a further
change in representation is needed.

The first case could be called a software engineering
challenge, where we need to recognize that we’re using a
sledgehammer to solve a simple problem. Sometimes the
‘degenerate’ case falls into the same category, when we know
in advance the shape of our input. This kind of challenge is
frequently encountered in the context of linear algebra, where
general LU decomposition routines are all too frequently
called with real symmetric positive-definite matrices. Whether
to put a front-end routine on routines such as factor that
‘catch’ degenerate cases and route them to more appropriate
algorithms is still an open software engineering challenge.

The third case brings us to our first mathemati-
cal/algorithmic challenge:

Challenge 1: Find useful bounds on the number of terms
in non-cyclotomic factors of sparse polynomials.

A special case of this is given as Challenge 4 later.

B. The problem may be intrinsically hard

Most of the classic results in this are are due to Plaisted
[13]–[15], as in the following result.

Theorem 1: It is NP-hard to determine whether two sparse
polynomials (in the standard encoding) have a non-trivial
common divisor.

The basic device of the proofs is to encode the NP-
complete problem of 3-satisfiability so that a formula
W in n Boolean variables goes to a sparse poly-
nomial pM (W ) which vanishes exactly at certain
M th roots of unity corresponding to the satisfiable
assignments to the formula W , where M is the
product of the first n primes. [MR 85j:68043]

Hence this difficulty as demonstrated arises with polynomials
whose roots are roots of unity, i.e. products of cyclotomic
polynomials, when rendered in the standard encoding.

Challenge 2: Either
• find a class of problems for which the gcd problem is still

NP-complete even when cyclotomic factors are encoded
in one of the encodings (Cn or Φk) from [11]; or

• find an algorithm for the gcd of polynomials with no
cyclotomic factors, which is polynomial-time in the stan-
dard encoding.

C. We still don’t know how to solve the problem

This is almost universally true — see for example the second
clause in challenge 2. The rest of the paper will mostly deal
with such cases.

III. DIVISION

Multiplication of sparse polynomials is a relatively well-
understood task: the result of h = f × g has dh = df + dg
and th ≤ tf tg , so h may be less sparse than f or g, but
not arbitrarily so. In general there are O(tf tg) coefficient
multiplications to perform. Whereas a naı̈ve algorithm for
performing the multiplication may take time O(t2f tg), with
the running time being dominated by sorting the terms of the
result, we can achieve O(tf tg log tf ), by better sorting [3].

A. Division with remainder

In the case of division, the obvious “long division” method
for f/g requires Ω(df tg) coefficient operations to be per-
formed. We could write this as Ω(tf/gtg), but the absence of
a useful answer to Challenge 1 makes this complexity bound
only of retrospective use. There are two further issues which
complicate the full complexity analysis, which is not often
performed.
• The cost of merging the terms (the cost of not merging the

terms is repeated coefficient operations as two different
terms with the same exponent have to be handled).
The naı̈ve algorithm is very bad, being O(d2

f tg). Main-
taining the partial dividend as a balanced tree gives



O(df tg log df ) exponent comparisons. We could also
look at the “geobucket” data structure [16].

• Coefficient growth. Unlike multiplication, where the only
multiplicative operations are between inputs, there is a
feedback process here, which can account for an extra
factor of df (log |f |+ log |g|). If one genuinely wants di-
vision with remainder, this coefficient growth is intrinsic.

Note how it is always df which appears in the above, and
not tf . This should be especially surprising as f appears
multiplicatively in f/g.

It appears that Monagan and Pearce [17] have some inter-
esting improvements here, with the total cost of computing
f/g with quotient q in O(tqtg log (min (tq, tg))).

B. Exact Division

A more interesting question is that of exact division, where
we want the quotient only, or an indication that the division
is not exact. In this case, as explained in [18], we can use
bounds on the coefficients of factors of f to perform an “early
exit” once the coefficients in the putative quotient exceed the
Landau–Mignotte bound. Theoretically, this reduces the extra
factor mentioned above from df (log |f | + log |g|) to df , but
the practical importance seems to be far greater in many cases.

In the standard model, dependence on df is inevitable for
the reason given in II-A: consider

xn − 1

x− 1
= xn−1 + · · ·+ x+ 1︸ ︷︷ ︸

n terms

. (3)

In the models of [11], this would be either

Cn(x)

C1(x)
= Cn(x)C1(x)−1 (3–C)

or ∏
d|n Φd(x)

Φ1(x)
=

∏
d|n;d>1

Φd(x). (3–Φ)

In neither case is the output significantly larger (in fact, any
larger) than the input. A positive answer to Challenge 1 is
fundamental here if we want to generalize this.

C. Pure divisibility

If we are purely interested in the question of whether g
divides f , irrespective of the quotient, and if dg is small, we
can compute f modulo g, using repeated squaring to evaluate
xn (mod g(x)), which takes O

(
tf log(df )(d2

g)
)

coefficient
operations.

It is not clear what to do when dg is not small. Plaisted has a
negative result in this direction, but it doesn’t quite answer the
question since

∏k
j=1 pj(x) (see below) might not be sparse.

Theorem 2 ( [13, Theorem 2.3]): The following problem is
NP-hard: given an integer N and a set {p1(x), . . . , pk(x)}
of sparse polynomials with integer coefficients, to determine
whether xN − 1 divides

∏k
j=1 pj(x).

Again, the proof is based on 3-SAT.
Challenge 3: Either

• find a class of problems for which the simple problem
“does g divide f?” is still NP-complete; or

• find an algorithm for the divisibility of polynomials which
is polynomial-time.

Failing this
• find an algorithm for the divisibility of cyclotomic-free

polynomials which is polynomial-time.

IV. GREATEST COMMON DIVISOR

Theorem 1 shows the difficulties that can arise, at least in the
case of cyclotomic polynomials. Furthermore, the following
elegant example of [19] shows that the difficulty is real.

gcd(xpq−1, xp+q−xp−xq+1) = xp+q−1−xp+q−2±· · ·−1
(4)

In the models of [11], this would be either

gcd(Cpq(x), Cp(x)Cq(x)) = Cp(x)Cq(x)C1(x)−1 (4–C)

or

gcd(Φ1(x)Φp(x)Φq(x)Φpq(x),Φ2
1(x)Φp(x)Φq(x))

= Φ1(x)Φp(x)Φq(x) (4–Φ)

(the last formulation requires p and q to be prime).
As a special case of Challenge 1 we can ask the following.
Challenge 4: Find useful bounds on the number of terms

in the greatest common divisor of sparse polynomials in the
non-cyclotomic case.
As observed in [20], their Theorem B implies such a bound in
terms of tf , |f |, tg and |g| only (i.e. not involving df , dg), but
the bound is not made explicit, and seems to be exponential
in tf and tg .

By analogy with the algorithms of [3], [17], we can also
pose the following.

Challenge 5: Find an algorithm for computing gcd(f, g)
which is polynomial-time in tf , tg and tgcd(f,g).

V. SQUARE-FREE DECOMPOSITION

We all know that square-free decomposition can be com-
puted by g.c.d. computation, but in fact the two problems are
equivalent.

Theorem 3 ( [21]): Over Z and in the standard encoding,
the two problems

1) deciding if a polynomial is square-free
2) deciding if two polynomials have a non-trivial g.c.d.

are equivalent under randomized polynomial-time reduction.
Hence, in the light of Theorem 1, determining square-freeness
is hard, at least when polynomials with cyclotomic factors are
involved.

A fortiori, computing the square-free decomposition is hard,
at least when cyclotomics are involved. This is certainly the
case if we want a full decomposition in the standard model,
as the trivial example of

xp+1 − xp − x+ 1 = (x− 1)2(xp−1 + · · ·+ 1) (5)

shows. In the models of [11], this would be either

Cp(x)C1(x) = C1(x)2
[
Cp(x)C1(x)−1

]
(5–C)



(where
[
Cp(x)C1(x)−1

]
is a legitimate square-free polyno-

mial) or
Φp(x)Φ1(x)

2
= Φp(x)Φ1(x)

2
. (5–Φ)

In neither case is the output significantly larger than the input.
We should note that the low-degree part of the square-free

decomposition can be computed — see Theorem 4 below.
Challenge 6: Find a polynomial-time algorithm for com-

puting the shape of the square-free factorization of a polyno-
mial. This might be:

either just the non-trivial multiplicities, e.g. “there are (non-
trivial) factors/roots of multiplicities 1, 4 and 7”;

or the degrees as well as the multiplicities, e.g. “f =
f1f

4
4 f

7
7 where f1 has degree 10, f4 degree 2 and f7

degree 1.
Equally, we might ask for a polynomial-time algorithm which
applies to cyclotomic-free polynomials,

A. Perfect Powers

However, a positive result for the standard representation
in this area is provided by [22], [23], who give a Las Vegas
polynomial-time algorithm for determining whether a given
sparse f (not of the form xn, else the number of possibilities
is potentially vast) is hr, and r itself.

One obvious question is whether h has to be sparse if f is.
They conjecture that it does: more precisely the following.

Conjecture 1 ( [22, Conjecture 3.1]): For r, s ∈ N and
h ∈ Z[z] with dh = s, then t̂hi < t̂hr + r for 1 ≤ i < n,
where t̂f = tf (mod x2s).
Assuming this conjecture, they can recover h in polynomial
time.

VI. FACTORIZATION

Here again, the cyclotomic polynomials immediately lead
to problems: consider the factorization of x105 − 1 as

(x− 1)
(
x2 + · · ·

) (
x4 + · · ·

) (
x6 + · · ·

) (
x8 ± · · ·

) (
x12 ± · · ·

)
×
(
x24 ± · · ·

) (
x48 ± · · · − 2x7 − x6 − x5 + x2 + x+ 1

)
(6)

In the models of [11], this would be either C105(x) =

C1(x)
C3(x)

C1(x)

C5(x)

C1(x)

C7(x)

C1(x)

C15(x)C1(x)

C3(x)C5(x)

C21(x)C1(x)

C3(x)C7(x)
×

C35(x)C1(x)

C5(x)C7(x)

C105(x)C7(x)C5(x)C3(x)

C35(x)C21(x)C15(x)C1(x)
(6–C)

(where each quotient is a legitimate irreducible polynomial)
or

Φ1(x)Φ3(x)Φ5(x)Φ7(x)Φ15(x)Φ21(x)Φ35(x)Φ105(x) = same
(6–Φ)

In fact, one could even write this even more succinctly for
larger n as

n∏
k = 1

gcd(k,n)=1

Φk(x).

It should be clear that it is really just the divisors of n which
matter.

In the light of these examples, and the result of [12] that
a trinomial can have factors with eight terms, it might seem
hopeless to search for any results on the factorization of sparse
polynomials. However, we can find low-degree factors.

Theorem 4 ( [24, p. 268]): There is a deterministic algo-
rithm that, for some positive real number c, has the following
property: given an algebraic number field K, a sparsely
represented non-zero polunomial f ∈ K[x] and a positive
integer d, the algorithm finds all monic irreducible factors of
f in K[x] of degree at most d, as well as their multiplicities,
and it spends time at most (l+d)c, where l denotes the length
of the input data (i.e. tf log(df |f |)).

Challenge 7: Understand the complexity of this result in
practice. In particular, we would like to know the value of c
in the special case when K is Q.

VII. OTHER PROBLEMS

There are many other problems one could pose about sparse
polynomials. One about which a little is known is that of
polynomial composition, i.e. is f(x) = g(h(x))? The case
g(x) = xd is that of perfect powers (see section V-A). Here
the first surprising result is the following.

Theorem 5 ( [25, Theorem 1]): If h is not of the form
axn + b, then dg ≤ 2tf (tf − 1).
This has very recently led to the following, effective in theory
but not in practice, result.

Theorem 6 ( [26, Theorem 1]): There exists a computable
function B such that if g, h ∈ C[x] are non-constant polyno-
mials with f(x) = g(h(x)), then th ≤ B(tf ).
In other words, if f is of high degree, but has few terms,
then g cannot be of high degree (and therefore implicitly has
comparatively few terms) and h has few terms. However, these
bounds still allow for a surprising degree of cancellation in
f(x) = g(h(x)). Some cancellation is certainly possible as
Coppersmith and Danvenport [27] show.

Challenge 8: Understand the complexity of [26, Theorem
1].

VIII. EXCLUDING CYCLOTOMICS

Given the difficulties that cyclotomic polynomials seem to
cause, we might wish to exclude them, as in Challenges 1, 2,
3 (third point) and 4. However, even this is difficult.

Theorem 7 ( [13, Theorem 6.1]): It is NP-hard to solve the
problem, given a polynomial p(x) ∈ Z[x], to determine if p
has a root r of modulus 1.
Of course, we could still assume that our input polynomials
were cyclotomic-free, since this theorem says nothing about
the possibility of it being easy to show the absence of roots
of unity, or at least to do so most of the time.

Theorem 7 should also be contrasted with the results below.
Theorem 8 ( [28, Theorem 1]): There is an algorithm for

determining whether f has a cyclotomic factor which runs in



time

exp

(
(2 + o(1))

√
tf/ log tf (log tf + log log df )

)
log(|f |+1)

(7)
In the case that a cyclotomic factor exists, the algorithm can be
made to output a positive integer m for which Φm(x) divides
f(x).
Unpicked, (7) says that, for fixed tf , the algorithm is polyno-
mial in log df , but the degree of that polynomial depends on
tf .

Subsequently, [20] significantly improves on this by giving
an algorithm which will in fact identify the factor of f
which has largest degree and composed only of cyclotomic
polynomials. Furthermore, once they can rule out cyclotomic
factors and other reciprocal factors (i.e. polynomials such that
g(x) = ±g̃(x) where g̃(x) = xdgg(1/x)), they produce a
complete factorization of such polynomials with running time
polynomial in df . Unfortunately, it appears that the algorithm
is exponential in tf ; it is not even clear what the dependence
of the running time on tf of the last step (factoring of
polynomials which contain neither cyclotomic nor reciprocal
factors) really is.

We should also note the following result.
Theorem 9 ( [29, Theorem 1]): There is an algorithm to

decide if f(ζm) = 0, whose running time is polynomial in
log |f |, log df , tf and logm, i.e. the input size.

IX. CONCLUSION

The first conclusion is that, as a community, we know
comparatively little about sparse polynomial algorithms, de-
spite insisting on their importance. Part of the reason for
this is that the cyclotomic polynomials definitely cloud the
scene, either by letting us produce mathematically trivial but
computationally difficult problems, such as (3), (5) or (6), or
by their use in deep results such as Theorem 1. Allowing
cyclotomics in the vocabulary, as suggested in [11], does
something for the first set of problems.

It seems likely that, from the theoretical point of view, we
will have to assume that the inputs do not have cyclotomic
factors if we are to make progress with many of the other
challenges, for which Challenge 1 is critical.
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